CN110579469B - 一种二价汞离子免仪器定量检测方法 - Google Patents

一种二价汞离子免仪器定量检测方法 Download PDF

Info

Publication number
CN110579469B
CN110579469B CN201910936448.7A CN201910936448A CN110579469B CN 110579469 B CN110579469 B CN 110579469B CN 201910936448 A CN201910936448 A CN 201910936448A CN 110579469 B CN110579469 B CN 110579469B
Authority
CN
China
Prior art keywords
paper
chip
rectangular
length
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910936448.7A
Other languages
English (en)
Other versions
CN110579469A (zh
Inventor
张云
姚茂茂
聂瑾芳
陈意静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201910936448.7A priority Critical patent/CN110579469B/zh
Publication of CN110579469A publication Critical patent/CN110579469A/zh
Application granted granted Critical
Publication of CN110579469B publication Critical patent/CN110579469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种二价汞离子免仪器定量检测方法。利用Hg2+诱导纳米金探针表面保护剂脱附后团聚,以介导纸芯片中纳米多孔膜孔道“开‑关”状态来选择性调控彩色试剂在纸芯片中流动长度的机制。Hg2+浓度与彩色试剂流动长度成反比关系。通过使用直尺量取纸芯片中彩色试剂的流动长度,就能实现纳摩尔水平Hg2+的便携式定量检测。本发明方法具有操作简单、成本低廉、分析快速、不需使用专业分析仪器设备、适于Hg2+的家庭检测和野外现场分析等突出优点。本方法能直接推广应用于医学诊断、环境监测、食品安全等诸多领域里各类溶液样品中Hg2+分析物的简单、经济、快速、灵敏、特异的便携式定量检测。

Description

一种二价汞离子免仪器定量检测方法
技术领域
本发明属于纳米化学传感技术领域,具体涉及一种二价汞离子免仪器定量检测方法。
背景技术
二价汞离子(Hg2+)是具有严重生理毒性的重金属离子之一。Hg2+能够在动物和植物体内积累,并通过食物链逐步富集,其浓度可成千上万甚至百万倍地增加,最终威胁人类健康,例如可严重损害人体的神经、皮肤粘膜、泌尿及生殖等系统,甚至导致死亡。《国标生活饮用水卫生标准(GB 5749-2006)》中限定饮用水中汞含量不得超过0.001 mg/L(约5nM)。为保障食物、水和环境中的Hg2+不影响人体健康和生命安全,痕量Hg2+的定量检测意义重大。现有的常规金标准Hg2+定量检测技术主要包括电感耦合等离子体质谱法、原子吸收光谱法、原子发射光谱法、原子荧光光谱法等。然而,这些定量方法普遍存在分析成本昂贵、操作步骤繁琐费时、不适于家庭应用与野外现场分析等问题。
发明内容
本发明的目的是针对现有定量技术的不足,提供一种二价汞离子免仪器定量检测方法。
本发明的思路:实验中发现,Hg2+可与纳米金反应生成金-汞齐,导致修饰在这种纳米探针表面的小分子保护剂脱附。随后,纳米金在高浓度盐溶液中发生团聚,所形成的大尺寸复合物可堵塞纳米多孔膜的纳米尺寸孔道。同时,纳米多孔膜孔道的“开-关”状态可进一步用于选择性调控彩色试剂在纸芯片中的流动长度。Hg2+浓度与该流动长度呈反比例关系。通过目视观察和使用直尺量取纸芯片中彩色试剂的流动长度,代替电感耦合等离子体质谱仪、原子吸收光谱仪、原子荧光光谱仪等价格昂贵且缺乏便携性的专业分析仪器进行信号(彩色试剂的流动长度)读取,即可实现Hg2+的简单、低成本、便携式准确定量分析。
具体步骤为:
(1)制备疏水性物质图案化的圆形纸微区芯片和长方形纸芯片,并分别滴加固定纳米金探针和彩色试剂,进而将圆形纸微区芯片、圆形纳米多孔膜和长方形纸芯片中的圆形区域对齐、依次叠加组装制得三维纸芯片。
(2)将二价汞离子样品溶液和含有高浓度氯化钠的缓冲溶液等体积混合,并滴加到步骤(1)制得的三维纸芯片的最上层的圆形纸微区芯片中,随后观察长方形纸芯片中彩色试剂的流动情况,5~30 min后使用直尺量取长方形纸芯片中彩色试剂的流动长度,该流动长度与二价汞离子的浓度呈反相关,从而实现二价汞离子的免仪器定量检测。
所述圆形纸微区芯片的外形为边长1.5~2 cm的正方形,中部为直径2~7 mm的圆形亲水性纸体,其余部分则填充蜡或疏水性聚合物。
所述长方形纸芯片的外形为长3~5 cm、宽1~2 cm的长方形,中部为连通的圆形亲水性纸体与长方形亲水性纸通道,其余部分则填充蜡或疏水性聚合物,其中圆形亲水性纸体的直径为2~7 mm,长方形亲水性纸通道的长为2.5~4.5 cm,宽为1~2 mm。
所述纳米金探针被滴加固定在圆形纸微区芯片的整个圆形亲水性纸体中,并在纳米金探针表面修饰了能让纳米金在高浓度盐溶液中稳定分散的小分子保护试剂,纳米金的粒径为10~30 nm。
所述彩色试剂被滴加固定在长方形纸芯片的整个圆形亲水性纸体中,该彩色试剂在圆形亲水性纸体中所形成的的彩色印迹具有良好的水溶性,被反应溶液溶解后形成的彩色溶液能够在毛细管作用下从圆形亲水性纸体中自发流向长方形亲水性纸通道。
所述圆形纳米多孔膜是直径为2~7 mm的无机多孔膜和有机多孔膜中的一种,其具有良好的亲水性,孔道平均直径为50~200 nm。
所述含有高浓度氯化钠的缓冲溶液的pH值为7,其中氯化钠浓度为100~150 mM,且不含可与Hg2+发生沉淀或络合作用的成分。
所述步骤(2)中将二价汞离子样品溶液和含有高浓度氯化钠的缓冲溶液等体积混合后滴加到三维纸芯片最上层的圆形纸微区芯片中的反应,是二价汞离子与纳米金反应生成金-汞齐,导致该探针在其表面小分子保护剂脱附后进而在高浓度盐溶液中团聚,所形成的大尺寸复合物通过堵塞三维纸芯片中间层纳米多孔膜的孔道,降低流往最下层长方形纸芯片的圆形区域以溶解彩色试剂并在长方形通道中流动的反应溶液的体积。
与现有的常规金标准Hg2+定量检测方法相比,本发明的突出优点在于:
(1)滤纸、色谱层析纸、硝酸纤维素膜等多孔性纸基材成本低廉,纸芯片可批量制备,且单个芯片尺寸小巧(厘米级别,便于保存、携带和使用)。
(2)利用纸芯片检测Hg2+的操作过程极为简单,仅涉及两个步骤——样品溶液滴加和彩色试剂流动长度量取。
(3)仅需直尺量取纸芯片中彩色试剂的流动长度即可进行定量信号读取,从而在极大降低分析成本的同时还能实现Hg2+的家庭检测和野外现场分析。
(4)本发明可直接推广应用于医学诊断、环境监测、食品安全等诸多领域里各类溶液样品中Hg2+分析物的简单、经济、快速、灵敏、特异的便携式定量检测。
附图说明
图1为本发明的二价汞离子免仪器定量检测方法的原理示意图。
图中标记:1-圆形纸微区芯片(1-1-圆形亲水性纸体,1-2-石蜡或疏水性聚合物);2-小分子保护试剂修饰的纳米金探针(2-1-纳米金,2-2-小分子保护试剂);3-圆形纳米多孔膜;4-长方形纸芯片(4-1-圆形亲水性纸体,4-2-长方形亲水性纸通道,4-3-石蜡或疏水性聚合物);5-彩色试剂;6-固定了试剂的圆形纸微区芯片、圆形纳米多孔膜和固定了试剂的长方形纸芯片叠加组装而成的三维纸芯片(俯视图);7-样品溶液和缓冲溶液的等体积混合溶液;8-Hg2+;9-纳米金-汞齐团聚复合物;10-彩色试剂溶液在长方形纸芯片的长方形通道中的流动长度(三维纸芯片剖视图)。
图2为本发明实施例1中使用本发明的Hg2+免仪器定量检测方法分别检测不含分析物离子的空白水样(blank)、40 nM Hg2+水样、其他15种金属离子水样(离子浓度均为10 µM)、这些金属离子与40 nM Hg2+的混合水样所得信号值(彩色试剂红墨水的流动长度,length)的比较。图中的误差棒为三次平行实验结果的标准偏差。量取红墨水流动长度的时间为滴加水样后25 min。
图3为本发明实施例2中使用本发明的Hg2+免仪器定量检测方法分析一系列浓度范围为2.5 ~ 640 nM的Hg2+水样时信号值(彩色试剂红墨水的流动长度,length)与Hg2+浓度的Log值(Log[Hg2+])之间的工作曲线。图中的误差棒为三次平行实验结果的标准偏差。量取红墨水流动长度的时间为滴加水样后25 min。
具体实施方式
以下实施例将对本发明予以进一步的说明,但并不因此而限制本发明。
实施例1:
使用本发明的Hg2+免仪器定量检测方法检测不含分析物离子的空白水样(blank,不含Hg2+的电阻率为18.2 MΩ·cm的超纯水)、40 nM Hg2+水样、其他15种金属离子水样(即Na+、K+、Ag+、Cu2+、Pb2+、Mg2+、Co2+、Cd2+、Ca2+、Zn2+、Ni2+、Fe2+、Fe3+、Cr3+和Al3+;离子浓度均为10µM)以及这些金属离子与40 nM Hg2+的混合水样。每个水样均进行三次平行实验。
如图1所示,本实施例的具体步骤为:
步骤一:根据图1所示形状,使用滤纸为多孔性纸基材,结合相应的图案化模具和熔融石蜡溶液,制备由疏水性蜡填充包围形成中部为圆形亲水性纸体(直径4 mm)的正方形(边长2 cm)圆形纸微区芯片与由疏水性蜡填充包围形成连通的圆形亲水性纸体(直径4mm)与长方形亲水性纸通道(长为4 cm,宽2 mm)的长方形纸芯片;随后分别在圆形纸微区芯片的亲水性纸体和长方形纸芯片的圆形亲水性纸体中滴加5 µL 8.8 nM吐温-20修饰的纳米金探针(粒径20 nm,由柠檬酸钠还原氯金酸制得)溶液和2 µL未稀释红墨水原液(上海英雄集团有限公司产品),干燥后备用;将固定了试剂的圆形纸微区芯片、圆形三氧化二铝纳米多孔膜(直径4 mm,孔道平均直径为100 nm)和固定了试剂的长方形纸芯片中的圆形区域对齐、依次叠加组装制得三维纸芯片,并用透明胶带封装(但在圆形纸微区芯片的亲水性纸体表面预留2 mm直径的圆孔用于水样滴加)。
步骤二:将5 µL 40 nM Hg2+水样(氯化汞水溶液)和5 µL含有100 mM氯化钠的10mM Tris-HCl缓冲溶液(pH 7)混合,并滴加到三维纸芯片的最上层的圆形纸微区中;肉眼观察纸芯片中红墨水溶液的流动情况,并在25 min后使用直尺量取该彩色溶液的流动长度(length)。
根据相同的步骤,利用三维纸芯片检测空白水样品(blank,即电阻率为18.2 MΩ·cm的超纯水)、其他15种金属离子水样(即Na+、K+、Ag+、Cu2+、Pb2+、Mg2+、Co2+、Cd2+、Ca2+、Zn2+、Ni2+、Fe2+、Fe3+、Cr3+和Al3+;离子浓度均为10 µM)以及这些金属离子与40 nM Hg2+的混合水样,并记录红墨水溶液的流动长度。
从图2可以看出,检测空白水样和其他15种金属离子水样时所得的红墨水流动长度长达15 mm,而检测40 nM Hg2+水样所得的红墨水流动长度显著缩短,仅7 mm左右。这应当归因于只有Hg2+与纳米金反应生成金-汞齐,导致该探针在其表面小分子保护剂吐温-20脱附后进而在100 mM氯化钠溶液中团聚,所形成的大尺寸复合物堵塞三维纸芯片中间层纳米多孔膜的孔道,降低流往最下层长方形纸芯片的圆形区域以溶解红墨水并在长方形通道中流动的反应溶液的体积,最终仅得到很短的红墨水流动长度。图2中的对比实验结果表明,本发明的Hg2+免仪器定量检测方法切实可行,并表现出良好的特异性。
实施例2:
使用本发明的Hg2+免仪器定量检测方法分析浓度范围为2.5 ~ 640 nM的Hg2+水样。每个浓度均进行三次平行实验。
如图1所示,本实施例中每个Hg2+水样分析的具体步骤为:
步骤一:使用滤纸为多孔性纸基材,结合相应的图案化模具和熔融石蜡溶液制备由蜡填充包围形成中部为圆形亲水性纸体(直径4 mm)的正方形(边长2 cm)圆形纸微区芯片与由疏水性蜡填充包围形成连通的圆形亲水性纸体(直径4 mm)与长方形亲水性纸通道(长为4 cm,宽2 mm)的长方形纸芯片;随后分别在圆形纸微区芯片的亲水性纸体和长方形纸芯片的圆形亲水性纸体中滴加5 µL 8.8 nM吐温-20修饰的纳米金探针(粒径20 nm,由柠檬酸钠还原氯金酸制得)溶液和2 µL未稀释红墨水原液(上海英雄集团有限公司产品),干燥后备用;将固定了试剂的圆形纸微区芯片、圆形三氧化二铝纳米多孔膜(直径4 mm,孔道平均直径为100 nm)和固定了试剂的长方形纸芯片中的圆形区域对齐、依次叠加组装制得三维纸芯片,并用透明胶带封装(但在圆形纸微区芯片的亲水性纸体表面预留2 mm直径的圆孔用于水样滴加)。
步骤二:将5 µL Hg2+水样(氯化汞水溶液)和5 µL含有100 mM氯化钠的10 mMTris-HCl缓冲溶液(pH 7)混合,并滴加到三维纸芯片的最上层的圆形纸微区中;肉眼观察纸芯片中红墨水溶液的流动情况,并在25 min后使用直尺量取该彩色溶液的流动长度(length)。最后将所有水样所得红墨水的流动长度(length)对Hg2+浓度的Log值(Log[Hg2 +])作图(图3)。
由图3可知,随着Hg2+浓度的增加,相应的红墨水流动长度逐渐缩短。这是因为,当水样中Hg2+浓度较大时,其在相同时间里因与纳米金生成金-汞齐导致后者表面小分子保护剂吐温-20脱附后而在100 mM氯化钠溶液中团聚越严重,相应增加的大尺寸复合物更有效地堵塞三维纸芯片中间层纳米多孔膜的孔道,致使流往最下层长方形纸芯片的圆形区域以溶解红墨水并在长方形通道中流动的反应溶液的体积越少,从而流动长度越短。此外,图3显示,利用直尺量取所得红墨水流动长度值与Hg2+浓度的Log值(Log[Hg2+])在2.5~640 nM的浓度范围内呈现良好的线性关系。根据3σ方法估算本方法的Hg2+检测下限约为1.1 nM。

Claims (1)

1.一种二价汞离子免仪器定量检测方法,其特征在于具体步骤为:
(1)制备疏水性物质图案化的圆形纸微区芯片和长方形纸芯片,并分别滴加固定纳米金探针和彩色试剂,进而将圆形纸微区芯片、圆形纳米多孔膜和长方形纸芯片中的圆形区域对齐、依次叠加组装制得三维纸芯片;
(2)将二价汞离子样品溶液和含有高浓度氯化钠的缓冲溶液等体积混合,并滴加到三维纸芯片的最上层的圆形纸微区中,随后观察长方形纸芯片中彩色试剂的流动情况,5 ~30 min后用直尺量取彩色试剂的流动长度,该流动长度与二价汞离子的浓度呈反相关,从而实现二价汞离子的免仪器定量检测;
所述圆形纸微区芯片的特征是外形为边长1.5 ~ 2 cm的正方形,中部为直径2 ~ 7 mm的圆形亲水性纸体,其余部分则填充蜡或疏水性聚合物;
所述纳米金探针被滴加固定在圆形纸微区芯片的整个圆形亲水性纸体中,该纳米金探针特征是表面修饰了可让粒径10 ~ 30 nm的纳米金在高浓度盐溶液中稳定分散的吐温-20小分子保护试剂;
所述长方形纸芯片的特征是外形为长3 ~ 5 cm、宽1 ~ 2 cm的长方形,中部为连通的直径2 ~ 7 mm的圆形亲水性纸体与长2.5 ~ 4.5 cm、宽1 ~ 2 mm的长方形亲水性纸通道,其余部分则填充蜡或疏水性聚合物;
所述彩色试剂被滴加固定在长方形纸芯片的整个圆形亲水性纸体中,其特征是该彩色试剂在纸体中所形成的的彩色印迹具有良好的水溶性,被反应溶液溶解后形成的彩色溶液可在毛细管作用下从圆形亲水性纸体中自发流向长方形亲水性纸通道;
所述纳米多孔膜为直径2 ~ 7 mm的无机多孔膜和有机多孔膜中的一种,其特征是具有良好的亲水性,孔道平均直径为50 ~ 200 nm;
所述含有高浓度氯化钠的缓冲溶液特征是pH值为7、氯化钠浓度为100 ~ 150 mM、不含可与二价汞离子发生沉淀或络合作用的成分;
所述二价汞离子样品溶液和缓冲溶液等体积混合后滴加到三维纸芯片最上层的圆形纸微区中的反应,其特征是二价汞离子与纳米金反应生成金-汞齐,导致该探针在其表面吐温-20小分子保护试剂脱附后进而在高浓度盐溶液中团聚,所形成的大尺寸复合物通过堵塞三维纸芯片中间层纳米多孔膜的孔道,降低流往最下层长方形纸芯片的圆形区域以溶解彩色试剂并在长方形通道中流动的反应溶液的体积。
CN201910936448.7A 2019-09-29 2019-09-29 一种二价汞离子免仪器定量检测方法 Active CN110579469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910936448.7A CN110579469B (zh) 2019-09-29 2019-09-29 一种二价汞离子免仪器定量检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910936448.7A CN110579469B (zh) 2019-09-29 2019-09-29 一种二价汞离子免仪器定量检测方法

Publications (2)

Publication Number Publication Date
CN110579469A CN110579469A (zh) 2019-12-17
CN110579469B true CN110579469B (zh) 2022-04-08

Family

ID=68814111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910936448.7A Active CN110579469B (zh) 2019-09-29 2019-09-29 一种二价汞离子免仪器定量检测方法

Country Status (1)

Country Link
CN (1) CN110579469B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986197A (zh) * 2021-02-18 2021-06-18 军事科学院军事医学研究院环境医学与作业医学研究所 用于检测汞离子的比率荧光探针、荧光纸芯片和检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049083A2 (en) * 2006-10-18 2008-04-24 President And Fellows Of Harvard College Lateral flow and flow-through bioassay based on patterned porous media, methods of making same, and methods of using same
CN101523212A (zh) * 2006-10-12 2009-09-02 皇家飞利浦电子股份有限公司 具有试剂层的快速生物传感器
CN105527266A (zh) * 2016-01-22 2016-04-27 复旦大学 一种基于纸芯片的荧光共振能量转移检测汞离子的方法
CN107884367A (zh) * 2017-10-12 2018-04-06 重庆三峡学院 一种哑铃光纤spr检测微流芯片

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW547642U (en) * 2002-12-31 2003-08-11 Chun-Mao Tseng Ultra-trace automated mercury species analyzer (AMSA)
US8921118B2 (en) * 2008-03-27 2014-12-30 President And Fellows Of Harvard College Paper-based microfluidic systems
CN103389293B (zh) * 2013-07-26 2015-11-04 中国人民大学 一种二价汞离子的检测方法
US11602746B2 (en) * 2015-04-21 2023-03-14 Texas Tech University System Chemically patterned microfluidic paper-based analytical device (C-μPAD) for multiplex analyte detection
CN106093027A (zh) * 2016-07-22 2016-11-09 苏州汶颢芯片科技有限公司 重金属离子检测芯片
CN106442515B (zh) * 2016-11-24 2019-10-11 桂林理工大学 一种简单的银离子目视定量检测方法
CN106770255A (zh) * 2017-01-12 2017-05-31 青岛科技大学 汞离子检测试纸及其制备方法和检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523212A (zh) * 2006-10-12 2009-09-02 皇家飞利浦电子股份有限公司 具有试剂层的快速生物传感器
WO2008049083A2 (en) * 2006-10-18 2008-04-24 President And Fellows Of Harvard College Lateral flow and flow-through bioassay based on patterned porous media, methods of making same, and methods of using same
CN105527266A (zh) * 2016-01-22 2016-04-27 复旦大学 一种基于纸芯片的荧光共振能量转移检测汞离子的方法
CN107884367A (zh) * 2017-10-12 2018-04-06 重庆三峡学院 一种哑铃光纤spr检测微流芯片

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Instrument-free quantitative detection of alkaline phosphatase using paper-based devices;Lang Zhang.et al;《The Royal Society of Chemistry》;20171231;全文 *
Visual quantification of Hg on a microfluidic paper-based analytical device using distance-based detection technique;Longfei Cai.et al;《AIP ADVANCES》;20170818;全文 *

Also Published As

Publication number Publication date
CN110579469A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
CN105806815B (zh) 一种检测硫化氢的荧光纳米探针及其制备方法与应用
Shahat et al. Colorimetric determination of some toxic metal ions in post-mortem biological samples
Khorrami et al. Determination of nickel in natural waters by FAAS after sorption on octadecyl silica membrane disks modified with a recently synthesized Schiff’s base
CN112394095B (zh) 一种选择性检测亚硝酸根离子的电化学传感器及其制备方法与应用
Regiart et al. An electrochemically synthesized nanoporous copper microsensor for highly sensitive and selective determination of glyphosate
CN103743735B (zh) 一种比色法检测、富集与分离水环境重金属Hg2+的方法
KR101496677B1 (ko) 금 나노입자를 이용한 수은이온의 색변환 측정
Walcarius et al. Selective monitoring of Cu (II) species using a silica modified carbon paste electrode
Mashhadizadeh et al. Potentiometric determination of nanomolar concentration of Cu (II) using a carbon paste electrode modified by a self-assembled mercapto compound on gold nanoparticles
Zhao et al. Sensitive determination of trace Cd (ii) and Pb (ii) in soil by an improved stripping voltammetry method using two different in situ plated bismuth-film electrodes based on a novel electrochemical measurement system
Huo et al. A novel optical chemical sensor based AuNR-MTPP and dyes for lung cancer biomarkers in exhaled breath identification
CN110579469B (zh) 一种二价汞离子免仪器定量检测方法
Yang et al. A competitive coordination-based immobilization-free electrochemical biosensor for highly sensitive detection of arsenic (v) using a CeO 2–DNA nanoprobe
El-Feky et al. Utilization of a plasticized PVC optical sensor for the selective and efficient detection of cobalt (II) in environmental samples
Lei et al. Preparation of gold nanoparticles using pyridine-formaldehyde as a reducing agent and its application in high sensitivity colorimetric detection of Pb 2+
CN110907589B (zh) 一种基于GQDs光催化可视化检测Cu2+的方法
Al-Jaf et al. A novel ratiometric design of microfluidic paper-based analytical device for the simultaneous detection of Cu 2+ and Fe 3+ in drinking water using a fluorescent MOF@ tetracycline nanocomposite
Li et al. Highly catalysis amplification of MOF Nd-loaded nanogold combined with specific aptamer SERS/RRS assay of trace glyphosate
Odobasic et al. Determination and speciation of trace heavy metals in natural water by DPASV
Zhu et al. Enhanced peroxidase-like activity of bimetal (Fe/Co) MIL-101 for determination of tetracycline and hydrogen peroxide
CN105572210B (zh) 一种紫杉醇分子印迹传感器的制备方法
Chamaraja et al. Colorimetric detection of chromium (VI) using peroxidase mimetic IONPS with 4-Aminoantipyrene and 3-Aminophenol as a chromogen
CN110954526A (zh) 一种痕量汞离子的快速检测方法
Li et al. Rational design of a functionalized metal–organic framework for ratiometric fluorimetric sensing of Hg 2+ in environmental water
Li et al. High sensitivity and rapid detection of hepatitis B virus DNA using lateral flow biosensors based on Au@ Pt nanorods in the absence of hydrogen peroxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20191217

Assignee: GUILIN VEIRUN MEDICAL TECHNOLOGY Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980046003

Denomination of invention: A quantitative detection method for divalent mercury ions using immunoassay

Granted publication date: 20220408

License type: Common License

Record date: 20231108