CN102016596B - 纸基微流体系统 - Google Patents

纸基微流体系统 Download PDF

Info

Publication number
CN102016596B
CN102016596B CN200980116682.XA CN200980116682A CN102016596B CN 102016596 B CN102016596 B CN 102016596B CN 200980116682 A CN200980116682 A CN 200980116682A CN 102016596 B CN102016596 B CN 102016596B
Authority
CN
China
Prior art keywords
conductive material
region
porous
paper
hydrophilic base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980116682.XA
Other languages
English (en)
Other versions
CN102016596A (zh
Inventor
A·C·西格尔
S·T·菲利普斯
M·D·迪基
D·罗兹基维奇
B·威利
G·M·怀特赛德斯
A·W·马丁内斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College
Original Assignee
Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard College filed Critical Harvard College
Publication of CN102016596A publication Critical patent/CN102016596A/zh
Application granted granted Critical
Publication of CN102016596B publication Critical patent/CN102016596B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/025Displaying results or values with integrated means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/126Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Abstract

本发明是以一种化验装置、一种微流体装置和一种检测流体样品中存在高电解质浓度的方法为特征的。所述化验装置包括多孔的亲水性基底;不渗流体的屏障,其限定出化验区域的边界和主通道区域的边界,所述主通道区域被流体地连接到化验区域上;和设置在所述多孔的亲水性基底上的导电材料条带。所述微流体装置包括多孔的亲水性基底;不渗流体的屏障,所述屏障贯穿多孔的亲水性基底的厚度并且在所述多孔的亲水性基底内部限定出具有第一和第二侧壁且末端开口的通道的边界;和设置在所述多孔的亲水性基底上的导电路径,所述导电路径包括(i)导电材料条带,从而在没有跨接第一和第二侧壁的导电材料的情况下形成断开电路;和(ii)被电气连接到导电材料条带的电池、电气应的指示器和电阻器。

Description

纸基微流体系统
交叉引用有关申请
本申请要求2008年3月27日提交的美国临时申请No.61/039,858和2008年3月27日提交的美国临时申请No.61/039,958的权益,因此其全部内容结合于此。
背景技术
大部分当前的生物分析化验都不能用于发展经济。当前的诊断化验通常需要由培训过的人员操作的大型且昂贵的实验仪器。因此,存在对不麻烦的并且可以在小样本量上进行的低成本的诊断化验的需求。此外,存在对流体中的被分析物进行跟踪级的检测的低成本系统的需求,例如用于:(i)人体健康;(ii)违法的毒品使用;(iii)军队和国家的安全设置;以及(iv)环境中的化学污染。
发明内容
在一个方面,发明是以化验装置为特征的。所述化验装置包括多孔的亲水性基底;限定出化验区域的边界和主通道区域的边界的不渗流体的屏障,所述主通道区域流体地连接到化验区域上;以及设置在所述多孔的亲水性基底上的导电材料条带。在一些实施例中,所述多孔的亲水性基底包括硝化纤维醋酸盐、醋酸纤维素、纤维素纸、滤纸、卫生纸、信纸、纸巾、布或者多孔聚合物薄膜。
在一些实施例中,不渗流体的屏障贯穿所述多孔的亲水性基底的厚度。
在一些实施例中,导电材料条带设置在基底的一个表面上。在一些实施例中,导电材料条带设置在基底的两个表面上。在特定的实施例中,所述条带被定位成横跨主通道区域。
在一些实施例中,所述导电材料是金属或者导电聚合物。在一些实施例中,所述导电材料是金属。在特定的实施例中,金属是Sn、Zn、Au、Ag、Ni、Pt、Pd、Al、In或者Cu。
在一些实施例中,化验装置还包括设置在导电材料和多孔的亲水性基底之间的绝缘材料。在一些实施例中,所述绝缘材料是胶带、聚苯乙烯、聚乙烯或者聚氯乙烯。
在特定的实施例中,主通道区域包括样品沉积区域,所述主通道区域在多孔的亲水性基底内在样品沉积区域和化验区域之间提供流体通道。
在一些实施例中,屏障还限定出多个化验区域和多个主通道区域,所述导电材料条带横跨两个或更多个通道。
在其他实施例中,化验区域包括检测反应剂。在一些实施例中,检测反应剂在化验区域中共价地结合到多孔的亲水性基底上。在其他实施例中,检测反应剂在化验区域中未共价地结合到多孔的亲水性基底上。
在一些实施例中,屏障包括感光性树脂或者可固化聚合物。在特定实施例中,屏障包括SU-8感光性树脂。
在一些实施例中,屏障具有至少一个在大约100μm到大约5cm之间、在大约100μm到大约1cm之间、在大约100μm到大约1mm之间或者在100μm到大约200μm之间的尺寸。在一些实施例中,主通道区域具有至少一个在大约100μm到大约5cm之间、在大约100μm到大约1cm之间、在大约100μm到大约1mm之间或者在大约100μm到大约200μm之间的横向尺寸。在一些实施例中,导电材料层具有至少一个在大约100μm到大约5cm之间、在大约100μm到大约1cm之间、在大约100μm到大约1mm之间或者在大约100μm到大约200μm之间的横向尺寸。
在一些实施例中,导电材料具有大约10Ω到大约500Ω、大约20Ω到大约100Ω或者大约20Ω到大约50Ω的电阻。
在另一方面,发明是以化验装置为特征的。化验装置包括多孔的亲水性基底;不渗流体的屏障,其限定出(i)主通道区域的边界,(ii)第一副通道区域和第二副通道区域的边界,以及(iii)第一化验区域和第二化验区域的边界,第一和第二副通道区域在所述多孔的亲水性基底内在主通道区域和相应的化验区域之间提供流体路径;和设置在所述多孔的亲水性基底上的导电材料条带。在一些实施例中,所述多孔的亲水性基底包括硝化纤维醋酸盐、醋酸纤维素、纤维素纸、滤纸、卫生纸、信纸、纸巾、布或者多孔聚合物薄膜。
在一些实施例中,不渗流体的屏障贯穿所述多孔的亲水性基底的厚度。
在一些实施例中,该导电材料条带设置在基底的一个表面上。在一些实施例中,该导电材料条带设置在基底的两个表面上。
在一些实施例中,化验装置包括第二导电材料条带。在一些实施例中,第二导电材料条带设置在基底的两个表面上。在一些实施例中,第一和第二导电材料条带设置在基底的相同表面上。在一些实施例中,第一和第二导电材料条带设置在基底的两个相反表面上。
在特定实施例中,第二导电材料条带被定位成跨过第二副通道区域。在一些特定实施例中,第一导电材料条带未跨过第二副通道区域。在一些实施例中,第二导电材料条带未跨过第一副通道区域。
在其他实施例中,化验装置包括一个或多个附加的副通道区域和一个或多个附加的化验区域,每个副通道区域在主通道区域和相应的化验区域之间提供流体路径。
在一些实施例中,所述导电材料是金属或者导电聚合物。在一些实施例中,所述导电材料是金属。在特定的实施例中,金属是Sn、Zn、Au、Ag、Ni、Pt、Pd、Al、In或者Cu。
在一些实施例中,化验装置还包括设置在导电材料和多孔的亲水性基底之间的绝缘材料。在一些实施例中,所述绝缘材料是胶带、聚苯乙烯、聚乙烯或者聚氯乙烯。
在特定实施例中,主通道区域包括样品沉积区域,所述主通道区域在多孔的亲水性基底内在样品沉积区域和第一副通道区域及第二副通道区域之间提供流体路径。
在其他实施例中,化验区域包括检测反应剂。在一些实施例中,检测反应剂在化验区域中共价地结合到多孔的亲水性基底上。在其他实施例中,检测反应剂在化验区域中未共价地结合到多孔的亲水性基底上。
在一些实施例中,屏障包括感光性树脂或者可固化聚合物。在特殊实施例中,屏障包括SU-8感光性树脂。
在一些实施例中,屏障具有至少一个在大约100μm到大约5cm之间、在大约100μm到大约1cm之间、在大约100μm到大约1mm之间或者在大约100μm到大约200μm之间的尺寸。在一些实施例中,主通道区域具有至少一个在大约100μm到大约5cm之间、在大约100μm到大约1cm之间、在大约100μm到大约1mm之间或者在大约100μm到大约200μm之间的横向尺寸。在一些实施例中,导电材料层具有至少一个在大约100μm到大约5cm之间、在大约100μm到大约1cm之间、在大约100μm到大约1mm之间或者在大约100μm到大约200μm之间的横向尺寸。
在一些实施例中,导电材料具有大约10Ω到大约500Ω、大约20Ω到大约100Ω或者大约20Ω到大约50Ω的电阻。
在另一方面,发明是以一种控制通过化验装置(例如,本文中所描述的化验装置)的流体样品的运动的方法为特征的。所述方法包括对化验装置上的导电材料施加电流;并且使主通道区域与流体样品接触,其中将电流施加到导电材料上阻止样品从主通道区域流体流动到化验区域中。在一些实施例中,施加电流会蒸发至少一部分流体样品并且在主通道区域和横过主通道区域设置的导电材料部分的边界处浓缩被分析物。
在一些实施例中,方法还包括除去电流。在特定实施例中,除去电流允许样品从主通道流动到化验区域中。
在另一方面,发明以控制流体样品通过化验装置(例如,在本文中所描述的化验装置)的运动为特征,所述化验装置包括至少两个导电材料条带,每个条带分别跨过第一和第二副通道区域。所述方法包括对第一导电材料条带施加电流;并且使主通道区域与流体样品接触,其中将电流施加到第一导电材料条带阻止样品从第一副通道区域流体流动到第一化验区域中。
在一些实施例中,施加电流蒸发了至少一部分流体样品并且在第一副通道区域和第一导电材料条带的边界处浓缩被分析物。
在其他实施例中,所述方法还包括将电流施加到第二导电材料条带上,其中将电流施加到第二导电材料条带阻止样品从第二副通道区域流体流动到第二化验区域中。
在一些实施例中,接通或断开通向导电材料条上的电流,以允许流体样品流过相应的副通道区域并进入到相应的化验区域中或将之阻止。
在另一方面,发明是以微流体装置为特征的。微流体装置包括多孔的亲水性基底;不渗流体的屏障,所述屏障贯穿多孔的亲水性基底的厚度并且在所述多孔的亲水性基底内限定出具有第一侧壁和第二侧壁且末端开口的通道的边界;和设置在所述多孔的亲水性基底上的导电路径,导电路径包括(i)导电材料条带,从而在没有跨接第一和第二侧壁的导电材料的情况下中形成断开电路;和(ii)电气地连接到导电材料条带上的电池,电气响应的指示器和电阻器。
在另一方面,发明以一种检测流体样品中存在高电解质浓度的方法为特征。所述方法包括提供本文中所描述的微流体装置;并且使末端开口的通道与流体样品接触,其中流体样品流过所述通道并且跨接所述通道的两个侧壁,连通在导电路径,其中连通导电路径时电气响应的指示器所产生的可检测信号表示流体中存在高电解质浓度。
附图说明
当同时阅读附图时,从以下说明中将更全面地了解本发明的前述及其他目的、其各种特征以及发明本身,其中:
图1A是具有单个检测区域的纸基微流体系统的示意图。图1B是具有四个检测区域的纸基微流体系统的示意图。
图2是示出一种用于制造浓缩流体中的被分析物的试制型μ-PAD装置的方法的示意图。
图3A是连接到可调电源上的μ-PAD的照片表述。图3B是描绘装置上使用红外线(IR)温度计测量温度的位置的μ-PAD的示意图。图3C是描绘将加热过的μ-PAD浸入165μM的诱惑红AC(allura redAC)之中的时间进程的一系列照片表述。图3D是同一μ-PAD装置的一系列照片表述。图3E是经加热的装置的三角形尖端中的颜色的相对百分比随时间增大的图表。
图4是纸基微流体装置的示意图,并且其用于测量脱水作用。
图5是一种制造测量脱水作用的纸基微流体装置的方法的示意图。
图6A是微流体通道的电阻与填充通道的溶液中的NaCl的浓度的关系图表。插图显示了用于实验的装置的照片表述。图6B是微流体通道的电阻与水中100mM的NaCl溶液的时间的关系的图表。
图7是装置的示意图。
图8是微流体装置的一系列照片表述。图8A描绘了右边开关被接通且左边开关被断开的装置。图8B描绘了右边开关被接通且左边开关被断开的装置。图8C和图8D描绘了一种装置,或者右边接通(图8C),或者右边断开(图8D)。
图9是一导线跨过16个通道中的8个的多通道微流体装置的一系列照片表述。图9A使用弯曲线来描绘蓝色着色剂溶液的流动和控制的连续图像。图9B描绘了具有导线的一个通道的放大图。图9C描绘了随后用于控制黄色着色剂的流动的相同装置。图9D描绘了具有导线的一个通道的放大图。
图10是具有开关的多通道微流体装置的一系列照片表述。图10A描绘了在波浪形导线横过装置下的一组通道。图10B描绘了图10A的通道nr 8的放大图。
图11是3-D可编程的微流体装置的示意图。
具体实施方式
本文中所提到的所有的公开文件、专利申请、专利及其他参考文献的全部内容通过引用结合于此。另外,所述的材料、方法和实例仅是说明性的而不用于限制。除非另外有限定,否则本文中所使用的所有技术和科学术语与本发明所属领域的普通技术人员通常所了解的具有相同的意思。虽然在本发明的实践或者试验中可以使用和本文中所描述的相似或等效的方法和材料,但是以下描述了合适的方法和材料。
概要
在一些方面,利用疏水性的屏障对多孔的亲水性底基基底图案化以提供一类用于在生物学液体上执行多路生物检定生物化验的低成本的、轻便的且技术上简单的平台种类。用于试验化验的有用的亲水性底基基底的一个实例是纸,其是便宜的、市场上容易买到的、一次性的、快速地芯吸液体的并且在和一些传统的平台上进行时一样不需要仔细操作的。纸或者其他多孔的亲水性底基基底利用疏水性屏障来图案化以提供生物学流体的空间控制,并且由于屏障所限定的区域内部的毛细管作用而能够输送流体。疏水性屏障可以是聚合物,例如,可固化聚合物或者感光性树脂,并且在所限定的区域内贯穿多孔的亲水性底基基底的厚度而提供了一基本上不可渗透的阻隔。
纸和其他多孔的亲水性底基基底还包括附接到底基基底的一侧上的一层导电材料,例如,金属。导电材料可用于控制流体样品经通过底基基底的流量流动,例如,以浓缩流体中的被分析物并且用于检测样品中的多种被分析物的跟踪级,或者形成“开关”和“阀”来控制流体样品流入到生物检定生物化验的不同区域中。所述开关和阀适用于二维的(2-D)、横向流动的纸基微流体装置以及三维的(3-D)贯穿流动装置(其是由一个叠在另一个上的交替的纸层和带层所构成的)。开关和阀的结合产生了简单的、便宜的且纸基的微流体装置,所述微流体装置在没有增加泵或者起作用的其他外部设备的复杂性的情况下准确地控制流体的运动。
在一些实施例中,绝缘材料层设置在导电材料和多孔的亲水性基底之间。可以使用的绝缘材料的非限制性实例包括带材、聚苯乙烯、聚乙烯、聚氯乙烯、薄膜感光性树脂、聚酰亚胺、胶水、环氧树脂、石蜡、聚二甲基硅氧烷(PDMS)、硅树脂、乳胶或任何其他合适的绝缘聚合物或者其任何组合。在一些实施例中,导电材料附接到绝缘材料层上以形成复合片材(例如,隔离导电层)。
化验装置
图1A是根据发明的一些实施例的化验装置的示意图,其具有亲水性基底、疏水性屏障和导电材料。装置100包括图案化的疏水性屏障110(例如,SU-8感光性树脂)、多孔的亲水性基底120(例如,色谱分析纸)、导电材料(例如,金属)和绝缘层140(例如,胶带)。疏水性屏障110在基底120中限定出了可用于执行生物化验的区域。在所示实施例中,屏障110限定出了可以沉积流体样品的样品沉积区域150、化验区域170和主通道区域160,所述主通道区域160通过毛细管作用从沉积区域150将流体样品芯吸到化验区域170。
当电流被施加到导电材料130上时,导电材料130变热并且该热量传递通过绝缘层140并进入到主通道区域160中。因为导电材料130和绝缘层140放置在装置110的一侧上,所以主通道区域160中的流体可以从装置110的背面蒸发。因此,当电流被施加到导电材料130上时,流体样品通过主通道区域160芯吸到导电材料130接触疏水性屏障110的区域180中并且不流向化验区域170。
图3C是描绘了在将电流施加到导电材料上和没有将电流施加到导电材料上的情况下阿洛拉红AC(allura red AC)的水溶液流过图1A的化验装置110的一系列图像。来自样品沉积区域150的溶液通过主通道区域160流入到区域180中,在所述区域处,导电材料130接触疏水性110。流体样品不流向化验区域170。当流体在区域180处蒸发时,着色剂的数量继续在区域180处聚积13分钟。在13分钟时,断开通向导电材料130的电流。经过13.5分钟后,流体样品开始流入化验区域170中。如以下更详细地描述的,可以利用检测反应剂来处理化验区域170以检测流体样品内部是否存在特定的被分析物。
图1B是化验装置100的示意图,所述化验装置100具有图案化的疏水性屏障110(例如,SU-8感光性树脂)、多孔的亲水性基底120(例如,色谱分析纸)、导电材料130(例如,金属)和绝缘层140(例如,胶带)。疏水性屏障110限定出了可以沉积流体样品的样品沉积区域150、化验区域171、172、173、174、副通道区域191、192、193、194和主通道区域160,所述主通道区域160从沉积区域150通过毛细管作用将流体样品分别通过副通道区域191、192、193、和194芯吸到化验区域171、172、173和174中。当电流被施加到导电材料130上时,流体样品通过主通道区域160芯吸到导电材料130接触疏水性屏障110的区域180中并且不流向副通道区域191、192、193或者194。可以利用检测反应剂(例如,相同或者不同的检测反应剂)来处理化验区域171、172、173和174以检测流体样品内部是否存在特定的被分析物。
在图1B中所示的装置100中,化验区域171、172、173和174被等距离地从主通道区域160间隔开(离主通道区域160大约2mm)。在该实施例中,化验区域171、172、173和174接收等量的流体样品,并且化验区域171、172、173和174以相同流量装填。
在图1A和1B所示的装置中,主通道区域160为1mm宽。在其他实施例中,主通道区域160更窄(例如,大约100μm)以适用于较小的流体样品体积(例如,小于大约3μL)。图1A和图1B中的装置还包括嵌有SU-8感光性树脂的纸的区域111,其可以防止流体偶然地进入装置中。
图7是一化验装置的示意图,所述化验装置具有亲水性基底、疏水性屏障和两层导电材料。装置200包括图案化的疏水性屏障210(例如,SU-8感光性树脂)、多孔的亲水性基底220(例如,色谱分析纸)、导电材料层231与232和绝缘层241与242。疏水性屏障210限定出了可以沉积流体样品的样品沉积区域250、化验区域271与272、副通道区域291与292和主通道区域260,所述主通道区域260通过毛细管作用从沉积区域250分别经由副通道区域291和292将流体样品芯吸到化验区域271和272中。可以利用检测反应剂(例如,相同或者不同的检测反应剂)来处理化验区域271和272以检测流体样品内部是否存在特定的被分析物。
当电流被施加到导电材料层231上时,导电材料层231变热并且该热量传递通过绝缘层241并进入到副通道区域291中。因为导电材料层231和绝缘层241放置在装置210的一侧上,所以副通道区域291中的流体可以从装置210的背面蒸发。因此,当电流被施加到导电材料层231上时,流体样品通过主通道区域260芯吸到副通道区域291进入导电材料层231接触疏水性屏障110的区域281中并且不流向化验区域271中。当电流被施加到导电材料层231上时,流体样品从主通道区域260通过副通道区域292流入到化验区域272中。
当导电材料层231和232为大约60-70℃时,流体的运动停止(被断开),并且当导电材料层231和232的温度低于60℃时,流体的运动被调制(形成阀)。在0.2伏时接通和断开开关和阀所需的时间(即,用于加热和冷却导电材料层231和232的时间)小于1s,但是可以通过施加不同的电流水平来调整。两个部件都可以被接通和断开多次。
图8A和8B是描绘红色着色剂的水溶液流过图7的化验装置210的图像。导电材料层231和232是沉积在绝缘层241和242(厚30μm)的一侧上的1mm宽×50nm厚的镀金导电路径。如图8A中所描绘的,当电流施加到导电材料层232上时,流体样品从主通道区域260流入到化验区域271中。然而,流体样品不会流向化验区域272,而是在区域282处被阻止。如图8B所示,当断开流向导电材料层232的电流并且将电流施加给导电材料层231时,流体样品从主通道区域260流入到化验区域272中并且停止流向化验区域271而聚积在区域281处。
图11是装置300的示意图,其包括七段式液体显示器,所述液体显示器可用于显示从0到9的所有数字。装置300包括图案化的疏水性屏障310、多孔的亲水性基底320和导电材料层330。疏水性屏障310限定出了显示区域370、副通道区域390和主通道区域360,所述主通道区域360通过毛细管作用经由副通道区域390将流体芯吸到显示区域370中。当电流被施加到导电材料层330上时,流体样品通过主通道区域360芯吸到导电材料层330接触疏水性屏障310的区域380中,并且不会流入显示区域370中。通过接通和断开通向导电材料层330的电流,可以控制进入显示区域370的流体以显示特定的数字0到9。
所述这些装置存在许多优点。装置仅使用一个加热元件(例如,扁平的30μm的薄的导线)来控制通道中的液体的流量流动。没有机械阀或者封堵器来控制通道中的流体的流量流动。所述装置具有起到阀/开关作用的简单的、薄且扁平的电热丝导线。所述阀/开关可以非常准确地引导液体并且可以将液体“保持”(停止)在一个位置处多个小时(大于2小时)。通过该方法,可以控制流动的速率、方向和路径。该装置是重量轻的和薄的,并且可以被弯曲或者折曲。纸是亲水性的并且在化学性质上是惰性的,可以在没有外部的泵的情况下由于毛细管力而输送液体。纸的通道是生物相容的。可以在化学性质上改进纸或者确定其功能以固定(例如,捕获)反应剂。制造过程是便宜的并且可以在1小时内完成。
用于测量流体样品中的电解质浓度的微流体装置
在一个方面,描述了用于测量流体样品中的含盐浓度的微流体装置。所述微流体装置包括具有图案化的亲水性区域的图案化的亲水性基底、沉积在亲水性基底上的导电的材料路径、附接到所述导电的材料路径上的电子元件和用于将流体样品沉积在一个亲水性区域内部的微流体通道。图案化的亲水性基底包括不渗流体的屏障,所述不渗流体的屏障基本上贯穿亲水性基底的厚度并且在亲水性基底内部限定出一个或多个亲水性区域的边界,如本文中所描述的。
可以将各种的电子元件附接到导电的材料路径上。电子元件的非限制性实例包括集成的电路、电阻器、电容器、晶体管、二极管、机械开关、电池和外部电源。电池的非限制性实例包括钮扣(手表)电池。外部电源的非限制性实例包括交流电压源。电子元件可以使用例如已知的粘结剂来附接。在某些实施例中,市场上可买到的由两部分组成的导电粘结剂(Circuit Specialists Inc)是通过在培养皿(Petridish)中混合相等体积的所述组分来制备的。在混合之后可以立即使用该粘结剂并且可以利用注射针头将其施加到导电材料的路径。通过将电子元件的终端压在粘结剂上来将离散的电子元件粘结到金属制的路径上。
用于沉积流体样品的微流体通道可以是与导电材料的路径接触的任何亲水性区域。所述用于沉积流体样品的微流体通道、导电材料的路径和电子元件可以按这样的方式来制造,使得当流体样品被引入到微流体通道中时,其接触到导电材料的路径以连通包括流体、导电材料的路径和电子元件的电路。在一个或多个实施例中,包含盐类的流体样品被导入到微流体通道中。流体样品内部含盐的浓度确定了流体样品的电阻,所述电阻继而确定了电路的电流。在某些实施例中,将一发光二极管(LED)附接到导电材料的路径上。在某些具体实施例中,具有高含盐浓度和低电阻的流体样品被导入到微流体通道中并且与导电材料的路径接触。电流通过所述电路,跨过LED形成了足够高的电压,并且LED被接通。在某些其他具体实施例中,具有低含盐浓度和高电阻的流体样品被导入到微流体通道中并且与导电材料的路径接触。跨过LED形成不够高的电压,并且LED保持不变。
在其他实施例中,用于沉积流体样品的微流体通道的一部分相对于空气被密封以在装置组装好后的使用期间限制流体样品的蒸发。密封的所述部分可能为微流体通道的50%、60%、70%、80%、90%或者95%。在某些实施例中,通过将透明带贴到装置的任一侧上来密封微流体通道的所述部分。在某些其他实施例中,用于沉积流体样品的微流体通道段未被密封。在某些具体实施例中,微流体通道靠近图案化的亲水性基底的边缘的段未被密封,以使其能够起到用于沉积流体样品的微流体通道的入口的作用。
在一个具体实施例中,参照图4描述了用于测量射流流体样品中的含盐浓度的由图案化纸制成的微流体装置20。如图4A所示,微流体装置20包括图案化纸1、金属制的路径5、11、12、13、电子元件4与7和微流体通道8。通过WO2008/049083中所描述的任一方法利用感光性树脂2来使纸1图案化,其该申请内容作为参考通过引用合并于此。金属制的路径5、11、12、13被沉积在纸基底1上。调制电流的电阻器4(100kΩ)被附接到金属制的路径5和11上。提供电流的(手表)钮扣电池6附接到金属制的路径5和13上。发光二极管(LED)7附接到金属制的路径12和13上。由感光性树脂2的一部分限定出的微流体通道8位于金属制的路径11和12之间,以便当流体样品被引导到微流体通道8中时,连通包括流体样品、金属制的路径11、电阻器4、金属制的路径5、钮扣电池6、金属制的路径13、LED7和金属制的路径12的电路。如图4A所示,使用塑料带3来密封如图4A所示的微流体装置的一部分,而且使微流体通道8的边缘14未被密封。如图4B所示,流体样品9被引导到微流体通道8的边缘14处。流体样品被芯吸以填充微流体通道8,以使金属制的路径11和12现在如图4C所示地被电气连接。当流体样品9具有低电阻时,电流10通过电路,跨过LED7产生了足够高的电压,并且LED7被接通。在该实施例中,微流体通道8为1mm宽,并且流体样品9可以是由患者提供的50-100μL体积的尿或者汗样品。
遭受脱水的患者的体液(例如,汗和尿)的NaCl浓度比充足水合作用的患者高。所述浓缩的盐溶液继而具有比低盐浓度的流体低的电阻。可以使用该实施例中所描述的装置通过使电流通过金属制的路径和微流体通道8中的流体样品9来测量脱水。装置20测量流体样品9的电阻,并且从而测量患者体内的脱水程度。当高含盐量的流体(例如,表现出脱水)填充通道时,由流体样品9提供的电路电阻较低,允许跨过(偏置)LED 7产生足够高的电压,来接通LED 7。这可以表示患者可能脱水。当低含盐量的流体(例如,表示充分的水合作用)填充通道8时,由流体样品9所提供的电路电阻较高,防止跨过LED7产生足够高的电压并且LED 7保持断开,表示患者或许充足地水合作用。使用电阻器4来限制电路的电流,并且使点亮LED 7所需的阈值偏置电压与显示脱水的生物样品(例如,尿或者汗)中的最小盐浓度匹配。
具有所述功能的上述微流体装置在没有任何外部设备的情况下起作用并且是重量轻的和轻便的(装置的扁平轮廓以使其便于堆叠并贮藏在已经由纸得到的夹子、文件夹或者其他便宜的和到处都有的运输箱中)。所述的微流体装置是一次性的,并且从而比重复使用的试化验设备更加耐污染。所描述的微流体装置是生物可降解的并且可以通过焚化来安全地处理。所描述的微流体装置仅需要非常小体积的样品流体。在某些实施例中,仅需要大约15μL的尿、汗或者其他体液来用于分析。另外,所描述的微流体装置能够快速诊断。在某些实施例中,可以从将尿或者汗的微滴施加到微流体装置中时开始,其在小于10s的时间内诊断患者的脱水。
多孔的亲水性基底
可以使用任何通过毛细管作用芯吸流体的多孔的亲水性基底来作为在本文中所描述的方法和装置中所述的基底。非限制性实例包括纤维素和醋酸纤维素、纸(例如,滤纸和色谱分析纸)、布和多孔聚合物薄膜。
优选是,所述多孔的疏水性基底是纸。纸可以轻易地通过疏水性聚合物壁的划分被图案化为亲水性纸的区域;通过毛细管作用吸收和芯吸流体,以便不需要外部泵来在微流体通道内部移动流体;可采用从流体中过滤固体污染物和微粒所用的多种尺寸的孔;是薄的和重量轻的;是非常便宜的并且在全世界可获得;可以在化验之后被顺利地焚化以用于处置危险废物;并且可以被共同改进以改变化验装置的化学作用(和功能)。
图案化的方法
在WO2008/049083中描述了用于图案化疏水性屏障的示例性方法。例如,化验装置的一些实施例通过利用感光性树脂浸透多孔的亲水性基底、将浸透过的基底暴露于预定图案的光中并且除去图案上的感光性树脂基而形成感光性树脂制成的疏水性屏障来用光刻法制造。可以选择光的图案来限定出化验区域、通道区域、样品沉积区域等等,这些区域的边界至少部分由疏水性屏障所限定出。所述方法提供了相当高的特征分辨率。例如,所述光刻技术可用于形成厚度在大约1mm到大约100μm之间(例如,在大约300μm到100μm之间),或甚至更小的屏障。另外,所述技术可以形成沿其长度没有显著差异的特征,例如,宽度沿其长度变化小于大约10%、小于大约5%或甚至更小的屏障。相反,由所述屏障限定出的通道也具有沿其长度没有显著差异的宽度,例如,沿其长度差异小于大约10%、小于大约5%或甚至更小。
沉积导电材料的方法
在一个方面,描述了在亲水性基底上结合有导电材料的微流体装置。描述了使用多种方法来将导电材料沉积到微流体装置的亲水性基底上。
亲水性基底可以是任何通过毛细管作用芯吸流体的基底。亲水性基底的非限制性实例包括硝化纤维、醋酸纤维素、纸、布和多孔聚合物薄膜。纸的非限制性实例包括滤纸和色谱纸。
导电材料的非限制性实例包括金属、导电聚合物、导电油脂、导电粘结剂、任何其他导电的材料或者其组合。在一个或多个实施例中,导电材料包括金属。金属的非限制性实例包括Sn、Zn、Au、Ag、Ni、Pt、Pd、Al、In、Cu或者其组合。在其他实施例中,导电材料包括导电聚合物。导电聚合物的非限制性实例包括多聚乙炔、聚吡咯、聚苯胺、多聚(硫呋喃)、多聚(芴)、多聚(3-烷基噻吩)、多聚四硫富瓦烯(polytetrathiafulvalenes)、多聚萘(polynaphthalenes)、多聚(p-苯二胺硫化物)、多聚(对位-苯二胺1,1,2-次乙基)或者其任何组合或衍生物。在又一实施例中,导电材料包括导电油脂、导电粘结剂或者导电的任何其他材料。
多种沉积方法可用于将导电的材料沉积在微流体装置的亲水性基底上。沉积方法的非限制性实例包括利用模板来沉积导电材料,通过抽吸导电路径来沉积导电材料,通过喷墨或激光印刷来沉积导电材料,通过将市场上可买到的或自制的导电材料带附接在亲水性基底上来沉积导电材料,通过抽吸导电路径来沉积导电材料或者通过将导电流体导入到微流体装置的亲水性基底或亲水性通道上来沉积导电材料。替代地,导电材料可以被嵌入到用于制造亲水性基底的纸浆或者纤维中以供制造包含导电材料的亲水性基底所用。
在一个或多个实施例中,通过多种技术使用模板来将导电材料沉积在微流体装置的亲水性基底上。
模板(stencils)包括孔或者口孔口的图案,通过所述孔或者孔口图案可以将导电材料沉积在亲水性基底上。替代地,在刻蚀过程中,模板包括孔或者口孔口的图案,通过所述孔或者孔口图案可以蚀刻导电材料以在亲水性基底上形成金属图案。模板可以由多种材料(例如,金属、塑料或者图案化的干片保护层塑料或者图案化的干膜光阻)制成。用于制造模板的金属的非限制性实例包括不锈钢和铝。用于制造模板的塑料的非限制性实例包括聚酯薄膜。替代地,图案化的干膜光阻干片保护层可以用作模板。在一个或多个实施例中,金属或者塑料被用来制造模板,并且可以使用板图编辑程序(例如,cClewin,WieWeb公司)在计算机上设计金属制的路径的图案,并且可以从任何供应商(例如,Stencils Unlimited LLC(Lake Oswego,OR))处获得设计以所述设计为基础的模板。在某些实施例中,可以在沉积之后从纸上除去模板。在某些其他实施例中,模板的一侧被喷射有一层雾化粘结剂(例如,3M Photomount,3M Inc)以暂时将模板附加到纸基底上。在沉积之后,模板可以从纸上剥离。模板可以被重复使用多次,例如,多于10次。在其他实施例中,图案化的干膜光阻可以用作模板。干膜光阻感光胶膜当暴露于穿过透明掩膜的紫外线光中时被图案化并且在淡氢氧化钠溶液中显影。可以在便携式贴膜机(Micro-Mark,Inc)中通过将抗蚀侧面压靠到亲水性基底的表面上并且使多层片结构通过加热滚筒来将图案化的干膜光阻附接到涂敷的塑料片上或者直接附接到亲水性基底上。然后,涂敷的塑料片可以被剥离,产生在一个侧面上具有图案化的干膜光阻的一张纸。
多种技术可用于穿过模板将导电的材料沉积在微流体装置的亲水性基底上。所述技术的非限制性实例包括通过模板蒸发、通过模板溅射沉积、通过模板喷射沉积、通过模板涂刷或者通过模板蒸发或溅射沉积导电材料薄层随后通过电解沉积或非电解淀积来产生一导电材料厚层。替代地,首先通过蒸发、溅射沉积、喷射沉积或者涂刷将导电材料沉积在亲水性基底上。然后应用模板,并且蚀刻导电材料的未受模板保护的那部分以在亲水性基底上形成导电材料的图案。
在一个或多个实施例中,导电材料通过模板蒸发到微流体装置的亲水性基底上。蒸发是一种其中原材料在真空中被蒸发的薄膜沉积方法。真空允许蒸气颗粒直接行进朝向到目标物件(基底)上行进,在该目标物件处,它们凝聚成固态。可以在S.A.Campbell于纽约(1996)的牛津大学出板社的《微电子制造科学和技术》中找到蒸发沉积的详细说明,其全部内容作为参考通过引用合并于此。蒸发需要高度真空,可应用到多种金属,并且可以按最多高达50nm/s的速率沉积金属。在某些实施例中,例如金属的导电材料通过由金属、塑料或者感光性树脂制成的模板蒸发到亲水性基底上。在某些其他实施例中,导电材料基于浸透感光性树脂的丝网通过由金属或者塑料制成的模板蒸发到亲水性基底上。在另外某些其他实施例中,薄层的导电材料被蒸发在亲水性基底上并且然后通过电解沉积或者非电解淀积出更厚的导电材料层。在某些具体实施例中,使用e-光束蒸发器将金属蒸发在纸上。在所述实施例中,金属的非限制性实例包括100%Sn、100%In、100%Au、100%Ag、52%In-48%Sn的共晶体、100%Ni和100%Zn。
在其他实施例中,导电材料通过模板被溅射沉积到微流体装置的亲水性基底上。溅射沉积是一种通过将材料从材料源处溅射(即,喷射)到基底(例如,亲水性基底)上来沉积出薄膜的物理汽相淀积方法。可以在S.A.Campbell于纽约(1996)的牛津大学出板社的《微电子制造科学和技术》中找到溅射沉积的详细说明。溅射沉积通常在较低真空度(>75,000μTorr)下进行并且在比蒸发低的速率(例如,对于Au为1nm/s,对于其他金属具有更低的速率和更高的能量要求)下沉积例如金属的导电材料。在某些实施例中,例如金属的导电材料通过由金属、塑料或者感光性树脂制成的模板被溅射沉积在亲水性基底上。在某些其他实施例中,例如金属的导电材料基于浸透感光性树脂的丝网通过由金属或者塑料制成的模板溅射沉积到亲水性基底上。在另外某些其他实施例中,薄的导电材料层被溅射沉积在亲水性基底上,并且然后通过电解沉积或者非电解淀积沉积出更厚的导电材料层。在某些具体实施例中,使用Cressington 208HR benchtop溅射涂层机通过溅射将金属沉积在纸上。在所述实施例中,金属的非限制性实例包括100%Pt、100%Au、80%Pd/20%Pt、100%Ag、100%Ni、100%Al和100%Sn。在另一个具体实施例中,Au(金)被溅射在亲水性基底上。金具有与铜或者铝相似的导电性(在20℃时,导电率=45.17×1061/Ωm)。在几厘米长度上具有较小横断面面积(50nm×1mm)的金导线可以形成具有高电阻(>100Ω)的导电的金属制路径。可以使用适度的电压(大约5V)和电流(大约55mA)将所述金导线加热到高温(大约90℃),所述电压和电流可以通过便携式碱性或者锂离子电池来轻易地提供。替代地,可以直接将一段带材附接在亲水性基底上,并且然后通过掩模将金溅射沉积在带材上。
在其他实施例中,导电材料通过模板被喷射沉积在微流体装置的亲水性基底上。喷射沉积是快速的且便宜的,并且可以在没有专用设备的情况下在室温下应用。此外,由于其较大的涂层厚度,金属的喷射沉积可以用于在包括卫生纸、纸巾或甚至纺织品的非常粗糙的表面上产生导电的路径。借助于由例如悬挂在丙烯酸底基中的例如金属的导电材料的薄片构成的喷枪或者喷射剂容器来施加喷射。在某些实施例中,例如金属的导电材料通过由金属、塑料或者感光性树脂制成的模板被喷射沉积在亲水性基底上。在某些其他实施例中,导电材料基于浸透感光性树脂的丝网通过由金属或者塑料制成的模板喷射沉积到亲水性基底上。在某些具体实施例中,Ni或者Ag被喷射在基底上并且在室温下固化(10分钟)以产生导电的表面(厚度=20-100μm,取决于遍数,对于Ni,表面电阻=0.7Ω/square,对于Ag,表面电阻=0.01Ω/square)。
在其他实施例中,导电材料通过模板被涂刷在微流体装置的亲水性基底上。可以被涂刷在亲水性基底上的导电的材料的非限制性实例包括钎焊膏、导电油脂、导电粘结剂或者导电油墨(金属基或者导电聚合物基)。涂刷技术可用于将导电材料沉积在亲水性基底的表面上或者沉积到其内部。在某些实施例中,例如金属的导电材料通过由金属、塑料或者感光性树脂制成的模板被涂刷在亲水性基底上。在某些其他实施例中,导电材料基于浸透感光性树脂的丝网通过由金属或者塑料制成的模板被涂刷在亲水性基底上。
在其他实施例中,使用刻蚀工艺通过模板将导电材料沉积在微流体装置的亲水性基底上。在某些实施例中,首先通过蒸发、溅射沉积、喷射沉积、或者涂刷将导电材料沉积在亲水材料上。然后,应用模板并且对沉积在亲水性基底上的导电材料的未被模板保护的那部分进行蚀刻,在亲水性基底上产生导电材料的图案。在某些具体实施例中,例如金属的导电材料被沉积在亲水性基底上,并且然后通过模板,沉积的金属经受活性离子蚀刻过程以除去金属沉积物上未被模板保护的那部分,从而在亲水性基底产生了金属图案。
在其他实施例中,导电材料通过抽吸导电路径被沉积在亲水性基底上。在某些实施例中,使用填装导电金属墨的笔来将金属沉积在亲水性基底上。在所述实施例中,金属的非限制性实例包括Ag和Ni。在某些其他实施例中,使用填装导电聚合物的笔来将导电聚合物沉积在亲水性基底上。抽吸导电路径可以将导电材料沉积在亲水性基底的基体的表面和内部。
在其他实施例中,通过喷墨或者激光印刷来沉积导电材料。在某些实施例中,通过喷墨或者激光印刷来印刷或者绘制导电聚合物。在某些其他实施例中,通过喷墨或者激光印刷来印刷或者绘制导电墨。
在其他实施例中,通过将市场上可买到的或者自制的导电材料带附接在亲水性基底上来沉积导电材料。在某些实施例中,将市场上可买到的导电带附接在亲水性基底的表面上。市场上可买到的导电带的非限制性实例包括铜带材。在某些其他实施例中,将自制的导电带材附接在亲水性基底的表面上。自制的导电带材的非限制性实例包括例如通过蒸发、溅射沉积、喷射沉积或者涂刷而包敷有导电材料的透明胶带的塑料带。
在其他实施例中,通过将导电流体导入到亲水性基底或者微流体装置的亲水性通道上来沉积导电材料。在某些实施例中,导电流体被芯吸到亲水性基底或者亲水性的通道中。导电液体的非限制性实例包括离子溶液、金属、碳纳米管溶液或者导电聚合物。
在其他实施例中,可以将导电材料嵌入到用于制造亲水性基底的纸浆或者纤维中以供制造内部沉积有导电材料的亲水性基底所用。在某些实施例中,可以将金属或者其他导电材料嵌入到用于制造纸的纸浆或者纤维中。
在另一个方面,在导电材料沉积之后将电气元件附接在亲水性基底上。可以使用例如已知的粘结剂来附接电气元件。在某些实施例中,市场上可买到的由两部分组成的导电粘结剂(Circuit Specialists Inc)可以通过在培养皿(Petri dish)中混合相等体积的所述组分来制备。在混合之后可以立即使用该粘结剂并且可以利用注射针头将其施加到导电材料的路径中。通过将电子元件的终端压在粘结剂上来将分立电子元件粘结到金属制的路径上。电子元件的非限制性实例包括集成电路、电阻器、电容器、晶体管、二极管、机械开关和电池。
图2示意性地示出了一种用于沉积导电材料以制造出本文所描述的化验装置的方法。如图2所示,首先将绝缘层1(30μm厚)附接到多孔的亲水性基底2(30μm厚)上。然后,通过溅射沉积将导电的金属层3(50nm米厚)沉积在绝缘层1上。然后将由导电的金属绝缘层和多孔的疏水性基底层形成的夹层切割成段,并且在所述段之一的内部,将绝缘层1(附着有导电金属层3)从多孔的亲水性基底2上分离以形成包括一段导电的金属层12和一段绝缘层13的导电金属-绝缘层组件11。然后将导电金属-绝缘层组件11附接到一图案化的多孔的亲水性基底5上,疏水性材料4贯穿所述图案化的多孔的亲水性基底5的选定部分的厚度。导电金属-绝缘层-多孔的亲水性基底层所形成的夹层可以被切割成具有不同形状和尺寸的段,并且所述段(附接有导电的金属层)内部的绝缘层可以被从多孔的亲水性基底上分离以形成具有不同形状和尺寸的导电金属-绝缘层组件。
检测反应剂
亲水性基底的边界区域可用于在化验装置中限定出一个或多个化验区域。生物化验装置的化验区域可以利用对生物流体中存在被分析物做出响应的反应剂进行处理,所述反应剂可以起到被分析物存在的指示器的作用。在一些实施例中,对于被分析物的所述响应是肉眼可见的。例如,可以在化验区域中处理亲水性基底以提供存在被分析物的颜色指示器。指示器可以包括在有被分析物的情况下被着色、在有被分析物的情况下变色或者在有被分析物的情况下发荧光、发磷光或者发冷光的分子。在其他实施例中,放射性的、磁性的、光学的和/或电气的测量可用于确定蛋白质、抗体或者其他被分析物的存在。
在一些实施例中,为了检测特定的蛋白质,可以利用有选择地联结蛋白质或者与蛋白质作用的反应剂(例如,小分子)来推衍亲水性基底的化验区域。或者,例如,为了检测特定抗体,可以利用有选择地联结抗体或与抗体作用的反应剂(例如,抗原)来推衍亲水性基底的化验区域。例如,例如小分子和/或蛋白质的反应剂可以使用这样的化学作用(所述化学作用与用来将分子固定在凸缘或者载玻片上的化学作用类似)或者使用用于将分子联接到碳水化合物上的化学作用共价地联结到亲水性基底上。在备用实施例中,可以通过将反应剂从溶液中施加并且允许溶剂蒸发来应用和/或固定反应剂。可以通过其他非共价相互作用物理吸收来将反应剂固定在多孔基底上。总之,多种反应剂可用于化验装置以检测被分析物,并且可以通过多种合适的方法来施加。所述反应剂可能包括抗体、核酸、核酸适体(aptamers)、分子印迹聚合物、化学受体、蛋白质、缩氨酸、无机化合物和有机小分子。所述反应剂可能被吸附到纸上(通过非具体的相互作用的非共价地或者共价地(如或者为酯、氨化物、亚胺、以太或者通过碳-碳、碳-氮、碳-氧或氧-氮化学键))。
然而,一些被分析物与一些反应剂的相互作用不会引起可见的变色,除非被分析物被预先标记。所述装置可以被另外处理来添加在其在化验区域中联结到反应剂上之后联结到目标分析物上的着色剂或标记过的蛋白质、抗体、核酸或者其他反应剂,并且产生可见的变色。例如,这可以通过提供具有单独区域的装置来实现,所述单独区域已经包含着色剂或者标记过的反应剂,并且包括一机构,通过所述机构,在所述着色剂或者标记过的反应剂在化验区域联结到反应剂上之后可以轻易地将其导入到目标分析物中。或者,例如,装置可以设有单独通道,可以在着色剂或者标记过的反应剂在化验区域中联结到反应剂上之后使用所述单独通道来使其从纸的不同区域流入到目标分析物中。在一个实施例中,该流动以一滴水或者其它流体开始。在另一个实施例中,反应剂和标记过的反应剂在装置中的相同位置处,例如,在化验区域中施加。
生物样品
本文中所描述的微流体系统可用于化验样品流体。可以使用本文中所描述的诊断系统来化验的生物样品包括例如尿、全血、血浆、血清、脑脊髓液、腹水、眼泪、汗、唾液、排泄物、齿沟液或者组织提取液。
在一些实施例中,单滴液体(例如,来自针扎的手指的一滴血液)足以执行化验,以提供存在被分析物的一简单的“是/否”应答,或者例如通过进行化验的亮度与校准的彩色图表的可见的或者数字的比较来提供样品中存在的被分析物的数量的半定量分析的化量。然而,为了获得液体中的被分析物的定量测量,一般在装置存放一限定体积的流体。因此,在一些实施例中,可以通过图案化纸以包括接收一限定体积的流体的样品井来获得一限定体积的流体(或者十分接近提供适当精确的读数的限定体积的一体积)。例如,在全血样品的情况中,目标手指可以被针扎,并且然后压靠在样品井上直到井被注满,从而足够近似所限定体积。
应用
本文所描述的测量溶液中的盐浓度的微流体系统可以被用于许多不同的应用中。例如,它们可能对以下人员有用:儿科医生(用于婴儿或者很难获得更大体积尿的其他患者的脱水诊断);在例如发展中国家的资源有限的环境中工作的医生(用于在主要关注化验成本或者运转器械的电力获得能力的情况下诊断脱水);在紧急事件或者护理点环境中工作的医生(作为用于快速检测脱水的方法);疗养院中的护士或者护工(用于检测老年人的脱水);军队的技术人员(用于监控士兵的脱水);运动员、教练员或者运动医生/技术人员(用于在实践中或者在比赛中进行“现场”检测运动员的脱水);兽医(用于检测家庭宠物、家畜、赛马或者其他动物的脱水);农场主或者农业科学家/工程师(用于检测植物和动物的脱水);环境科学家(用于检测水中的盐浓度);和化学家、生物工程师或者化学工程师(作为用于在纸基底中构造出其他一次性电子式微流体混合式装置的蓝图)。
结合有本文所描述的开关和阀的微流体系统可用于许多应用中。例如,它们可能适合于在通道中执行反应(例如,PCR、核酸合成)。此外,具有加热元件的纸装置可以被化学家用于在所述系统内部引导(生物)化学反应(例如,作为实验室芯片装置)。在一些实施例中,产品可以直接在反应室中合成,通过色谱分析法提纯(简单地通过迁徙到其他通道中),并且通过切割一张纸来从芯片中分离出来。
在其他实施例中,结合有开关和阀的装置可以被用作了解液体的流动、热传递和其对多孔介质中的流的影响的一模型系统(参见图10和11)。所述装置还可以用于通过刚要添加新鲜的反应剂之前浓缩多用途的流体(例如,血液、尿、唾液和水)来调查其中的小分子的存在。所述开关可以使人能够紧接着一对照的被分析物来执行反应或者比较检测结果中的浓度如何变化(例如,虽然一个开关被接通并且流体中的分析物被浓缩,但是另一通道充满未浓缩的分析物,并且最后,两个通道中的分析物都可以与反应剂起反应)。当可以添加到系统中的不同液体或者反应剂的数量受限(按剂量或者同时)时,所述装置还可以用于微流体实验。
在纸中利用金属作为微流体装置还可以适用并被用在任何以下应用中:在纸中泵送流体;通过蒸发在纸中浓缩分析物;在纸中“开关”流体或者控制流体的流动方向,或者接通/断开纸中流体的流动;在纸中执行电化学反应(例如,氧化还原作用);纸基的电池或者燃料电池;感测纸中流体的温度;加热纸中的流体(例如,用于晶胞的反应或者培育);纸中的PCR;冷却纸中的流体(例如,当金属被用作来自例如珀耳帖致冷器的冷却装置的“冷”导体时);集中纸制微流体装置中的磁场(例如,镍图案+外部永磁体);在纸中施加磁场以分开、圈闭或者捕获颗粒或者被分析物;在纸中施加电场或者磁场用于混合(例如,使用四处摇动的小颗粒);在纸制微流体通道中的电泳;纸中电容式检测(例如,感测电介质中的差异);感测纸中的电离电阻(例如,用于检测含盐量);感测纸中的电阻(例如,其中微流体通道中银还原产生与被检测分析物成比例的给定电阻的导电路径的纸诊断设备);复杂的电力致动的熔断器(例如,其中微流体通道包含爆炸物,例如,汽油);自毁式纸诊断法(例如,其中通过电子学致动的熔断器消除了外部火花或者火焰的需要);和便携式的遥感诊断设备(例如,进行测量然后借助于射频通讯长距离地发送信号的诊断法)。
进一步通过以下实例来说明本发明。所述实例仅用于说明性目的。其无论如何不会被看作是对发明范围和内容的限制。
实例
实例1-用于分析物浓缩的纸制微流体装置的制备和使用
制造纸制微流体装置
按两步工艺来制造试制型μ-PADs(参见图2)。按两步工艺来制备μ-PADs,所述两步工艺包括在纸上形成疏水性聚合物的图案,并且在纸基的微流体装置上图案化导电的金路径。
首先,如前面所描述的,使用光刻法和SU-8感光性树脂在华特曼(Whatman)滤纸1中形成微流体通道(Martinez等,Angew.Chem.Int.Ed.,Eng.46:1318-1320,2007)。简要地说,该工艺涉及将SU-8感光性树脂嵌入到Whatman滤纸1中,烘干所述纸以除去SU-8配方中的环戊酮,并且然后,穿过印刷在透明物体上的黑墨的图案照射所述纸大约3.5分钟(使用100W的水银灯)。在90℃下加热纸10分钟,将其浸入丙二醇单甲醚醋酸盐中(3×5分钟)并且浸入甲醇中(3×5分钟),并且干燥。
首先,通过制备导线并且然后将其附接到微流体装置上来在所述纸基的微流体装置上使金导电路径图案化。对于所述装置,金被图案化在带材上,并且带材被切割成尺寸适当的导电路径,以用于附接到所述装置上。具体地说,通过将透明胶带的粘性侧面粘贴到未漂白的硫酸纸上并且通过使用设置为60mA和50s的溅射时间的Cressington Model 208HR溅射涂层机来将50纳米厚的金层溅射在带材的光亮侧面上(参见图2)。金/带材/硫酸纸的复合材料被切割成尺寸适合用于μ-PAD的段(即,具有30μm×1mm×22mm尺寸的用于单通道μ-PAD的直线段、和在U形的基部处具有30μm×1mm×21mm以及在U形的侧边处具有30μm×1mm×15mm尺寸的用于多通道μ-PAD的连续的U形段)。将硫酸纸(假羊皮纸)从金/带材的复合材料上剥离,并且在检测区域的底部之下大约0.5mm处将带材粘贴到纸基的微流体装置上。该距离离检测区域足够远以使从导线传递给沉积在所述区域中反应剂的热最少。
浓缩含水的红色着色剂
通过使用如上所述地制造的单通道μ-PAD浓缩165μM阿洛拉红AC(红色色素)的水溶液来测试用于浓缩分析物的装置的有效性。使用接线夹(扁平的微型接线夹,Mueller Electric Inc)将每个装置上的金导线连接到一可调的电流源上(参见图3a)。在图3a中,阿洛拉红AC溶液已经到达所述导线并且已经被稍微浓缩。每条金属导线具有大约100Ω的电阻。电流(大约55mA)通过装置5s来加热金属。使用一红外线(IR)温度计来测量导线的温度(图3b)。μ-PAD的背面(即,与导线的相反侧面)上的纸的温度也被测量,并且当施加电压时观察到通道的温度从23℃直接升高到大约75±5℃。通道的最终温度有大约5℃的变化,其反映金导线的宽度上的小差异。
最初,装置被悬挂在5mL的阿洛拉红AC(165μM)的水溶液之上。然后,提升所述水溶液,直到其接触到纸的底面(且接通电流)。水溶液在30-60s中被芯吸到装置的中心通道中并且到达导线。当溶液润湿靠近导线的亲水性通道时,通道的温度降低大约3-5℃(在23%相对湿度下)。当通道被加热到高于60℃时,流体不会被芯吸到中心通道中超过导线。反而,溶液从导线处吸收热量,引起导线附近的水的蒸发。
当流体蒸发时,阿洛拉红AC浓缩在通道的与导线对准的部分中(图3c)。只要电流通过μ-PAD,则流体继续蒸发并且被分析物被逐渐浓缩。导线下面的通道被加热到大约70℃。电流(55mA)被连续施加13分钟,并且然后减小为零。在断开电流之后,通道在几秒钟内冷却并且流体被芯吸到装置的其余部分中。在图3c中所描绘的定向中,金导线在装置的背面。在加热1分钟之后,通过装置的图片中的虚线来突出导线的位置。被浓缩的阿洛拉红AC显示为检测区域下面的黑暗材料。在该实例中,装置被最多加热13分钟,但是装置可以被加热并且被分析物可以被浓缩直到流体耗尽。
当电流被断开时,通道在不到5s内从65-75℃冷却到23℃。一旦通道被冷却到大约40℃,则流体开始芯吸到装置的其余部分中。使导线紧密地邻近检测区域以确保当被分析物像塞子一样与流体一起运动并且在其填充菱形区域时浓缩保持浓缩状态(图3c)。
加热时间和被分析物的浓度之间的关系
通过将水中的165μM阿洛拉红AC芯吸到复合μ-PADs中来测量样品被加热的时间长度和被分析物被浓缩的相对数量之间的关系。装置被加热不同的时间段并且然后冷却以允许流体填充检测区域。通过为干燥装置拍照并且通过使用来获得每个装置的末端三角形区域的颜色的平均亮度来测量装置的端部中所收集的颜色增强的相对百分比。可以使用中的蓝色通道来扫描所述三角形区域,并且使用以下方程式来计算出阿洛拉红AC中增大的相对百分比:
颜色在装置的三角形尖端中扩展的程度取决于电流通过金导线的持续时间(图3d)。在图3d中,相同的μ-PAD装置被加热不同的持续时间并且然后冷却以允许浓缩的样品芯吸到装置的五边形端部中。当流体到达中心通道中的导线处时开始加热时间,并且当电流减小为零时结束加热时间。当装置被加热一段很短的时间(1分钟)时,颜色仅比装置在没有施加电流时高10%(图3e;所述数据符合由下列方程式所描述的一线性的最小二乘线:y=5.93x+3.81;R2=0.96)。然而,当加热13分钟时,颜色比装置未被加热时强烈73%。
实例2-用于检测盐浓度的纸制微流体装置的制备和使用
制造一纸制微流体装置
使用前面所述的工艺(Martinez等,Angew.Chem.Int.Ed.,Eng.46:1318-1320,2007)来在华特曼(Whatman公司)滤纸中制造微流体通道(参见图5)。使用板图编辑程序(Clewin,WieWin公司)在计算机上设计出用于微流体通道的图案,并且使用一喷墨式打印机和一透明薄膜来打印出根据所述设计的光掩模。利用以下工艺来在Whatman滤纸1中图案化微流体通道:(i)将纸(2.5cm×2.5cm×x200μm)浸入抗蚀剂(SU-82010,Microchem公司)中,并且使用擀面棍将过量的抗蚀剂从纸中挤压出来;(ii)在95℃下干燥所述纸10分钟,通过将光掩模和纸一起作为夹层结构压靠在利用联结夹保持在一起的两个载玻片之间来将光掩模夹紧到纸上,并且使所述纸通过光掩模暴露于紫外线灯中(100瓦的水银阴极辉点灯)将掩模的图案传递给纸;以及,(iii)通过将纸浸入在丙二醇单甲醚醋酸盐中(2×10分钟)和丙-2-醇中(2×10分钟)来展开所述纸。
在微流体装置上制造出金属导线
利用板图编辑程序(Clewin,WieWeb公司)在计算机上设计出金属制路径的图案,并且基于所述设计从Stencils Unlimited LLC(Lake Oswego,OR)处获得不锈钢模板。
通过手动对准模板与纸中图案化的特征并且通过经由模板蒸发导电金属(100%In)来将金属沉积在纸基的微流体装置上。金属被图案化在微流体通道的任一侧上并且遍布限定出通道的疏水性屏障的边缘并进入亲水性通道中,使得当流体填充微流体装置时,其与所述金属接触以接通电路。
在沉积金属之后,通过将透明带材应用到装置的任一侧上来将90%的微流体通道相对于空气密封起来。该步骤在使用期间限制了流体的蒸发。微流体通道的靠近所述纸的边缘的段未被密封,以使其能够起到用于流体进入微流体装置的入口的作用。
将电子元件安装到纸上
使用如上所述工艺来将电子元件附接到装置上。市场上可买到的由两部分组成的导电粘结剂(Circuit Specialists公司)是通过在培养皿中混合相等体积的所述组分来制备的。在混合之后立即:(i)使用注射器和针将粘结剂施加到金属制路径上,以及(ii)通过将电子元件的终端(端子)压在粘合剂上来将电子元件(电阻器、LED和电池)粘结到金属制路径上。利用环氧树脂固定不到15分钟,以在所述纸上形成元件和导电路径之间的永久性电气连接。完整的装置包括3V的钮扣(手表)电池(Energizer公司,$0.20)、电阻器(Digikey公司,$0.01)和发光二极管(lumex公司,$0.08)(参见图4)。
测量纸基的微流体通道中的含水的盐溶液的电阻
如上所述地制造出六个相同的微流体装置。每个装置中微流体通道填充有包含不同浓度的NaCl的水溶液:0mM、50mM、100mM、250mM、500mM和1000mM。
通过将制造在通道的任一侧上的金属导线连接到偏置电压为1V的电压源(BK Precision公司)上并且通过利用数字式万用表(Fluke公司)测量流过通道的电流来确定每个装置中填充流体的微流体通道的电阻。通过将偏压电压除以电流来获得通道的电阻。
图6a显示了以溶液中的NaCl浓度为函数的通道的稳态电阻。在60s时收集所有的数值,在该时间下在所有样品中所测得的电阻接近稳态。图表显示当通道中的水不包含盐时通道显示出最高电阻。当溶液中的盐的浓度增大时,通道的电阻减小。误差线表示了横跨使用三个单独、相同装置所进行的三个实验的数据范围。
图6b显示了在将溶液滴施加到装置中之后以时间为函数的通道的电阻。在时间等于零时,通道的电阻为大约5MΩ。在10s内,电阻减小到20kΩ的近似稳态值。误差线表示了横跨使用三个单独、相同装置所进行的三个实验的数据范围。
实例3-具有开关和阀的纸制微流体装置的制备和使用
装置的制造
使用由以下三个总的步骤所构成的工艺来制造微流体装置:(i)按照产品规格(MicroChem公司,Newton,MA)使用SU-8感光性树脂来在Whatman滤纸1上进行光刻;(ii)制造并附接金属带材导线:在透明带材的粗糙侧面上溅射出50纳米的金层(CressingtonModel 208HR溅射涂层机,60mA,50s溅射时间)并且将其作为1mm宽的带材附接到装置上;以及,(iii)组装装置的所有层。
接通/断开通道
为了在纸通道中检查接通/断开过程,使用红色着色剂的水溶液(0.05mM的含水阿洛拉红)来可视化装置的有效性。溶液通过毛细管作用被输送到装置的中心通道中。电热丝设置为70℃以停止液体的流动。
利用接线夹使导线与可调的电流源相连。电压设置为0.1V,电流为0.037mA。装置被浸入到着色剂水溶液中到溶液中大约500μm的深度以通过毛细管作用将液体导入到通道中。为了断开一个通道(以关闭它),流经横跨该通道的导线的电流被调节以产生大约80℃的温度(利用IR温度计所测得的温度),而其它导线未被接通(导线上的温度为大30℃)以允许液体流动(图8)。
当来自中心通道的流动被引导到通道1中时,开关2上的电流被接通并且开关1被断开(图8A)。开关1上的温度为30℃。开关2上的温度为80℃。冷却时间少于1s。达到80℃所需的时间也少于1s。当开关2被断开时,液体开始流入那个通道中(图8B)。因为导线1上的电流被接通,所以液体不会进入通道1中。开关1和2被周期性地接通和断开以引导液体的流动。(在该实验中连续地提供液体)。在停止通道2中的流体的流动之后(图8c),开关2被断开并且液体可以再流入到通道中(图8D)。
同时控制多个通道中的液体的流动
单根金属带材混合物导线横跨一组通道附接,以便在这些通道的不同长度处阻止液体。导线被按这样的方式来定位,以使开关被设置在每个通道的不同部分处。在该特定实验中,使用导电笔来拉拽导线(只是简化所述过程,但是可以使用金属带材混合物导线来进行的相同方法)。导线被拉拽到附接于纸制装置的透明带上(图10)。为了可视化液体的流动,将蓝色或者黄色着色剂[分别为0.05mM酸性兰9溶液和0.05mM酒石黄水溶液]添加到MiIIiQ水中。着色的液体通过通道浸入溶液中而被输送给装置。在第一实验(图10)中,蓝色着色剂的水溶液被引导到通道中,并且通过横过16个通道中8个通道的倒圆/弯曲导线来阻止液体(图10A和10B)。导线被加热到70℃,以便阻止液体的流动。一半的通道起到跟随没有加热的液体流动的基准作用。当加热中止时,液体穿过通道,直到其完全充满通道。
随后,另一种着色剂(黄色着色剂)被导入到相同装置中,并且溶液在附接有导线处停止(图10C和10D)。多个元件可以被注射到系统中,其例如在芯片的合成中是有用的。
在第二实验中,使用导电笔横过通道拉拽波浪形的导线(图11A)。导线被加热到70℃。在导线与之交叉的位置,液体的流动沿通道的不同长度段来停止。在导线非常靠近通道端部的地方,可以观察到高浓度的着色剂,而在导线远离通道的端部的位置处则出现的稀释过程(图11B)。
等同替换
应当理解,虽然已经结合本发明的详细说明来描述了本发明,但是前述说明是用来阐明本发明并非限制由所附权利要求的范围限定的发明的范围。其他的方面、优点和改进在下面的权利要求的范围内。

Claims (32)

1.一种化验装置,包括:
多孔的亲水性基底,其具有第一表面和第二表面;
不渗流体的屏障,所述屏障贯穿所述多孔的亲水性基底的厚度,并且限定出一化验区域的边界和一通道区域的边界,所述通道区域在流体上连接到所述化验区域;以及,
导电材料,其设置在所述多孔的亲水性基底表面上并且跨过所述通道区域。
2.如权利要求1所述的化验装置,其中所述导电材料是金属或者导电聚合物。
3.如权利要求2所述的化验装置,其中所述金属是Sn、Zn、Au、Ag、Ni、Pt、Pd、Al、In或者Cu。
4.如权利要求1所述的化验装置,其中所述边界限定出多个化验区域和多个通道区域,所述导电材料横跨两个或更多个所述通道区域。
5.如权利要求1所述的化验装置,其中所述化验装置还包括设置在所述导电材料和所述多孔的亲水性基底之间的绝缘材料。
6.如权利要求1所述的化验装置,其中所述化验装置具有主通道区域,所述主通道区域通过毛细管作用与一样品沉积区域相通,并在所述多孔的亲水性基底内在样品沉积区域和化验区域之间提供流体路径。
7.如权利要求1所述的化验装置,包括所述屏障构成的图案,所述屏障包括感光性树脂或者可固化聚合物;所述多孔的亲水性基底包括硝化纤维醋酸盐、醋酸纤维素、纤维素纸、滤纸、卫生纸、信纸、纸巾、布或者多孔聚合物薄膜。
8.如权利要求1所述的化验装置,其中所述导电材料是导电材料条带。
9.如权利要求1所述的化验装置,其中所述化验装置还包括可操作地连接到所述导电材料上的电流源。
10.如权利要求9所述的化验装置,其中所述导电材料具有20Ω到500Ω的电阻。
11.如权利要求1所述的化验装置,其中当所述导电材料为60-70℃时,超过导电材料的流体的流动被停止。
12.如权利要求1所述的化验装置,其中集成电路、电阻器、电容器、晶体管、二极管或机械开关附接到所述导电材料的路径上。
13.如权利要求1所述的化验装置,其中所述化验区域包括检测反应剂,所述检测反应剂响应于生物流体中被分析物的存在并起到肉眼可见的指示器的作用。
14.如权利要求1所述的化验装置,其中所述多孔的亲水性基底包括纸。
15.一种化验装置,包括:
多孔的亲水性基底,其具有第一表面和第二表面;
不渗流体的屏障,所述屏障贯穿所述多孔的亲水性基底的厚度,并且限定出:(i)一主通道区域的边界,(ii)第一副通道区域和第二副通道区域的边界,以及,(iii)第一化验区域和第二化验区域的边界,第一和第二副通道区域在所述多孔的亲水性基底内在所述主通道区域和相应的化验区域之间提供流体路径;
导电材料,其设置在所述多孔的亲水性基底的第一表面上并且跨过所述第一副通道区域,并且不设置在所述第二副通道的任何区域上;
导电材料,其设置在所述多孔的亲水性基底的第一表面上并且跨过所述第二副通道区域,并且不设置在所述第一副通道的任何区域上。
16.如权利要求15所述的化验装置,其中所述主通道区域包括样品沉积区域,所述主通道区域在所述多孔的亲水性基底内在样品沉积区域和第一副通道区域及第二副通道区域之间提供流体路径。
17.如权利要求15所述的化验装置,其中所述导电材料是金属或者导电聚合物。
18.如权利要求17所述的化验装置,其中所述金属是Sn、Zn、Au、Ag、Ni、Pt、Pd、Al、In或者Cu。
19.如权利要求15所述的化验装置,其中所述化验装置还包括设置在导电材料形成的层与所述多孔的亲水性基底之间的绝缘材料。
20.如权利要求15所述的化验装置,包括所述屏障构成的图案,所述屏障包括感光性树脂或者可固化聚合物;所述多孔的亲水性基底包括硝化纤维醋酸盐、醋酸纤维素、纤维素纸、滤纸、卫生纸、信纸、纸巾、布或者多孔聚合物薄膜。
21.如权利要求15所述的化验装置,其中所述导电材料是导电材料条带。
22.如权利要求15所述的化验装置,其中所述化验装置还包括可操作地连接到导电材料形成的层上的电流源。
23.如权利要求22所述的化验装置,其中所述导电材料层具有20Ω到500Ω的电阻。
24.如权利要求15所述的化验装置,其中当所述导电材料为60-70℃时,超过导电材料的流体的流动被停止。
25.如权利要求15所述的化验装置,其中集成电路、电阻器、电容器、晶体管、二极管或机械开关附接到所述导电材料的路径上。
26.如权利要求15所述的化验装置,其中所述化验区域包括检测反应剂,所述检测反应剂响应于生物流体中被分析物的存在并起到肉眼可见的指示器的作用。
27.如权利要求15所述的化验装置,其中所述多孔的亲水性基底包括纸。
28.一种控制流体样品通过化验装置的运动的方法,所述方法包括:
提供根据权利要求1的化验装置;
将电流施加到所述导电材料上;以及
使所述通道区域与流体样品接触,其中将所述电流施加到所述导电材料阻止所述流体样品从所述通道区域流体流动到所述化验区域。
29.如权利要求28所述的方法,还包括除去所述电流。
30.如权利要求28所述的方法,其中施加所述电流蒸发了至少一部分流体样品并且在所述通道区域的边界和横跨所述通道区域设置的所述导电材料的部分处浓缩被分析物。
31.如权利要求30所述的方法,还包括除去所述电流。
32.一种控制流体样品通过化验装置的运动的方法,所述方法包括:
提供根据权利要求15的化验装置;
将电流施加到跨过第一副通道区域的导电材料上;以及
使所述主通道区域与流体样品接触,其中将所述电流施加到跨过第一副通道区域的所述导电材料上阻止所述样品从所述主通道区域流体流动到所述第一化验区域中。
CN200980116682.XA 2008-03-27 2009-03-27 纸基微流体系统 Expired - Fee Related CN102016596B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US3995808P 2008-03-27 2008-03-27
US3985808P 2008-03-27 2008-03-27
US61/039,858 2008-03-27
US61/039,958 2008-03-27
PCT/US2009/038699 WO2009121041A2 (en) 2008-03-27 2009-03-27 Paper-based microfluidic systems

Publications (2)

Publication Number Publication Date
CN102016596A CN102016596A (zh) 2011-04-13
CN102016596B true CN102016596B (zh) 2014-09-17

Family

ID=41114813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980116682.XA Expired - Fee Related CN102016596B (zh) 2008-03-27 2009-03-27 纸基微流体系统

Country Status (7)

Country Link
US (1) US8921118B2 (zh)
EP (1) EP2265958A4 (zh)
KR (1) KR20100128340A (zh)
CN (1) CN102016596B (zh)
AU (1) AU2009228012A1 (zh)
CA (1) CA2719800A1 (zh)
WO (1) WO2009121041A2 (zh)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578520B (zh) 2006-10-18 2015-09-16 哈佛学院院长等 基于形成图案的多孔介质的横向流动和穿过生物测定装置、及其制备方法和使用方法
KR101561718B1 (ko) * 2008-03-27 2015-10-19 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 3차원 마이크로유체 장치
CN103203210A (zh) 2008-03-27 2013-07-17 哈佛学院院长等 基于纸的细胞阵列
AU2009228012A1 (en) 2008-03-27 2009-10-01 President And Fellows Of Harvard College Paper-based microfluidic systems
CN102016594B (zh) * 2008-03-27 2014-04-23 哈佛学院院长等 用作低成本多重分析诊断平台的棉线
CA2754577C (en) 2009-03-06 2018-07-10 President And Fellows Of Harvard College Microfluidic, electrochemical devices
AU2010276082B2 (en) * 2009-07-20 2015-06-18 Monash University Three-dimensional microfluidic systems
WO2011097412A1 (en) 2010-02-03 2011-08-11 President And Fellows Of Harvard College Devices and methods for multiplexed assays
EP2534060A4 (en) * 2010-02-08 2015-02-18 Norma Farris DEVICE AND SYSTEM FOR SELF-FIXING CONTAINERS
US20110240151A1 (en) * 2010-03-31 2011-10-06 The Penn State Research Foundation Fluidic device
US9322917B2 (en) * 2011-01-21 2016-04-26 Farrokh Mohamadi Multi-stage detection of buried IEDs
WO2012125781A2 (en) * 2011-03-15 2012-09-20 Colorado State University Research Foundation Rapid detection of pathogens using paper devices
WO2012151465A1 (en) * 2011-05-04 2012-11-08 Pop Test, Llc Diagnostic device
WO2013019510A1 (en) 2011-08-01 2013-02-07 President And Fellows Of Harvard College Mems force sensors fabricated using paper substrates
US9354181B2 (en) 2011-08-04 2016-05-31 Saint Mary's College Analytical devices for detection of low-quality pharmaceuticals
EP2773775A4 (en) 2011-11-04 2015-05-27 Diagnostics For All Inc Low-cost, one-way diagnostics on MOLECULAR BASE
CA2869469A1 (en) * 2012-04-04 2013-10-10 University Of Cincinnati Sweat simulation, collection and sensing systems
CA2870540A1 (en) * 2012-04-18 2013-10-24 Board Of Regents, The University Of Texas System Method for the detection and quantification of analytes using three-dimensional paper-based devices
KR101360404B1 (ko) * 2012-05-02 2014-02-11 서강대학교산학협력단 잉크젯 프린팅을 이용한 모듈형 마이크로유체 종이 칩의 제작방법
US20130341188A1 (en) * 2012-06-20 2013-12-26 María de les Neus SABATÉ VIZCARRA Fuel cell and analysis device that comprise it
US10119981B2 (en) 2012-08-17 2018-11-06 St. Mary's College Analytical devices for detection of low-quality pharmaceuticals
US9557274B2 (en) 2012-08-17 2017-01-31 St. Mary's College Analytical devices for detection of low-quality pharmaceuticals
US20150096892A1 (en) * 2012-10-05 2015-04-09 Fahim U. Mobin Method and apparatus to measure blood thickness level and blood constituent concentration
CN102980998A (zh) * 2012-11-21 2013-03-20 济南大学 高通量微流控纸芯片即时快速检测多种人体肿瘤标志物
CN103869087A (zh) * 2012-12-18 2014-06-18 中国科学院大连化学物理研究所 一种三维纸质微流控芯片及其制作方法
EP2745936B1 (de) * 2012-12-21 2017-03-15 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung E.V. Fluidiksystem mit saugfähigem Material und schaltbarem Polymergel
US9891207B2 (en) * 2013-03-15 2018-02-13 The Florida International University Board Of Trustees Paper microfluidic devices for detection of improvised explosives
US10004434B1 (en) 2013-03-15 2018-06-26 Georgetown University Microfluidic systems for electrochemical transdermal analyte sensing using a capillary-located electrode
US9285330B2 (en) * 2013-04-04 2016-03-15 Marquette University Calorimetric microfluidic sensor
US9932360B2 (en) 2013-06-21 2018-04-03 The Penn State Research Foundation Qualitative and quantitative point-of-care assays
CN114891855A (zh) 2013-12-06 2022-08-12 哈佛大学校长及研究员协会 基于纸的合成基因网络
WO2015112635A1 (en) * 2014-01-21 2015-07-30 The Board Of Trustees Of The University Of Illinois Wettability patterned substrates for pumpless liquid transport and drainage
CN103792354B (zh) * 2014-01-28 2015-11-25 中国医学科学院基础医学研究所 一种检测丙型肝炎病毒抗体的微流控纸基芯片及其制备方法
US10620200B2 (en) * 2014-05-29 2020-04-14 The Board Of Regents Of The University Of Texas System Methods and compositions for hybrid microfluidic devices integrated with nano-biosensors
GB201411094D0 (en) * 2014-06-22 2014-08-06 Technion Res And Dev Company Ltd Microfluidic electrokinetic paper based devices
US9686540B2 (en) 2014-06-23 2017-06-20 Xerox Corporation Robust colorimetric processing method for paper based sensors
US9480980B2 (en) 2014-06-23 2016-11-01 Xerox Corporation Apparatus for producing paper-based chemical assay devices
US9415610B2 (en) 2014-06-23 2016-08-16 Xerox Corporation System and method for forming hydrophobic structures in a porous substrate
US9266105B2 (en) 2014-06-23 2016-02-23 Xerox Corporation System and method for forming bonded substrates
US9586204B2 (en) 2014-06-23 2017-03-07 Xerox Corporation Paper sensor
US9933359B2 (en) 2014-06-23 2018-04-03 Xerox Corporation Vendor exclusivity security feature for paper-based diagnostic solution
US9365019B2 (en) 2014-06-23 2016-06-14 Xerox Corporation Apparatus for forming hydrophobic structures in porous substrates
US9346048B2 (en) 2014-06-23 2016-05-24 Xerox Corporation Paper-based chemical assay devices with improved fluidic structures
WO2016007819A1 (en) * 2014-07-10 2016-01-14 Xiujun Li Paper-based and hybrid microfluidic devices integrated with nucleic acid amplification
CN104166008B (zh) * 2014-08-11 2016-03-02 江苏大学 一种微流控芯片自动同步进样方法与装置
EP3210009B1 (en) * 2014-10-24 2020-04-22 Abbott Laboratories Paper substrate diagnostic apparatus and related methods and systems
WO2016164738A1 (en) 2015-04-08 2016-10-13 Board Of Regents, The University Of Texas System Methods and systems for the detection of analytes
US9403358B1 (en) 2015-04-17 2016-08-02 Xerox Corporation System and method for forming hydrophobic structures in a hydrophilic print medium
WO2017039752A1 (en) 2015-09-04 2017-03-09 North Carolina State University Passive pumps for microfluidic devices
US10145825B2 (en) * 2015-10-12 2018-12-04 Hong Kong Baptist University Luminescent Iridium(III) complex and its uses thereof for the G-quadruplex-based switch-on rapid detection of lead ions
US10151699B2 (en) * 2015-10-12 2018-12-11 Hong Kong Baptist University Development of lead ion testing paper with naked-eye observable readout for ten min on-site detection
US10859560B2 (en) * 2015-10-25 2020-12-08 Adriel Sumathipala Biosensors for detecting cholesterol and OxLDL in blood sample
WO2017123668A1 (en) 2016-01-12 2017-07-20 Trustees Of Tufts College Separation of cells based on size and affinity using paper microfluidic device
WO2017184665A1 (en) * 2016-04-19 2017-10-26 Purdue Research Foundation Temperature controlled valves for paper-based microfluidic systems
CN106066293B (zh) * 2016-04-27 2019-01-08 浙江工业大学 利用梯度润湿表面检测酒精浓度的方法
CN105954151B (zh) * 2016-04-27 2018-08-21 浙江工业大学 利用梯度润湿表面检测白酒真伪的方法
CN105833926B (zh) * 2016-04-27 2017-12-05 浙江工业大学 微流体自驱动式纸基微流控芯片、制备方法及其应用
CA3032863A1 (en) * 2016-08-19 2018-02-22 Exvivo Labs Inc. Microfluidic device
US11506580B2 (en) 2016-09-28 2022-11-22 Calth. Inc. Sample separation device based on paper folding
PL3551753T3 (pl) 2016-12-09 2022-10-31 The Broad Institute, Inc. Diagnostyka oparta na uk‎‎‎ładzie efektorowym crispr
US11104937B2 (en) 2017-03-15 2021-08-31 The Broad Institute, Inc. CRISPR effector system based diagnostics
AU2018234832A1 (en) 2017-03-15 2019-10-10 Massachusetts Institute Of Technology CRISPR effector system based diagnostics for virus detection
US11174515B2 (en) 2017-03-15 2021-11-16 The Broad Institute, Inc. CRISPR effector system based diagnostics
US11021740B2 (en) 2017-03-15 2021-06-01 The Broad Institute, Inc. Devices for CRISPR effector system based diagnostics
KR101852719B1 (ko) * 2017-04-06 2018-04-27 인제대학교 산학협력단 박막을 이용하여 분리 가능한 구조를 갖는 미세 유체 유속 측정장치
US11618928B2 (en) 2017-04-12 2023-04-04 The Broad Institute, Inc. CRISPR effector system based diagnostics for malaria detection
WO2018223105A2 (en) * 2017-06-02 2018-12-06 North Carolina State University Hydrogel-enabled microfluidic sweat sequestering for wearable human-device interfaces
JP7265487B2 (ja) 2017-06-08 2023-04-26 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル 関心対象のアナライトを検出するための全細胞センサにおいて使用するためのキメラ受容体
GR20170100305A (el) * 2017-06-30 2019-03-20 Εθνικο Κεντρο Ερευνας Φυσικων Επιστημων (Εκεφε) " Δημοκριτος" Μικρορευστονικοι αντιδραστηρες και διαδικασια για την παραγωγη τους
CN107335490A (zh) * 2017-08-15 2017-11-10 肇庆市华师大光电产业研究院 一种基于液‑液电润湿效应的可编程控制的微流控芯片
CA3075303A1 (en) 2017-09-09 2019-03-14 The Broad Institute, Inc. Multi-effector crispr based diagnostic systems
CN107478631B (zh) * 2017-09-19 2019-10-11 南京工业大学 一种同时检测多种肿瘤标志物的3d折叠纸基微流体荧光检测装置
DE202018105846U1 (de) 2017-10-23 2018-11-21 Consejo Superior De Investigaciones Cientificas (Csic) Analysevorrichtung für eine flüssige Probe
FI3746568T3 (fi) 2018-01-29 2023-12-12 Broad Inst Inc Crispr-efektorijärjestelmään perustuva diagnostiikka
EP3569716A1 (en) 2018-05-14 2019-11-20 Consejo Superior De Investigaciones Científicas (CSIC) A method for controlling timing of events in a microfluidic device and a timer microfluidic device
KR102040286B1 (ko) * 2018-07-09 2019-11-04 성균관대학교 산학협력단 종이기반 디지털 미세 유체역학기기의 제조 방법
US20210396756A1 (en) 2018-10-03 2021-12-23 The Broad Institute, Inc. Crispr effector system based diagnostics for hemorrhagic fever detection
US20220401460A1 (en) 2018-10-10 2022-12-22 Dana-Farber Cancer Institute, Inc. Modulating resistance to bcl-2 inhibitors
WO2020093379A1 (en) * 2018-11-09 2020-05-14 Jiangsu Jitri Micro-Nano Automation Institute Co., Ltd. Nanofibrillated-cellulose-paper-based microfluidic devices
US11366943B2 (en) * 2019-06-18 2022-06-21 International Business Machines Corporation Platform for design and prototyping of micro paper based devices
CN110579469B (zh) * 2019-09-29 2022-04-08 桂林理工大学 一种二价汞离子免仪器定量检测方法
US10946168B1 (en) 2019-11-18 2021-03-16 Cure Medical Llc Smart urinary catheter
US20230417672A1 (en) * 2020-11-20 2023-12-28 Arizona Board Of Regents On Behalf Of The University Of Arizona Single copy level detection of coronaviruses
US20240057983A1 (en) * 2020-12-29 2024-02-22 Cal Poly Corporation Metered liquid sample collection device
JP2024001901A (ja) * 2022-06-23 2024-01-11 デクセリアルズ株式会社 検査デバイス用基材、検査デバイス、及び検査デバイスの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658444A (en) * 1993-05-12 1997-08-19 Medisense, Inc. Electrochemical sensors
US6265222B1 (en) * 1999-01-15 2001-07-24 Dimeo, Jr. Frank Micro-machined thin film hydrogen gas sensor, and method of making and using the same
CN1416365A (zh) * 2000-02-22 2003-05-07 基因谱公司 微阵列制造技术及设备
CN1460723A (zh) * 2002-05-15 2003-12-10 三星电子株式会社 具有亲水和疏水区域的生物分子芯片平板制备方法
CN1862260A (zh) * 2005-05-13 2006-11-15 株式会社日立高新技术 液体输送器件及分析系统

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668619A (en) * 1980-10-30 1987-05-26 Miles Laboratories, Inc. Multilayer homogeneous specific binding assay device
US4459360A (en) * 1981-10-05 1984-07-10 Mast Medical Industries, Ltd. Multiple-component binding assay system and method of making and using it
US4567149A (en) * 1983-03-17 1986-01-28 Mast Immunosystems, Ltd. Binding assay system and method of making and using same
US4757004A (en) * 1984-03-16 1988-07-12 Syntex (U.S.A.) Inc. Chromatographic devices having modified edges
US4657869A (en) * 1984-05-18 1987-04-14 E. I. Du Pont De Nemours And Company Self-contained device for carrying out specific binding assays
DE3445816C1 (de) * 1984-12-15 1986-06-12 Behringwerke Ag, 3550 Marburg Flaechenfoermiges diagnostisches Mittel
US4618475A (en) * 1985-08-30 1986-10-21 Miles Laboratories, Inc. Reagent test device containing hydrophobic barriers
US4668564A (en) * 1985-12-26 1987-05-26 Spenco Medical Corporation Hydrogel materials for hot and cold therapy and method for forming same
US4743530A (en) * 1986-11-21 1988-05-10 Eastman Kodak Company Negative working photoresists responsive to longer wavelengths and novel coated articles
US5122452A (en) * 1987-05-20 1992-06-16 Carleton University Enzyme immunoassay with a macroporous hydrophobic synthetic polymer cloth containing an immobilized antibody or antigen
US5169757A (en) * 1987-05-20 1992-12-08 Carleton University Antibodies or antigens bound to a macroporous hydrophobic synthetic polymer cloth for immunological techniques
US5209904A (en) * 1987-12-23 1993-05-11 Abbott Laboratories Agglutination reaction device utilizing selectively impregnated porous material
US5869172A (en) * 1988-03-14 1999-02-09 Nextec Applications, Inc. Internally-coated porous webs with controlled positioning of modifiers therein
US4981653A (en) * 1988-10-06 1991-01-01 Miles Inc. Self-indicating strip
US5120544A (en) * 1989-06-19 1992-06-09 Henley International, Inc. Crosslinked hydrogel and method for making same
IT1241154B (it) * 1990-05-18 1993-12-29 Slavo Metodo e composizione reagente per la determinazione dell'alanina amminotrasferasi e dell'antigene hbsag in uno stesso campione biologico
JPH0820412B2 (ja) * 1990-07-20 1996-03-04 松下電器産業株式会社 使い捨てセンサを用いた定量分析方法、及び装置
US5834226A (en) * 1991-01-31 1998-11-10 Xytronyx, Inc. One-step test for aspartate aminotransferase
US5409664A (en) * 1993-09-28 1995-04-25 Chemtrak, Inc. Laminated assay device
US6180239B1 (en) * 1993-10-04 2001-01-30 President And Fellows Of Harvard College Microcontact printing on surfaces and derivative articles
US5858392A (en) * 1994-03-22 1999-01-12 Yissum Research Development Company Of The Hebrew University Of Jerusalem Supported polyionic hydrogels
IL109079A (en) * 1994-03-22 1998-02-22 Israel Fiber Inst State Of Isr Polyionic hydrogels
DE4437274C2 (de) 1994-10-18 1998-11-05 Inst Chemo Biosensorik Analytselektiver Sensor
US5707818A (en) * 1994-12-13 1998-01-13 Bsi Corporation Device and method for simultaneously performing multiple competitive immunoassays
JPH08233799A (ja) 1995-02-24 1996-09-13 Tefuko Kk 化学分析用膜およびその製造方法
US5906934A (en) * 1995-03-14 1999-05-25 Morphogen Pharmaceuticals, Inc. Mesenchymal stem cells for cartilage repair
EP0784543B1 (en) * 1995-08-04 2000-04-26 International Business Machines Corporation Lithographic surface or thin layer modification
US5897522A (en) * 1995-12-20 1999-04-27 Power Paper Ltd. Flexible thin layer open electrochemical cell and applications of same
DE69616089T3 (de) * 1996-01-11 2006-04-20 The Procter & Gamble Company, Cincinnati Absorbierende Struktur mit Zonen, die von einer, aus hydrogelbildendes Polymermaterial ununterbrochenen Schicht umgeben sind
JP2000511702A (ja) 1996-06-12 2000-09-05 ブルーネル ユニバーシティ 電気回路
US6060534A (en) 1996-07-11 2000-05-09 Scimed Life Systems, Inc. Medical devices comprising ionically and non-ionically crosslinked polymer hydrogels having improved mechanical properties
DE19629655A1 (de) * 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger und Verfahren zur Bestimmung eines Analyts mit dessen Hilfe
US6202471B1 (en) * 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
GB9623185D0 (en) * 1996-11-09 1997-01-08 Epigem Limited Improved micro relief element and preparation thereof
GB9700759D0 (en) * 1997-01-15 1997-03-05 Carbury Herne Limited Assay device
KR100241928B1 (ko) * 1997-03-31 2000-03-02 박종근 다공성 박막 위에 전극이 일체로 형성된 정량장치 및 이를 이용한 정량방법
GB9715101D0 (en) 1997-07-18 1997-09-24 Environmental Sensors Ltd The production of microstructures for analysis of fluids
US6375871B1 (en) * 1998-06-18 2002-04-23 3M Innovative Properties Company Methods of manufacturing microfluidic articles
WO1999033559A1 (en) * 1997-12-24 1999-07-08 Cepheid Integrated fluid manipulation cartridge
US6044442A (en) * 1997-11-21 2000-03-28 International Business Machines Corporation External partitioning of an automated data storage library into multiple virtual libraries for access by a plurality of hosts
DE19753847A1 (de) * 1997-12-04 1999-06-10 Roche Diagnostics Gmbh Analytisches Testelement mit Kapillarkanal
WO1999042605A1 (en) * 1998-02-21 1999-08-26 Schwabacher Alan W One dimensional chemical compound arrays and methods for assaying them
US6180319B1 (en) 1998-03-11 2001-01-30 E. I. Du Pont De Nemours And Company Process for the continuous liquid processing of photosensitive compositions having reduced levels of residues
US6199000B1 (en) * 1998-07-15 2001-03-06 Trimble Navigation Limited Methods and apparatus for precision agriculture operations utilizing real time kinematic global positioning system systems
US6080534A (en) * 1998-08-27 2000-06-27 Eastman Kodak Company Imaging element with a substrate containing hindered amine stabilizer
US6951682B1 (en) * 1998-12-01 2005-10-04 Syntrix Biochip, Inc. Porous coatings bearing ligand arrays and use thereof
US6416642B1 (en) * 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US6297020B1 (en) * 1999-03-01 2001-10-02 Bayer Corporation Device for carrying out lateral-flow assays involving more than one analyte
US6319310B1 (en) * 1999-03-30 2001-11-20 Xerox Corporation Phase change ink compositions
MXPA02000144A (es) 1999-07-07 2002-07-02 3M Innovative Properties Co Articulo de deteccion que tiene una pelicul a de control de fluidos.
US6713309B1 (en) * 1999-07-30 2004-03-30 Large Scale Proteomics Corporation Microarrays and their manufacture
US20020006664A1 (en) * 1999-09-17 2002-01-17 Sabatini David M. Arrayed transfection method and uses related thereto
WO2001025138A1 (en) 1999-10-04 2001-04-12 Nanostream, Inc. Modular microfluidic devices comprising sandwiched stencils
US6931523B1 (en) * 1999-12-09 2005-08-16 Gateway Inc. System and method for re-storing stored known-good computer configuration via a non-interactive user input device without re-booting the system
US6566575B1 (en) * 2000-02-15 2003-05-20 3M Innovative Properties Company Patterned absorbent article for wound dressing
JP2003533682A (ja) * 2000-05-15 2003-11-11 テカン・トレーディング・アクチェンゲゼルシャフト 双方向流動遠心ミクロ流体装置
KR100348351B1 (ko) * 2000-05-24 2002-08-09 주식회사 바이오디지트 전기화학 멤브레인 스트립 바이오센서
AU2001281076A1 (en) * 2000-08-07 2002-02-18 Nanostream, Inc. Fluidic mixer in microfluidic system
US6391523B1 (en) * 2000-09-15 2002-05-21 Microchem Corp. Fast drying thick film negative photoresist
US6783735B2 (en) * 2000-09-15 2004-08-31 Agfa-Gevaert Web material having wells for combinatorial applications
US6939451B2 (en) 2000-09-19 2005-09-06 Aclara Biosciences, Inc. Microfluidic chip having integrated electrodes
US6503309B2 (en) * 2001-01-10 2003-01-07 Milliken & Company Within ink systems
US6880576B2 (en) * 2001-06-07 2005-04-19 Nanostream, Inc. Microfluidic devices for methods development
US6919046B2 (en) * 2001-06-07 2005-07-19 Nanostream, Inc. Microfluidic analytical devices and methods
US7318912B2 (en) 2001-06-07 2008-01-15 Nanostream, Inc. Microfluidic systems and methods for combining discrete fluid volumes
US20030032203A1 (en) * 2001-07-10 2003-02-13 Sabatini David M. Small molecule microarrays
WO2003015890A1 (en) 2001-08-20 2003-02-27 President And Fellows Of Harvard College Fluidic arrays and method of using
US20050230272A1 (en) 2001-10-03 2005-10-20 Lee Gil U Porous biosensing device
WO2003046508A2 (en) * 2001-11-09 2003-06-05 Biomicroarrays, Inc. High surface area substrates for microarrays and methods to make same
CN1311553C (zh) * 2001-12-12 2007-04-18 松下电器产业株式会社 非易失性存储器及其制造方法
US20030116552A1 (en) * 2001-12-20 2003-06-26 Stmicroelectronics Inc. Heating element for microfluidic and micromechanical applications
US6877892B2 (en) 2002-01-11 2005-04-12 Nanostream, Inc. Multi-stream microfluidic aperture mixers
US6921603B2 (en) * 2002-04-24 2005-07-26 The Regents Of The University Of California Microfluidic fuel cell systems with embedded materials and structures and method thereof
GB0215858D0 (en) 2002-07-09 2002-08-14 Cambridge Display Tech Ltd Patterning method
WO2004006840A2 (en) * 2002-07-12 2004-01-22 The Regents Of The University Of California Three dimensional cell patterned bioploymer scaffolds and method of making the same
ES2282682T3 (es) * 2002-08-02 2007-10-16 Ge Healthcare (Sv) Corp. Diseño integrado de microchips.
US20040103808A1 (en) 2002-08-19 2004-06-03 Darren Lochun Electrical circuits and methods of manufacture and use
US6939450B2 (en) * 2002-10-08 2005-09-06 Abbott Laboratories Device having a flow channel
US7680590B2 (en) * 2002-11-22 2010-03-16 Hewlett-Packard Development Company, L.P. Boundary detection algorithm for embedded devices
US20050266582A1 (en) * 2002-12-16 2005-12-01 Modlin Douglas N Microfluidic system with integrated permeable membrane
US6816125B2 (en) * 2003-03-01 2004-11-09 3M Innovative Properties Company Forming electromagnetic communication circuit components using densified metal powder
US20050145496A1 (en) * 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
US7374949B2 (en) * 2003-05-29 2008-05-20 Bayer Healthcare Llc Diagnostic test strip for collecting and detecting an analyte in a fluid sample
US8679853B2 (en) * 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
US20060014003A1 (en) * 2003-07-24 2006-01-19 Libera Matthew R Functional nano-scale gels
US20060088857A1 (en) * 2003-12-01 2006-04-27 Said Attiya Method for isolation of independent, parallel chemical micro-reactions using a porous filter
AU2004312893B2 (en) * 2003-12-31 2010-06-17 President And Fellows Of Harvard College Assay device and method
US7192693B2 (en) * 2004-02-24 2007-03-20 University Of Washington Methods for photopatterning hydrogels
US20060257854A1 (en) 2004-02-27 2006-11-16 Mcdevitt John T Membrane assay system including preloaded particles
SE0400783D0 (sv) * 2004-03-24 2004-03-24 Peter Aasberg Mönstringsmetod för biosensorapplikationer
DE102004019241A1 (de) * 2004-04-16 2005-11-03 Cellmed Ag Injizierbare vernetzte und unvernetzte Alginate und ihre Verwendung in der Medizin und in der ästhetischen Chirurgie
EP1796824A4 (en) 2004-05-02 2016-10-19 Fluidigm Corp DEVICE FOR THERMAL REACTIONS AND METHOD FOR THEIR USE
SE0401219D0 (sv) 2004-05-10 2004-05-10 Biochromix Ab Metoder för detektera konformationsförändringar eller aggregering hos proteiner med hjälp av konjugerade polyelektrolyter
KR101429098B1 (ko) * 2004-06-04 2014-09-22 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 인쇄가능한 반도체소자들의 제조 및 조립방법과 장치
WO2006018044A1 (en) 2004-08-18 2006-02-23 Agilent Technologies, Inc. Microfluidic assembly with coupled microfluidic devices
US20060130054A1 (en) * 2004-11-12 2006-06-15 Research In Motion Limited System and method for downloading or enabling download of a program from a program store location
US20060226575A1 (en) * 2005-04-07 2006-10-12 Mariam Maghribi Micro-fabrication of bio-degradable polymeric implants
CN101223101A (zh) 2005-05-12 2008-07-16 意法半导体股份有限公司 具有集成的微型泵尤其是生化微反应器的微流体装置及其制造方法
EP1969185A1 (en) 2005-09-06 2008-09-17 Inverness Medical Switzerland GmbH Method and apparatus for patterning a bibulous substrate
WO2007081848A2 (en) 2006-01-04 2007-07-19 Novartis Vaccines And Diagnostics, Inc. Activation of hcv-specific t cells
US20070224701A1 (en) * 2006-02-16 2007-09-27 Becton, Dickinson And Company Combination vertical and lateral flow immunoassay device
US20090297840A1 (en) 2006-04-10 2009-12-03 Linea Tergi Ltd. Method for applying a metal on paper
CN101578520B (zh) * 2006-10-18 2015-09-16 哈佛学院院长等 基于形成图案的多孔介质的横向流动和穿过生物测定装置、及其制备方法和使用方法
CA2667702C (en) 2006-10-18 2016-06-14 President And Fellows Of Harvard College Lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same
WO2009020479A2 (en) * 2007-04-27 2009-02-12 The Regents Of The University Of California Device and methods for detection of airborne agents
AU2009228012A1 (en) 2008-03-27 2009-10-01 President And Fellows Of Harvard College Paper-based microfluidic systems
CN102016594B (zh) * 2008-03-27 2014-04-23 哈佛学院院长等 用作低成本多重分析诊断平台的棉线
WO2009121038A2 (en) 2008-03-27 2009-10-01 President And Fellows Of Harvard College Shaped films of hydrogels fabricated using templates of patterned paper
KR101561718B1 (ko) 2008-03-27 2015-10-19 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 3차원 마이크로유체 장치
CN103203210A (zh) 2008-03-27 2013-07-17 哈佛学院院长等 基于纸的细胞阵列
EP2143491A1 (en) 2008-07-10 2010-01-13 Carpegen GmbH Device for analysing a chemical or biological sample
WO2010022324A2 (en) 2008-08-22 2010-02-25 President And Fellows Of Harvard College Methods of patterning paper
CA2754577C (en) * 2009-03-06 2018-07-10 President And Fellows Of Harvard College Microfluidic, electrochemical devices
AU2010221117A1 (en) 2009-03-06 2011-09-29 President And Fellows Of Harvard College Methods of micropatterning paper-based microfluidics
WO2011097412A1 (en) 2010-02-03 2011-08-11 President And Fellows Of Harvard College Devices and methods for multiplexed assays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658444A (en) * 1993-05-12 1997-08-19 Medisense, Inc. Electrochemical sensors
US6265222B1 (en) * 1999-01-15 2001-07-24 Dimeo, Jr. Frank Micro-machined thin film hydrogen gas sensor, and method of making and using the same
CN1416365A (zh) * 2000-02-22 2003-05-07 基因谱公司 微阵列制造技术及设备
CN1460723A (zh) * 2002-05-15 2003-12-10 三星电子株式会社 具有亲水和疏水区域的生物分子芯片平板制备方法
CN1862260A (zh) * 2005-05-13 2006-11-15 株式会社日立高新技术 液体输送器件及分析系统

Also Published As

Publication number Publication date
WO2009121041A2 (en) 2009-10-01
US8921118B2 (en) 2014-12-30
KR20100128340A (ko) 2010-12-07
WO2009121041A3 (en) 2009-12-17
EP2265958A4 (en) 2016-10-19
EP2265958A2 (en) 2010-12-29
AU2009228012A1 (en) 2009-10-01
CA2719800A1 (en) 2009-10-01
CN102016596A (zh) 2011-04-13
US20110111517A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
CN102016596B (zh) 纸基微流体系统
Lim et al. Fabrication, flow control, and applications of microfluidic paper-based analytical devices
Noviana et al. Microfluidic paper-based analytical devices: from design to applications
Gong et al. Turning the page: advancing paper-based microfluidics for broad diagnostic application
CN102620959B (zh) 检定盒及其使用方法
Santhiago et al. Microfluidic paper-based devices for bioanalytical applications
López-Marzo et al. based sensors and assays: a success of the engineering design and the convergence of knowledge areas
Abe et al. Inkjet-printed microfluidic multianalyte chemical sensing paper
US20080213133A1 (en) Flow analysis apparatus and method
US20110124130A1 (en) Device and method for analysis of samples with depletion of analyte content
US20100261286A1 (en) Microfluidic devices and methods of preparing and using the same
CA2667702A1 (en) Lateral flow and flow-through bioassay devices based on patterned porous media, methods of making same, and methods of using same
CN104204772B (zh) 分析用机械洗涤和测量装置
Selvakumar et al. Sensory materials for microfluidic paper based analytical devices-A review
EP3105590A1 (en) Assay device
Wang et al. Enclosed paper-based analytical devices: Concept, variety, and outlook
Atabakhsh et al. based resistive heater with accurate closed-loop temperature control for microfluidics paper-based analytical devices
Hao et al. Fabrication for paper-based microfluidic analytical devices and saliva analysis application
Sinha et al. Paper based microfluidics: a forecast toward the most affordable and rapid point-of-care devices
CN208320830U (zh) 一种微流控芯片
Sun et al. Origami microfluidics: A review of research progress and biomedical applications
Toley et al. Multidimensional paper networks: a new generation of low-cost pump-free microfluidic devices
Zhu et al. Research progress on pesticide residue detection based on microfluidic technology
WO2017029525A1 (en) Assay device
CN112067604B (zh) 一种检测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140917

Termination date: 20200327

CF01 Termination of patent right due to non-payment of annual fee