CN102007417B - 基于车载传感器的用于偏航率传感器标定的标定算法 - Google Patents

基于车载传感器的用于偏航率传感器标定的标定算法 Download PDF

Info

Publication number
CN102007417B
CN102007417B CN2009801135041A CN200980113504A CN102007417B CN 102007417 B CN102007417 B CN 102007417B CN 2009801135041 A CN2009801135041 A CN 2009801135041A CN 200980113504 A CN200980113504 A CN 200980113504A CN 102007417 B CN102007417 B CN 102007417B
Authority
CN
China
Prior art keywords
signal
yaw rate
vehicle
controller
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009801135041A
Other languages
English (en)
Other versions
CN102007417A (zh
Inventor
C·巴斯纳亚克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN102007417A publication Critical patent/CN102007417A/zh
Application granted granted Critical
Publication of CN102007417B publication Critical patent/CN102007417B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/11Pitch movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种标定车辆航向传感器例如偏航率传感器的系统和方法,当GPS信号不可用时,采用偏差更新模型,该模型利用了偏差增益系数。为了偏差更新模型的准确性,车辆应该相对直线行驶。本发明的一个实施例采用了三个阈值来确定车辆是否直线行驶。这些阈值包括偏航率阈值,方向盘角度阈值和车轮速度阈值。如果所有三个阈值都指示车辆直线行驶,则更新偏差模型可用于标定正偏航率传感器。

Description

基于车载传感器的用于偏航率传感器标定的标定算法
技术领域
本发明总体上涉及标定航向传感器的系统和方法,例如,偏航率传感器,更具体地,涉及从偏航率传感器中去除传感器偏移误差的系统和方法,以便当无法获得GPS信号时使用偏航率传感器来提供准确的车辆航向,其中该系统和方法利用偏差更新模型来标定传感器,使用偏航率、方向盘角度和差异车轮速度度来识别当车辆相对直线行驶时的时间窗。标定
背景技术
GPS信号,或其他全球卫星导航系统(GNSS)信号,可以提供准确的定位和导航。然而,GPS接收器受天空能见度相关限制,例如,在城市峡谷和密集的树木覆盖区域。此外,GPS信号可能受到上述区域的多路径误差或交叉相关误差影响。当天空能见度短期内(例如10-20秒)短暂提升时,由于存在高灵敏度和快速重新获取GPS技术,精确的GPS信号会变得可用,甚至在欠佳的环境中也是如此。因此,GPS技术持续性归结为在GPS可用时间窗之间的GPS中断内维持定位精度。
车辆级惯性传感器(例如偏航率传感器和加速度计)具有高度变化的偏差和比例特性,从而引起传感器漂移,在没有合适的误差校正技术的情况下,该漂移典型地使得他们不适宜导航和航向测定功能。例如,某些车辆级偏航率传感器允许高达2度/秒的偏航率传感器偏差变化。如果不校正该变化,并允许超过两分钟时段,开始时在0秒具有0度/秒偏差的偏航率传感器可以在120秒后达到2度/秒的偏差。如果为了简单起见假定偏差是线性增长的,作为偏差变化的结果,通过集成未标定的偏航率传感器信号获得的航向变化将仅指示120°的航向变化。
如果距离测量(例如车车轮速度度)可用,甚至当GPS信号不可用时,可采用惯性传感器与GPS接收器结合以提供合理精度的车辆航向和位置,然而,车辆级惯性传感器通常不提供与GPS信号相同等级的精度。当GPS信号可用时,GPS/惯性传感器集成系统可采用GPS信号来标定惯性传感器且维持车辆航向和位置的精确,且当GPS信号不可用时,采用标定的惯性传感器来维持航向和位置的求解,直到GPS信号变得再次可用。
已知的偏航率传感器标定算法通常采用两步过程来达到偏差和比例的标定,且为了标定需要执行特定的车辆操作。例如,传感器偏差标定可需要车辆直线驾驶或在已知的时间段内静止,以便作为传感器偏差的结果,累积的航向误差可被直接估算。对于比例标定,车辆可能需要驾驶通过受控圈数。
2007年6月29日提交、题为GPS-based in-vehicle sensor calibrationalgorithm(基于GPS的车载传感器标定算法)、转让给本申请的受让者且在此将其并入作为参考的美国专利申请序列号11/770898,公开了采用GPS信号以标定航向传感器的系统和方法。该系统接收车轮速度或旋转信号、车辆里程表读数、GPS信号和偏航率信号,且当GPS信号可用时采用GPS信号以标定航向传感器。
如上讨论的,’898申请当GPS信号可用时采用GPS信号标定航向传感器,这样当GPS信号不可用时,航向传感器会在一段时间内相当精确。然而,如果GPS信号在延长的时间段内不可用时,则为了维持航向传感器精度,需要在GPS信号不可用时标定航向传感器。
发明内容
根据本发明的教导,公开了当GPS信号不可用时采用偏差更新模型标定车辆航向传感器(例如偏航率传感器)的系统和方法,偏差更新模型采用了偏差增益系数。为了偏差更新模型准确,车辆应该相对直线行驶。本发明的一个实施例采用了三个阈值以确定车辆是否直线行驶。这些阈值包括偏航率阈值、方向盘角度阈值以及车轮速度阈值。如果所有这三个阈值都指示车辆直线行驶,那么更新偏差模型可用于标定偏航率传感器。
由下面的说明和所附权利要求结合附图将清楚本发明的附加特征。
附图说明
图1是根据本发明的实施例的包括提供偏航率传感器标定的系统的车辆的平面图;以及
图2示出根据本发明的实施例的采用偏差更新模型标定偏航率传感器的过程的流程图。
具体实施方式
涉及在GPS信号不可用时采用偏差更新模型标定偏航率传感器的系统和方法的本发明实施例的以下讨论本质上仅仅是示范性的,绝不是打算限制本发明或其应用或使用。
图1是根据本发明实施例的包括偏航率传感器标定控制器12的车辆10的平面图。车辆10还包括前轮14和16以及后轮18和20。车轮14,16,18和20各分别包括车轮速度传感器22,24,26和28,给控制器12提供车轮速度和/或车轮旋转信号。GPS接收器32给控制器12提供GPS信号,以及偏航率传感器34给控制器12提供车辆偏航率传感器信号。此外,手轮角度传感器36给控制器12提供方向盘38旋转的方向盘角度信号。
本发明提出当GPS信号不可用时在控制器12中采用固定航向更新(CHUPT)算法以标定偏航率传感器34,该算法使用了偏差更新模型。尽管偏差更新模型标定偏航率传感器34,但是在其它实施例中,任何合适的提供车辆航向的航向或惯性传感器都可通过CHUPT算法标定。CHUPT算法计算偏航偏差信号YawBiasi,用于减少偏航率传感器34的偏差,以便提供精确的航向读数。
在此实施例中,偏差更新模型定义为:
YawBiasi=(1-βCHUPT)YawBiasi-lCHUPTYawRatei,CHUPT    (1)
其中βCHUPT为偏差增益系数,YawRatei,CHUPT为偏航率传感器34指示的偏航率。
为了偏差更新模型的准确性,车辆10需要相对直线行驶。CHUPT算法使用了车辆偏航率,方向盘角度以及差异车轮速度以识别在车辆航向相对固定(也就是车辆直线行驶)时的时间窗。车辆需要行驶多直的程度以及时间窗需要多久可由四个预定参数控制,即,偏航标准偏差阈值
Figure GSB00000811756500031
方向盘角度标准偏差阈值
Figure GSB00000811756500032
差异车轮速度阈值
Figure GSB00000811756500033
和时间窗长度。
下面的公式(2)和(3)识别出该算法如何分别确定在时间窗P期间偏航率信号YawRate的标准偏差是否小于偏航标准偏差阈值以及方向盘角度信号SteeringWheelAng的标准偏差是否小于方向盘角度标准偏差阈值
Figure GSB00000811756500035
std ( YawRa te i - N : i ) < &dtri; YawSTD - - - ( 2 )
其中N是偏航率窗的长度。
std ( SteeringWheelAn g i - P : i ) < &dtri; SteerAngSTD - - - ( 3 )
其中P是方向盘角度窗。
在当车辆10沿着曲线行驶且方向盘角度保持固定的情况下仍然可以满足公式(2)和(3)的条件。偏航率信号在这种情况下也可指示固定的车辆航向。在这种情况下,偏航率信号指示不应该在偏差中被考虑为变化的实际航向速率。为了避免这样的错误判定,可执行差异车轮速度确认。此确认由下面的公式(4)示出,确认出在左右非驱动轮计数或速度之间的差仅仅指示出测量噪音和在给定的时间窗期间未看到明显差别。
| WheelSpee d L - WheelSpee d R | < &dtri; dWheelSpeed - - - ( 4 )
其中WheelSpeedL是左非驱动轮的车轮速度且WheelSpeedR是右非驱动轮的车轮速度。
如果方向盘角度标准偏差和偏航率标准偏差没有变化超过预定阈值且非驱动轮之间的相对速度在预定阈值内也大约相同,那么认定车辆10没有转弯。当公式(2)-(4)中给出的条件满足时,CHUPT算法采用偏航率信号和公式(1)来更新当前偏航率偏差YawBiasi
图2是示出了根据本发明实施例的本发明校正偏航率传感器34偏航偏差的步骤的流程图40。在框42处,算法采用公式(2)的偏航率阈值计算来确定车辆10是否直线行驶。在框44处,算法采用公式(3)的方向盘角度阈值计算来确定车辆10是否直线行驶。在框46处,算法采用公式(4)的车轮速度阈值计算来确定车辆10是否直线行驶。如果所有的这些计算都确定车辆10相对直线行驶,那么算法采用公式(1)的更新偏差模型来更新或标定偏航率传感器34。
前面讨论公开和描述的仅仅是本发明的示范性实施例。本领域技术人员很容易由此讨论以及由附图和权利要求认识到,在不脱离所附权利要求限定的本发明的精神和范围的情况下,可以进行各种变化、修改和变型。

Claims (19)

1.一种车辆中的偏航率传感器标定系统,所述车辆包括4个车轮,所述系统包括:
偏航率传感器,提供指示车辆偏航的偏航率信号;
手轮角度传感器,提供车辆方向盘旋转的旋转信号;
多个车轮速度传感器,提供车辆车轮速度的车轮速度信号;以及
偏航率传感器标定控制器,所述控制器采用偏差更新模型标定偏航率传感器,所述控制器响应于偏航率信号、旋转信号和车轮速度信号,所述标定控制器采用对偏航率信号、手轮角度信号和车轮速度信号中的每一个的独立计算来确定车辆是否相对直线行驶,如果车辆相对直线行驶,所述控制器标定偏航率传感器。
2.根据权利要求1的系统,还包括给标定控制器提供GPS信号的GPS接收器,以指示车辆的位置,当GPS信号可用时所述标定控制器采用GPS信号来标定偏航率传感器,当GPS信号不可用时所述标定控制器采用偏差更新模型标定偏航率传感器。
3.根据权利要求1的系统,其中,标定控制器采用偏差更新模型通过使用下面的公式计算偏航偏差来标定偏航率传感器:
YawBiasi=(1-βCHUPT)YawBiasi-lCHUPT YawRatei,CHUPT
其中,YawRatei,CHUPT为偏航率传感器指示的偏航率,YawBiasi是偏航偏差且βCHUPT为偏差增益系数。
4.根据权利要求1的系统,其中,标定控制器采用偏航率信号标准偏差以及下面的公式确定车辆是否相对直线行驶:
std ( Yaw Rate 1 - N : i ) < &dtri; YawSTD
其中N是偏航率窗的长度,std(YawRatei-N:i)是偏航率信号的标准偏差,
Figure FSB00000970932400012
是偏航率标准偏差阈值。
5.根据权利要求1的系统,其中,标定控制器采用旋转信号和下面的公式确定车辆是否直线行驶:
std ( Steering WheelAng i - P : i ) < &dtri; SteerAngSTD
其中,P是方向盘角度窗长度,std(SteeringWheelAngi-P:i)是旋转信号的标准偏差,
Figure FSB00000970932400021
是方向盘角度标准偏差阈值。
6.根据权利要求1的系统,其中,标定控制器采用车轮速度信号和下面的公式确定车辆是否直线行驶:
| WheelSpeed L - WheelSpeed R | < &dtri; dWheelSpeed
其中,是差异车轮速度阈值,WheelSpeedL是左非驱动轮的速度且WheelSpeedR是右非驱动轮的速度。
7.一种车辆中的航向传感器标定系统,所述车辆包括4个车轮,所述系统包括:
航向传感器,提供指示车辆航向的航向信号;
多个车辆传感器,提供识别车辆参数的传感器信号;以及
航向传感器标定控制器,采用偏差更新模型标定航向传感器,所述控制器响应于航向信号和传感器信号,所述控制器采用航向信号和传感器信号以确定车辆是否相对直线行驶,如果车辆相对直线行驶,所述控制器标定航向传感器。
8.根据权利要求7的系统,其中,航向传感器是偏航率传感器,提供指示车辆偏航的偏航率信号。
9.根据权利要求8的系统,其中,标定控制器采用偏差更新模型通过使用下面的公式计算偏航偏差来标定偏航率传感器:
YawBiasi=(1-βCHUPT)YawBiasi-lCHUPTYawRatei,CHUPT
其中,YawRatei,CHUPT为偏航率传感器指示的偏航率,YawBiasi是偏航偏差且βCHUPT为偏差增益系数。
10.根据权利要求7的系统,其中,所述多个车辆传感器包括提供车辆方向盘旋转的旋转信号的手轮角度传感器、以及提供车辆车轮速度的车轮速度信号的多个车轮速度传感器,所述标定控制器采用旋转信号、航向信号和车轮速度信号以确定车辆是否相对直线行驶。
11.根据权利要求10的系统,其中,标定控制器采用航向信号以及下面的公式确定车辆是否相对直线行驶:
std ( YawRate i - N : i ) < &dtri; YawSTD
其中N是窗的长度,std(YawRatei-N:i)是偏航率信号的标准偏差,
Figure FSB00000970932400025
是偏航率标准偏差阈值。
12.根据权利要求10系统,其中,标定控制器采用旋转信号和下面的公式确定车辆是否直线行驶:
std ( Steering WheelAng i - P : i ) < &dtri; SteerAngSTD
其中,P是方向盘角度窗长度,std(SteeringWheelAngi-P:i)是旋转信号的标准偏差,
Figure FSB00000970932400032
是方向盘角度标准偏差阈值。
13.根据权利要求10的系统,其中,标定控制器采用车轮速度信号和下面的公式确定车辆是否直线行驶:
| WheelSpeed L - WheelSpeed R | < &dtri; dWheelSpeed
其中,
Figure FSB00000970932400034
是差异车轮速度阈值,WheelSpeedL是左非驱动轮的速度且WheelSpeedR是右非驱动轮的速度。
14.根据权利要求7的系统,进一步包括给标定控制器提供GPS信号的GPS接收器,以指示车辆的位置,当GPS信号可用时所述标定控制器采用GPS信号来标定航向传感器,当GPS信号不可用时所述标定控制器采用偏差更新模型标定航向传感器。
15.一种车辆中的偏航率传感器标定系统,所述车辆包括4个车轮,所述系统包括:
偏航率传感器,提供指示车辆偏航的偏航率信号;
手轮角度传感器,提供车辆方向盘旋转的旋转信号;
多个车轮速度传感器,提供车辆车轮速度的车轮速度信号;
GPS接收器,提供指示车辆位置的GPS信号;以及
偏航率传感器标定控制器,采用偏差更新模型标定偏航率传感器,所述控制器响应于偏航率信号、手轮旋转信号、车轮速度信号和GPS信号,当GPS信号可用时所述标定控制器采用GPS信号来标定偏航率传感器,当GPS信号不可用且车辆相对直线行驶时所述标定控制器采用偏差更新模型标定偏航率传感器,所述标定控制器采用对偏航率信号、手轮角度信号和车轮速度信号中的每一个的独立计算来确定车辆是否相对直线行驶。
16.根据权利要求15的系统,其中,标定控制器采用偏差更新模型通过使用下面的公式计算偏航偏差来标定偏航率传感器:
YawBiasi=(1-βCHUPT)YawBiasi-lCHUPTYawRatei,CHUPT
其中,YawRatei,CHUPT为偏航率传感器指示的偏航率,YawBiasi是偏航偏差且βCHUPT为偏差增益系数。
17.根据权利要求15的系统,其中,标定控制器采用偏航率信号以及下面的公式确定车辆是否相对直线行驶:
std ( YawRate i - N : i ) < &dtri; YawSTD
其中N是偏航率窗的长度,std(YawRatei-N:i)是偏航率信号的标准偏差,
Figure FSB00000970932400042
是偏航率标准偏差阈值。
18.根据权利要求15的系统,其中,标定控制器采用旋转信号和下面的公式确定车辆是否直线行驶:
std ( Steering WheelAng i - P : i ) < &dtri; SteerAngSTD
其中,P是方向盘角度窗长度,std(SteeringWheelAngi-P:i)是旋转信号的标准偏差,
Figure FSB00000970932400044
是方向盘角度标准偏差阈值。
19.根据权利要求15的系统,其中,标定控制器采用车轮速度信号和下面的公式确定车辆是否直线行驶:
| WheelSpeed L - WheelSpeed R | < &dtri; dWheelSpeed
其中,是差异车轮速度阈值,WheelSpeedL是左非驱动轮的速度且WheelSpeedR是右非驱动轮的速度。
CN2009801135041A 2008-04-16 2009-04-06 基于车载传感器的用于偏航率传感器标定的标定算法 Active CN102007417B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/104,022 US8195357B2 (en) 2008-04-16 2008-04-16 In-vehicle sensor-based calibration algorithm for yaw rate sensor calibration
US12/104022 2008-04-16
US12/104,022 2008-04-16
PCT/US2009/039604 WO2009129076A2 (en) 2008-04-16 2009-04-06 In-vehicle sensor-based calibration algorithm for yaw rate sensor calibration

Publications (2)

Publication Number Publication Date
CN102007417A CN102007417A (zh) 2011-04-06
CN102007417B true CN102007417B (zh) 2013-04-10

Family

ID=41199646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801135041A Active CN102007417B (zh) 2008-04-16 2009-04-06 基于车载传感器的用于偏航率传感器标定的标定算法

Country Status (4)

Country Link
US (1) US8195357B2 (zh)
CN (1) CN102007417B (zh)
DE (1) DE112009000920B4 (zh)
WO (1) WO2009129076A2 (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7948769B2 (en) 2007-09-27 2011-05-24 Hemisphere Gps Llc Tightly-coupled PCB GNSS circuit and manufacturing method
US7885745B2 (en) 2002-12-11 2011-02-08 Hemisphere Gps Llc GNSS control system and method
US8686900B2 (en) 2003-03-20 2014-04-01 Hemisphere GNSS, Inc. Multi-antenna GNSS positioning method and system
US8140223B2 (en) 2003-03-20 2012-03-20 Hemisphere Gps Llc Multiple-antenna GNSS control system and method
US9002565B2 (en) 2003-03-20 2015-04-07 Agjunction Llc GNSS and optical guidance and machine control
US8190337B2 (en) 2003-03-20 2012-05-29 Hemisphere GPS, LLC Satellite based vehicle guidance control in straight and contour modes
US8138970B2 (en) 2003-03-20 2012-03-20 Hemisphere Gps Llc GNSS-based tracking of fixed or slow-moving structures
US8594879B2 (en) 2003-03-20 2013-11-26 Agjunction Llc GNSS guidance and machine control
US8265826B2 (en) 2003-03-20 2012-09-11 Hemisphere GPS, LLC Combined GNSS gyroscope control system and method
US8271194B2 (en) 2004-03-19 2012-09-18 Hemisphere Gps Llc Method and system using GNSS phase measurements for relative positioning
US8634993B2 (en) 2003-03-20 2014-01-21 Agjunction Llc GNSS based control for dispensing material from vehicle
US8583315B2 (en) 2004-03-19 2013-11-12 Agjunction Llc Multi-antenna GNSS control system and method
US8311696B2 (en) 2009-07-17 2012-11-13 Hemisphere Gps Llc Optical tracking vehicle control system and method
USRE48527E1 (en) 2007-01-05 2021-04-20 Agjunction Llc Optical tracking vehicle control system and method
US7835832B2 (en) 2007-01-05 2010-11-16 Hemisphere Gps Llc Vehicle control system
US8000381B2 (en) 2007-02-27 2011-08-16 Hemisphere Gps Llc Unbiased code phase discriminator
GB2447987B (en) * 2007-03-30 2011-11-02 P G Drives Technology Ltd Method and apparatus for determining a value of a zero point offset of a yaw rate sensor
US7808428B2 (en) 2007-10-08 2010-10-05 Hemisphere Gps Llc GNSS receiver and external storage device system and GNSS data processing method
US9002566B2 (en) 2008-02-10 2015-04-07 AgJunction, LLC Visual, GNSS and gyro autosteering control
WO2009126587A1 (en) 2008-04-08 2009-10-15 Hemisphere Gps Llc Gnss-based mobile communication system and method
US20090319186A1 (en) * 2008-06-24 2009-12-24 Honeywell International Inc. Method and apparatus for determining a navigational state of a vehicle
WO2010027731A2 (en) * 2008-08-25 2010-03-11 Trw Braking Electronics Method for correction of dynamic output signals of inertial sensors having mounting offsets
US8217833B2 (en) 2008-12-11 2012-07-10 Hemisphere Gps Llc GNSS superband ASIC with simultaneous multi-frequency down conversion
US8386129B2 (en) 2009-01-17 2013-02-26 Hemipshere GPS, LLC Raster-based contour swathing for guidance and variable-rate chemical application
US8085196B2 (en) 2009-03-11 2011-12-27 Hemisphere Gps Llc Removing biases in dual frequency GNSS receivers using SBAS
US8401704B2 (en) 2009-07-22 2013-03-19 Hemisphere GPS, LLC GNSS control system and method for irrigation and related applications
US8174437B2 (en) 2009-07-29 2012-05-08 Hemisphere Gps Llc System and method for augmenting DGNSS with internally-generated differential correction
US8334804B2 (en) 2009-09-04 2012-12-18 Hemisphere Gps Llc Multi-frequency GNSS receiver baseband DSP
US8649930B2 (en) 2009-09-17 2014-02-11 Agjunction Llc GNSS integrated multi-sensor control system and method
US8548649B2 (en) 2009-10-19 2013-10-01 Agjunction Llc GNSS optimized aircraft control system and method
US8311740B2 (en) * 2010-01-28 2012-11-13 CSR Technology Holdings Inc. Use of accelerometer only data to improve GNSS performance
US20110188618A1 (en) * 2010-02-02 2011-08-04 Feller Walter J Rf/digital signal-separating gnss receiver and manufacturing method
US8583326B2 (en) 2010-02-09 2013-11-12 Agjunction Llc GNSS contour guidance path selection
KR101074638B1 (ko) * 2011-05-04 2011-10-18 한국항공우주연구원 조향 모델을 이용한 주행차선 판단방법
CN102435452B (zh) * 2011-12-02 2014-04-09 江苏大学 一种汽车转向机器人的方向盘操纵装置
JP5884237B2 (ja) * 2012-02-21 2016-03-15 オートリブ日信ブレーキシステムジャパン株式会社 車両挙動制御装置
US9664528B2 (en) * 2012-03-27 2017-05-30 Autoliv Asp, Inc. Inertial sensor enhancement
KR101417456B1 (ko) * 2012-12-07 2014-07-08 현대자동차주식회사 차량 요레이트센서의 바이어스 획득방법
US11036238B2 (en) * 2015-10-15 2021-06-15 Harman International Industries, Incorporated Positioning system based on geofencing framework
US9733643B2 (en) 2013-12-20 2017-08-15 Agjunction Llc Hydraulic interrupter safety system and method
US10077982B2 (en) 2016-09-26 2018-09-18 Nxp Usa, Inc. Calibrating inertial navigation data using tire pressure monitoring system signals
CN108007417B (zh) 2016-10-27 2021-02-05 上海华测导航技术股份有限公司 一种农机自动驾驶控制系统角度传感器自动标定方法
JP6674560B2 (ja) * 2016-12-28 2020-04-01 本田技研工業株式会社 外界認識システム
CN109974746B (zh) * 2017-12-27 2020-11-24 深圳市优必选科技有限公司 全向轮里程校准方法及机器人
FR3079026B1 (fr) 2018-03-15 2021-01-01 Sysnav Procede de calibration d'un gyrometre equipant un vehicule
DE102018129864A1 (de) * 2018-11-27 2020-05-28 Valeo Schalter Und Sensoren Gmbh Verfahren und System zur Rekalibrierung von Winkeln
US10845197B2 (en) * 2018-11-27 2020-11-24 Aptiv Technologies Limited Dead-reckoning guidance system and method with cardinal-direction based coordinate-corrections
CN109443415A (zh) * 2018-11-30 2019-03-08 北京长城华冠汽车科技股份有限公司 一种汽车传感器的集中标定方法和装置
US20200339134A1 (en) * 2019-04-23 2020-10-29 GM Global Technology Operations LLC Method and apparatus for dynamic yaw rate bias estimation
US11544161B1 (en) * 2019-05-31 2023-01-03 Amazon Technologies, Inc. Identifying anomalous sensors
US11525926B2 (en) 2019-09-26 2022-12-13 Aptiv Technologies Limited System and method for position fix estimation using two or more antennas
CN113291314B (zh) * 2020-02-21 2022-06-14 亿咖通(湖北)技术有限公司 一种车辆航向信息的计算方法及系统
CN112747741A (zh) * 2020-12-07 2021-05-04 北京汽车研究总院有限公司 车辆的惯性导航方法、装置及车辆
CN114442073A (zh) * 2022-01-17 2022-05-06 广州小鹏自动驾驶科技有限公司 激光雷达的标定方法、装置、车辆及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101434A (en) * 1997-07-23 2000-08-08 Toyota Jidosha Kabushiki Kaisha Behavior control device of vehicle based upon double checking of yaw rate deviation
US6498971B2 (en) * 2001-03-13 2002-12-24 Delphi Technologies, Inc. Apparatus for determining steer angle of a motor vehicle
CN1479081A (zh) * 2003-07-03 2004-03-03 上海交通大学 多传感器融合跟踪系统配准偏差在线补偿方法
US6763293B2 (en) * 2002-12-11 2004-07-13 Continental Teves, Inc. Calibration procedure for a permanently powered relative steering wheel angle sensor with power-loss indication
CN101041355A (zh) * 2006-01-19 2007-09-26 通用汽车环球科技运作公司 具有报警修正标准的车道偏离报警和避免系统

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470124A (en) * 1981-06-01 1984-09-04 Honda Giken Kogyo Kabushiki Kaisha Method of adjusting the zero-point of rate type sensor
GB8909074D0 (en) * 1989-04-21 1989-06-07 Lotus Group Plc Vehicle control system
DE69109185T2 (de) * 1990-06-04 1996-01-11 Nippon Denso Co Signalverarbeitungsschaltung für Giergeschwindigkeitssensor.
US5826204A (en) * 1993-11-30 1998-10-20 Siemens Aktiengesellschaft Circuit configuration for evaluation of the signals from a yaw rate sensor
US5642281A (en) * 1994-01-14 1997-06-24 Matsushita Electric Industrial Co., Ltd. Steering angle control apparatus
DE59502346D1 (de) * 1994-03-25 1998-07-02 Siemens Ag Schaltungsanordnung zum auswerten der signale eines giergeschwindigkeitssensors
JP3116738B2 (ja) * 1994-07-28 2000-12-11 トヨタ自動車株式会社 車輌の挙動制御装置
DE19502858C1 (de) * 1995-01-30 1996-07-11 Siemens Ag Verfahren und Schaltungsanordnung zum Kompensieren der Signalfehler eines Giergeschwindigkeitssensors
JP3463415B2 (ja) * 1995-06-22 2003-11-05 日産自動車株式会社 車両のヨーイング挙動制御装置
US5809434A (en) * 1996-04-26 1998-09-15 Ford Global Technologies, Inc. Method and apparatus for dynamically determically determining an operating state of a motor vehicle
US5857160A (en) * 1996-05-23 1999-01-05 General Motors Corporation Sensor-responsive control method and apparatus
US5878357A (en) * 1996-09-03 1999-03-02 Ford Global Technologies, Inc. Method and apparatus for vehicle yaw rate estimation
JP3198993B2 (ja) * 1997-07-23 2001-08-13 トヨタ自動車株式会社 車輌の挙動制御装置
US6112147A (en) * 1998-08-17 2000-08-29 General Motors Corporation Vehicle yaw rate control with bank angle compensation
JP3334647B2 (ja) * 1998-10-13 2002-10-15 アイシン精機株式会社 車両のヨーレイト検出装置
US6314329B1 (en) * 1998-11-06 2001-11-06 Visteon Global Technologies, Inc. Compensation algorithm for initializing yaw rate sensor's zero point offset
JP3649036B2 (ja) * 1999-03-26 2005-05-18 日産自動車株式会社 ヨーレート推定装置
JP3862456B2 (ja) * 1999-09-28 2006-12-27 住友電気工業株式会社 車両の挙動制御装置
DE10119600A1 (de) * 2001-04-21 2002-10-31 Bosch Gmbh Robert Einrichtung und Verfahren zur Kalibrierung eines Sensors
EP1258407B1 (de) * 2001-05-16 2008-08-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung eines korrigierten Offsetwertes
DE10128056C1 (de) * 2001-06-09 2002-11-28 Hella Kg Hueck & Co Verfahren zum Abgleichen einer Anordnung zum Messen der Gierrate eines Kraftfahrzeuges sowie eine solche Anordnung
US6564125B2 (en) * 2001-08-27 2003-05-13 Delphi Technologies, Inc. Method for updating a sensor using a robust sensor offset learning algorithm
US7085642B2 (en) * 2002-08-05 2006-08-01 Ford Global Technologies, Llc Method and system for correcting sensor offsets
KR100518852B1 (ko) * 2003-08-25 2005-09-30 엘지전자 주식회사 차량의 후진 개선 추측항법
JP4500126B2 (ja) * 2004-08-02 2010-07-14 富士重工業株式会社 ヨーレートセンサの故障診断装置
JP2006162327A (ja) * 2004-12-03 2006-06-22 Toyota Motor Corp 車載検出装置の出力補正装置
JP2009507215A (ja) * 2005-09-02 2009-02-19 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト センサ、特にヨーレート・センサを較正する方法
DE102006018974A1 (de) * 2006-04-25 2007-10-31 Adc Automotive Distance Control Systems Gmbh Verfahren zur Kalibrierung einer Gierratenmessung
GB2444963B (en) * 2006-11-30 2010-03-10 P G Drives Technology Ltd A control system for controlling a motor arrangement for differentially driving left and right wheels of a motorized vehicle
US7957897B2 (en) * 2007-06-29 2011-06-07 GM Global Technology Operations LLC GPS-based in-vehicle sensor calibration algorithm
US8165806B2 (en) * 2007-09-28 2012-04-24 General Motors Llc Vehicle compass using telematics unit and vehicle sensor information
JP5051468B2 (ja) * 2008-12-25 2012-10-17 トヨタ自動車株式会社 センサ校正装置、及び、センサ校正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101434A (en) * 1997-07-23 2000-08-08 Toyota Jidosha Kabushiki Kaisha Behavior control device of vehicle based upon double checking of yaw rate deviation
US6498971B2 (en) * 2001-03-13 2002-12-24 Delphi Technologies, Inc. Apparatus for determining steer angle of a motor vehicle
US6763293B2 (en) * 2002-12-11 2004-07-13 Continental Teves, Inc. Calibration procedure for a permanently powered relative steering wheel angle sensor with power-loss indication
CN1479081A (zh) * 2003-07-03 2004-03-03 上海交通大学 多传感器融合跟踪系统配准偏差在线补偿方法
CN101041355A (zh) * 2006-01-19 2007-09-26 通用汽车环球科技运作公司 具有报警修正标准的车道偏离报警和避免系统

Also Published As

Publication number Publication date
WO2009129076A3 (en) 2010-01-14
DE112009000920B4 (de) 2021-05-20
DE112009000920T5 (de) 2011-03-03
US20090265054A1 (en) 2009-10-22
CN102007417A (zh) 2011-04-06
WO2009129076A2 (en) 2009-10-22
US8195357B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
CN102007417B (zh) 基于车载传感器的用于偏航率传感器标定的标定算法
EP0763713B1 (en) Method and apparatus for calibration of a distance sensor in a vehicle navigation system
US7711483B2 (en) Dead reckoning system
CN101334294B (zh) 基于gps的车辆中传感器校准算法
US7096116B2 (en) Vehicle behavior detector, in-vehicle processing system, detection information calibrator, and in-vehicle processor
EP0940654B1 (en) Navigation device for vehicle
US6826478B2 (en) Inertial navigation system for mobile objects with constraints
KR101417456B1 (ko) 차량 요레이트센서의 바이어스 획득방법
EP3076133B1 (en) Vehicle navigation system with adaptive gyroscope bias compensation
JP2001336950A (ja) 車両ナビゲーション・システムの推測航法距離計算値を改良する方法及び装置
CN107924192B (zh) 自身位置推定装置及自身位置推定方法
CN111309001B (zh) 具有基于主方向的坐标校正的航位推算引导系统和方法
US20100299059A1 (en) Method for operating a navigation system and a navigation system
JP2010078567A (ja) 角速度センサ補正装置および角速度センサ補正方法
JP2011038884A (ja) 車両経路判定方法およびナビゲーション装置
CN111845740A (zh) 动态偏航角速率偏差估计的方法和装置
CN111902693B (zh) 用于校准装备于车辆的陀螺仪的方法
JP6248559B2 (ja) 車両用走行軌跡算出装置
US7058486B2 (en) Method and device for determining the float angle of a motor vehicle
US11085773B2 (en) Angular velocity sensor correction device and method for correcting output signal from angular velocity sensor, and direction estimation device and method for estimating direction by correcting output signal from angular velocity sensor
US20220073041A1 (en) Method for the Traction Control of a Single-Track Motor Vehicle Taking the Slip Angle of the Rear Wheel Into Consideration
JPH05209756A (ja) 速度センサ係数算出装置
KR20180003728A (ko) 차량 항법장치의 위치 정밀도 향상을 위한 자이로 센서 보정 장치 및 방법
JP2005063354A (ja) 異常走行警告装置
JP6369320B2 (ja) 角速度センサ補正装置および角速度センサ補正方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant