CN101961641A - 多孔氧化物干凝胶吸附材料及其制备方法 - Google Patents

多孔氧化物干凝胶吸附材料及其制备方法 Download PDF

Info

Publication number
CN101961641A
CN101961641A CN 201010515002 CN201010515002A CN101961641A CN 101961641 A CN101961641 A CN 101961641A CN 201010515002 CN201010515002 CN 201010515002 CN 201010515002 A CN201010515002 A CN 201010515002A CN 101961641 A CN101961641 A CN 101961641A
Authority
CN
China
Prior art keywords
xerogel
sorbing material
porous oxide
preparation
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010515002
Other languages
English (en)
Other versions
CN101961641B (zh
Inventor
李海滨
刘百战
艾明欢
郑赛晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Shanghai Tobacco Group Co Ltd
Original Assignee
Shanghai Jiaotong University
Shanghai Tobacco Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Shanghai Tobacco Group Co Ltd filed Critical Shanghai Jiaotong University
Priority to CN 201010515002 priority Critical patent/CN101961641B/zh
Publication of CN101961641A publication Critical patent/CN101961641A/zh
Application granted granted Critical
Publication of CN101961641B publication Critical patent/CN101961641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明属于材料领域,涉及一种三维连通多孔氧化物干凝胶吸附材料及其制备方法。本发明的多孔氧化物干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,且所述氧化物选自SiO2、TiO2、ZrO2、Al2O3中的一种或多种。本发明的多孔氧化物干凝胶吸附材料采用溶胶-凝胶工艺合成,通过有机模板控制孔尺寸的大小,并在微介孔区域拥有三维连通多孔结构,所述多孔氧化物干凝胶吸附材料具有湿气吸附性能,可广泛用作吸附剂和保湿剂等。

Description

多孔氧化物干凝胶吸附材料及其制备方法
技术领域
本发明属于材料领域,涉及一种三维连通多孔氧化物干凝胶吸附材料及其制备方法。
背景技术
多孔材料的湿气吸附已经引起人们的关注,因为它们与许多应用相关联,例如,气体干燥、吸附热泵、从空气中制备淡水等。在多孔材料中,活性碳已经广泛使用,但是活性碳易燃、不耐久;与水形成水合物的卤化盐和硫酸盐等无机化合物显示出良好的湿气吸阳能力,但是这些材料与人体不相容。因此,考虑实际应用,特别是与生命科学、食品、医学相关的应用,迫切需要开发无害、低成本的具有可控吸附能力的多孔无机材料。
采用溶胶-凝胶方法,通过加入有机模板控制孔尺寸,可以制备多孔玻璃和陶瓷材料。该类多孔材料在微介孔区域有精细可调的孔尺寸、狭窄的孔分布、连通孔道、以及高比表面积,在催化、分离、药物释放等领域有潜在的应用前景。另一方面,由于毛细凝聚作用,微介孔材料具有湿气吸附性质,这使得它们有作为湿气吸附剂和保湿剂的潜力。
经对现有技术文献检索发现,Ponomarenko等人在《Microporous&MesoporousMateriels》(微孔介孔材料2010年第129卷第243-250页上发表“Synthesis and watersorption properties of a new composite,CaCl2confined into SBA-15pores”(限制于SBA-15孔中的一种新复合物-CaCl2的合成与水吸附性质),该文献公开了CaCl2加载于介孔SiO2的复合材料显示出高吸附能力,但是这种材料也涉及到与身体不相容的氯化物的使用,因此其应用受到限制。
发明内容
为了克服现有技术的不足,本发明提供了一种孔尺寸在微介孔区域、且具有三维连通多孔的氧化物干凝胶吸附材料及其制备方法,所述多孔氧化物干凝胶吸附材料具有可控制的湿气吸附能力。
为了解决上述技术问题,本发明采用以下的技术方案来实现:
本发明的多孔氧化物干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,并具有可控的湿气吸附性能,且所述氧化物选自SiO2、TiO2、ZrO2、Al2O3中的一种或多种。
所述多孔氧化物干凝胶吸附材料为白色粉状,孔径为2-30nm,比表面积为100-1000m2/g,孔隙为0.1-1mL/g。
进一步的,所述多孔氧化物干凝胶吸附材料的孔径为2.3nm-4.2nm,比表面积为510m2/g-739m2/g,孔隙为0.354-0.545mL/g。
本发明使用表面活性剂及其它有机物(葡萄糖、淀粉等),作为有机模板,与氧化物前驱体相混合形成均匀溶胶,然后将该溶胶固化处理形成凝胶,最后对凝胶进行热处理获得在微介孔区域孔尺寸可控的多孔氧化物干凝胶吸附材料。
本发明的多孔氧化物干凝胶吸附材料的制备方法,包括如下步骤:
1)、将水、有机溶剂和酸中的两种或三种、氧化物前驱体及有机模板混合制成溶胶;
所述水、有机溶剂和酸的总摩尔数与氧化物前驱体、有机模板的摩尔比为(1.11~201)∶1∶(0.001~5);
所述步骤1)混合制备溶胶时,还满足以下条件中的至少一项:所述水与氧化物前驱体的摩尔比为(0.1~100)∶1;所述有机溶剂与氧化物前驱体的摩尔比为(1~100)∶1;所述酸与氧化物前驱体的摩尔比为(0.01~1)∶1。
较佳的,所述水与氧化物前驱体的摩尔比为(2~74)∶1;所述有机溶剂与氧化物前驱体的摩尔比为(11.4~20)∶1;所述酸与氧化物前驱体的摩尔比为(0.004~0.3)∶1;所述有机模板与氧化物前驱体的摩尔比为(0.01~0.1)∶1。
2)、将溶胶固化处理形成固态凝胶,其中,所述固化处理温度为r.t-300℃。
所述r.t代表室温。
3)、将得到的凝胶在300-1200℃下进行加热处理,得到所述多孔氧化物干凝胶材料。
所述多孔氧化物干凝胶吸附材料中的氧化物选自SiO2、TiO2、ZrO2、Al2O3中的一种或多种。
步骤1)中,所述氧化物前驱体选自正硅酸甲酯、四丁氧基钛、四丙氧基钛、异丙醇钛、四丁氧基钛、四丙氧基锆、四丁氧基锆、三丁氧基铝;甲基三甲氧基硅烷和二乙基二乙氧基硅烷中的一种或多种。
优选的,所述氧化物前驱体选自正硅酸乙酯、四丁氧基锆、四丁氧基钛或三丁氧基铝。
所述有机溶剂选自甲醇、乙醇、丙醇、丙酮、丁醇或四氢呋喃中的一种或多种;
所述酸选自盐酸、硝酸、硫酸、醋酸和硼酸中的一种或多种;
所述有机模板选自表面活性剂或其它有机化合物,所述有机模板选自表面活性剂、聚乙烯醇、葡萄糖和淀粉中的一种或多种,所述表面活性剂选自CEO、F127等表面活性剂中的一种或几种。
所述CEO代表HO(CH2CH2O)10C16H33,来自SIGMA-ALDRICH公司;所述嵌段共聚物F127代表HO(OC2H4)106(OC3H6)70(OC2H4)106OH,来自BASF公司;所述PVA代表聚乙烯醇。
步骤1)中,所述溶胶的原料还有添加剂,所述添加剂与所述氧化物前驱体的摩尔比为(0.01~5)∶1。
较佳的,所述添加剂与氧化物前驱体的摩尔比为(1~5)∶1;进一步的,所述添加剂与氧化物前驱体的摩尔比为(4~5)∶1。
所述添加剂选自乙酰丙酮、二甘醇或磷酸。
步骤2)中,所述固化处理温度优选为100-300℃。
所述多孔氧化物干凝胶吸附材料为选自SiO2、TiO2、ZrO2、Al2O3中的一种或几种氧化物的干凝胶吸附材料,优选为SiO2、TiO2、ZrO2、Al2O3中的一种。
本发明的多孔氧化物干凝胶吸附材料采用溶胶-凝胶工艺合成,通过有机模板控制孔尺寸的大小,并在微介孔区域拥有三维连通多孔结构,所述多孔氧化物干凝胶吸附材料具有湿气吸附性能,可广泛用作吸附剂和保湿剂等。
附图说明
图1实施例1中CEO模板和实施例2中F127模板制备的SiO2干凝胶吸附材料的氮气吸附-脱附曲线。
图2实施例1中CEO模板和实施例2中F127模板制备的SiO2干凝胶吸附材料的孔尺寸分布曲线。
图3在在25℃的温度下,实施例1和实施例2中分别使用CEO和F127模板制备的SiO2干凝胶吸附材料的吸湿性能曲线。
图4在在25℃的温度下,实施例1和实施例2中分别使用CEO和F127模板制备的SiO2干凝胶吸附材料的脱湿性能曲线。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
按照正硅酸乙脂∶水∶丙醇∶盐酸∶有机模板(C16H33(OCH2CH2)10OH,CEO)=1∶5∶11.4∶0.004∶0.1的比例混合配制溶胶。
将得到的溶胶于100℃固化处理,形成凝胶。凝胶经过500℃热处理得到SiO2干凝胶吸附材料。
实施例2
按照正硅酸乙脂∶水∶盐酸∶有机模板((HO(OC2H4)106(OC3H6)70(OC2H4)106OH,F127)=1∶74∶0.13∶0.01的比例混合配制溶胶。
将得到的溶胶于100℃固化处理,形成凝胶。凝胶经过500℃热处理得到SiO2干凝胶吸附材料。
将实施例1和2所得的产品进行性能测试,得到图1-图4:
图1为实施例1中CEO模板和实施例2中F127模板制备的SiO2干凝胶吸附材料的氮气吸附-脱附曲线。
图2为实施例1中CEO模板和实施例2中F127模板制备的SiO2干凝胶吸附材料的孔尺寸分布曲线。
图3为在25℃的温度下,实施例1和实施例2中分别使用CEO和F127模板制备的SiO2干凝胶吸附材料的吸湿性能曲线。
图4为在25℃的温度下,实施例1和实施例2中分别使用CEO和F127模板制备的SiO2干凝胶吸附材料的脱湿性能曲线。
采用氮气吸附-脱附测试方法,分析实施例1和实施例2制备的多孔氧化物材料的孔性质。如图1所示,实施例1中的以CEO表面活性剂为模板的SiO2干凝胶吸附材料没有显示出滞后性,是微孔特征。与此对应,实施例2中以F127表面活性剂为模板的SiO2干凝胶吸附材料的吸附-脱附曲线显示典型的介孔材料的滞后特征。滞后曲线的宽度是孔连通度的标志。使用CEO模板制得的SiO2干凝胶拥有739m2/g的孔表面积、以及0.354ml/g的孔隙;F127模板制得的SiO2干凝胶拥有510m2/g的孔表面积、以及0.545ml/g的孔隙。由图2的孔尺寸分布曲线可知,CEO模板制得的SiO2干凝胶和F127模板制得的SiO2干凝胶分别有2.3nm和4.2nm的孔尺寸。由以上实验结果可知,F127模板制得的SiO2干凝胶与CEO模板制得的SiO2干凝胶相比,拥有更大的孔尺寸和孔容积、以及更高的孔连通度,但是具有较小的孔表面积。
在25℃的温度下,通过饱和盐水控制空气湿度(MgCl2·6H2O,33%RH;Ca(NO3)2,51%RH;KCl,84%RH),评价纳米孔SiO2干凝胶吸附材料的吸湿特性。依据下面公式计算样品的水吸附能力:水吸附量=(Wwet-Wdry)/Wdry(g/g),其中,Wwet为样品在不同湿度下吸附后的重量;Wdry是90度、真空条件下干燥样品的重量。
图3是实施例1中以CEO和实施例2中以F127为模板制备的多孔SiO2干凝胶吸附材料的湿气吸附曲线。可以看到,初始吸附阶段,随着暴露于湿气气氛中的时间延长,水气吸附量增加,之后逐渐达到饱和。与F127为模板制备的多孔SiO2干凝胶吸附材料相比,CEO模板制得的SiO2干凝胶吸附材料的水气吸附量,在33%RH和51%RH的低、中湿度下比F127模板具有更高值,而在82%RH高湿度下比F127模板则有更低值。SiO2干凝胶吸附材料孔表面附着丰富的羟基,拥有亲水性,能够吸附水分子由氮气吸附-脱附曲线可知,CEO模板制得的SiO2干凝胶吸附材料有更大的孔表面积,在33%和51%低、中湿度下,拥有更大孔表面积的CEO模板制得的SiO2颗粒,通过表面羟基吸附更多水分子,并在表面羟基逐步为水分子吸附覆盖后,达到饱和平衡。对于拥有较小表面积的F127模板制得的SiO2干凝胶吸附材料,水分子更短时间覆盖表面羟基,从而更快达到平衡。在82%高湿度下,拥有更大孔容积的F127模板制得的SiO2干凝胶吸附材料能够吸附更多水分子,水分子不断填充孔空间;而对于CEO模板制得的SiO2干凝胶吸附材料,则在高湿度下迅速吸附水分子,填满较小的孔空间,从而吸附更多水分子,并达到饱和平衡。
图4显示出,在饱和湿度平衡后,实施例1和实施例2制备的SiO2干凝胶吸附材料的保水能力随时间的变化。最大水气吸收能力受限于SiO2干凝胶吸附材料的孔隙率。由图4可知,实施例1中使用F127模板以及实施例2中使用CEO模板获得的SiO2干凝胶吸附材料的水气饱和吸附量分别是0.45g/g和0.25g/g,并且以吸附水分相对孔隙的占有率定义的填充度分别为82%RH和70%RH。相比较,F127模板获得的SiO2干凝胶吸附材料拥有更大的饱和吸附量和更高的孔填充度,这与其拥有较大的孔体积和孔径相关联。两种干凝胶吸附材料均表现出,随不同环境湿度下暴露时间延长,水分子脱附导致的水吸附量减小的趋势,并且其减小速率随降低的湿度水平而提高。对于F127模板和CEO模板获得的SiO2干凝胶吸附材料,在33%RH湿度下暴露6天后,水残留量相对于饱和水吸附量之比,分别是21%RH和68%RH。由此,具有大的孔体积和孔尺寸的F127模板获得的SiO2干凝胶吸附材料能够在饱和湿度吸附大量的水份,并且在低湿度充分地释放,适于用做保湿剂。存在于狭小空间的水分子性质与自由水不同,这些水分子运动受到小孔尺寸空间的限制。如图4所示,在25℃、33%RH的低湿度下,具有较小孔径和较大孔表面积的CEO表面活性剂模板制备的SiO2干凝胶吸附材料维持68%高含水量。这种水吸附性能,使CEO表面活性剂模板制备的SiO2干凝胶吸附材料有应用于湿气吸附剂的潜力。
实施例3
按照正硅酸乙脂∶水∶盐酸∶有机模板(PVA)=1∶74∶0.13∶0.01的比例混合配制溶胶。
将得到的溶胶于100℃固化处理,形成凝胶。凝胶经过500℃热处理得到SiO2干凝胶吸附材料。
经检测,所得的SiO2干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,并具有良好的湿气吸附能力。
实施例4
按照正硅酸乙脂∶水∶盐酸∶有机模板(葡萄糖)=1∶74∶0.13∶0.01的比例混合配制溶胶。
将得到的溶胶于100℃固化处理,形成凝胶。凝胶经过500℃热处理得到SiO2干凝胶吸附材料。
经检测,所得的SiO2干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,并具有良好的湿气吸附能力。
实施例5
按照异丙醇钛∶丙醇∶盐酸∶有机模板(F127)=1∶20∶0.3∶0.01的比例配制溶胶。
将得到的溶胶于150℃固化处理,形成凝胶。该凝胶经过450℃热处理得到TiO2干凝胶吸附材料。
经检测,所得的TiO2干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,并具有良好的湿气吸附能力。
实施例6
按照四丙氧基钛∶丙醇∶盐酸∶有机模板(CEO)=1∶20∶0.3∶0.1的比例配制溶胶。
将得到的TiO2溶胶于250℃固化形成凝胶。该凝胶经过600℃热处理得到TiO2干凝胶吸附材料。
经检测,所得的TiO2干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,并具有良好的湿气吸附能力。
实施例7
以四丁氧基锆∶水∶丙醇∶有机模板(F127)∶乙酰丙酮=1∶2∶20∶0.01∶5的比例配制溶胶。
将得到的溶胶于120℃固化处理,形成凝胶。该凝胶经过300度热处理,得到ZrO2干凝胶吸附材料。
经检测,所得的ZrO2干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,并具有良好的湿气吸附能力。
实施例8
以四丁氧基锆∶水∶丙醇∶有机模板(CEO)∶二甘醇=1∶2∶20∶0.1∶5的比例配制溶胶。
将得到的ZrO2溶胶于300℃进行固化处理,形成凝胶。凝胶经过1200℃热处理得到ZrO2干凝胶吸附材料。
经检测,所得的ZrO2干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,并具有良好的湿气吸附能力。
实施例9
以三丁氧基铝∶水∶乙醇∶有机模板(CEO)∶乙酰丙酮=1∶5∶20∶0.1∶4的比例配制溶胶。
将得到的Al2O3溶胶于200℃进行固化处理,形成凝胶。凝胶经过800℃热处理得到Al2O3干凝胶吸附材料。
经检测,所得的Al2O3干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,并具有良好的湿气吸附能力。

Claims (10)

1.一种多孔氧化物干凝胶吸附材料,其特征在于,所述多孔氧化物干凝胶吸附材料在微介孔区域拥有三维连通多孔结构,且所述氧化物选自SiO2、TiO2、ZrO2、Al2O3中的一种或多种。
2.如权利要求1所述的多孔氧化物干凝胶吸附材料,其特征在于,所述多孔氧化物干凝胶吸附材料的孔径为2-30nm,比表面积为100-1000m2/g,孔隙为0.1-1mL/g。
3.如权利要求1或2所述的多孔氧化物干凝胶吸附材料的制备方法,包括如下步骤:
1)、将水、有机溶剂和酸中的两种或三种、氧化物前驱体及有机模板混合制成溶胶;所述水、有机溶剂和酸的总摩尔数与氧化物前驱体、有机模板的摩尔比为(1.11~201)∶1∶(0.001~5);
2)、将溶胶固化处理形成固态凝胶,其中,所述固化处理温度为r.t-300℃;
3)、将得到的凝胶在300-1200℃下进行加热处理,得到所述多孔氧化物干凝胶材料。
4.如权利要求3所述的多孔氧化物干凝胶吸附材料的制备方法,其特征在于,所述步骤1)混合制备溶胶时,还满足以下条件中的至少一项:所述水与氧化物前驱体的摩尔比为(0.1~100)∶1;所述有机溶剂与氧化物前驱体的摩尔比为(1~100)∶1;所述酸与氧化物前驱体的摩尔比为(0.01~1)∶1。
5.如权利要求3或4所述的多孔氧化物干凝胶吸附材料的制备方法,其特征在于,步骤1)中,所述氧化物前驱体选自正硅酸甲酯、四丁氧基钛、四丙氧基钛、异丙醇钛、四丁氧基钛、四丙氧基锆、四丁氧基锆、三丁氧基铝;甲基三甲氧基硅烷和二乙基二乙氧基硅烷中的一种或多种。
6.如权利要求3或4所述的多孔氧化物干凝胶吸附材料的制备方法,其特征在于,步骤1)中,所述有机溶剂选自甲醇、乙醇、丙醇、丙酮、丁醇或四氢呋喃中的一种或多种;所述酸选自盐酸、硝酸、硫酸、醋酸和硼酸中的一种或多种;所述有机模板选自表面活性剂、聚乙烯醇、葡萄糖和淀粉中的一种或多种。
7.如权利要求6所述的多孔氧化物干凝胶吸附材料的制备方法,其特征在于,所述表面活性剂选自CEO或/和F127。
8.如权利要求3或4所述的多孔氧化物干凝胶吸附材料的制备方法,其特征在于,步骤1)中,所述溶胶的原料还有添加剂,所述添加剂与所述氧化物前驱体的摩尔比为(0.01~5)∶1。
9.如权利要求8所述的多孔氧化物干凝胶吸附材料的制备方法,其特征在于,所述添加剂选自乙酰丙酮、二甘醇或磷酸。
10.如权利要求1或2所述的多孔氧化物干凝胶吸附材料作为吸附剂或保湿剂的应用。
CN 201010515002 2010-10-21 2010-10-21 多孔氧化物干凝胶吸附材料及其制备方法 Active CN101961641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010515002 CN101961641B (zh) 2010-10-21 2010-10-21 多孔氧化物干凝胶吸附材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010515002 CN101961641B (zh) 2010-10-21 2010-10-21 多孔氧化物干凝胶吸附材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101961641A true CN101961641A (zh) 2011-02-02
CN101961641B CN101961641B (zh) 2012-12-19

Family

ID=43514792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010515002 Active CN101961641B (zh) 2010-10-21 2010-10-21 多孔氧化物干凝胶吸附材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101961641B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653639A (zh) * 2011-09-13 2012-09-05 泉耀新材料科技(苏州)有限公司 复合二氧化钛光触媒溶胶涂料组成物及涂布方法
CN105016419A (zh) * 2015-08-02 2015-11-04 宁波保税区维迪克环保科技有限公司 一种用于废水处理的凝胶吸附剂
CN109701486A (zh) * 2019-02-28 2019-05-03 西安工程大学 一种疏水性三氧化二铝/二氧化硅吸附材料的制备方法
CN109701485A (zh) * 2019-02-28 2019-05-03 西安工程大学 一种疏水性铝掺杂型SiO2复合吸附材料的制备方法
CN109701484A (zh) * 2019-02-28 2019-05-03 西安工程大学 一种铝掺杂型二氧化硅复合吸附材料的制备方法
CN109967028A (zh) * 2019-02-28 2019-07-05 西安工程大学 一种新型Al2O3/SiO2复合吸附材料的制备方法
CN110052126A (zh) * 2019-03-01 2019-07-26 浙江三花智能控制股份有限公司 吸湿材料
CN110614076A (zh) * 2019-10-14 2019-12-27 西安工程大学 一种二氧化锆/三氧化二铝复合吸附材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069747A1 (ja) * 2003-02-06 2004-08-19 Waseda University 三次元高規則性メソポーラスシリケートの製造方法
CN101602507A (zh) * 2009-06-29 2009-12-16 上海应用技术学院 一种一维棒状介孔材料及其制备方法和应用
CN101670274A (zh) * 2009-10-09 2010-03-17 河北工业大学 新型三维有序大孔螯合树脂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069747A1 (ja) * 2003-02-06 2004-08-19 Waseda University 三次元高規則性メソポーラスシリケートの製造方法
CN101602507A (zh) * 2009-06-29 2009-12-16 上海应用技术学院 一种一维棒状介孔材料及其制备方法和应用
CN101670274A (zh) * 2009-10-09 2010-03-17 河北工业大学 新型三维有序大孔螯合树脂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《天津大学学报》 20011130 张裕卿等 "SiO2纳米干凝胶的煅烧特性" 第800页左栏第1段,第802页表1 1-2 第34卷, 第6期 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653639A (zh) * 2011-09-13 2012-09-05 泉耀新材料科技(苏州)有限公司 复合二氧化钛光触媒溶胶涂料组成物及涂布方法
CN105016419A (zh) * 2015-08-02 2015-11-04 宁波保税区维迪克环保科技有限公司 一种用于废水处理的凝胶吸附剂
CN105016419B (zh) * 2015-08-02 2017-03-08 张雨露 一种用于废水处理的凝胶吸附剂
CN109701486A (zh) * 2019-02-28 2019-05-03 西安工程大学 一种疏水性三氧化二铝/二氧化硅吸附材料的制备方法
CN109701485A (zh) * 2019-02-28 2019-05-03 西安工程大学 一种疏水性铝掺杂型SiO2复合吸附材料的制备方法
CN109701484A (zh) * 2019-02-28 2019-05-03 西安工程大学 一种铝掺杂型二氧化硅复合吸附材料的制备方法
CN109967028A (zh) * 2019-02-28 2019-07-05 西安工程大学 一种新型Al2O3/SiO2复合吸附材料的制备方法
CN110052126A (zh) * 2019-03-01 2019-07-26 浙江三花智能控制股份有限公司 吸湿材料
CN110614076A (zh) * 2019-10-14 2019-12-27 西安工程大学 一种二氧化锆/三氧化二铝复合吸附材料的制备方法

Also Published As

Publication number Publication date
CN101961641B (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
CN101961641B (zh) 多孔氧化物干凝胶吸附材料及其制备方法
EP3305726B1 (en) Method for preparing metal oxide-silica composite aerogel
CN103706342B (zh) 氨基杂化SiO2气凝胶材料及其应用
EP2752397A1 (en) Vacuum insulation material including a compound getter agent
KR101733850B1 (ko) 담배의 유해성분을 인하하는 미크로 메조포러스 코어쉘 복합 분자체 및 그 제조 방법
CN102019166A (zh) 改性凹凸棒石粘土吸附材料的制备方法
CN101259964A (zh) 一种以稻壳灰为原料常压干燥制备高性能二氧化硅气凝胶的方法
CN104475059A (zh) 一种海绵-硅气凝胶复合材料的制备方法
CN111215007B (zh) 一种简单制备块状疏水氧化铝复合气凝胶的方法及制得的块状疏水氧化铝复合气凝胶
CN106478051A (zh) 一种硅藻土复合材料及其制备方法
KR102192354B1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
CN105664909A (zh) 一种有序大孔-有序介孔复合孔道铈锆金属氧化物催化剂
KR102191088B1 (ko) 이산화탄소포집을 위한 안정화된 무기 산화물 지지체와 그로부터 유도되는 흡착제
CN108558381A (zh) 一种高效净化室内空气的硅藻土壁砖及制备方法
CN110467421A (zh) 一种功能性纤维素气凝胶复合材料及其制备方法
CN1736586A (zh) 无机粘土复合材料及其制备方法和用途
CN103342367B (zh) 一种亲水型SiO2气凝胶的制备方法
WO2020098273A1 (zh) 一种高比表面积与高吸附voc型二氧化硅及其制备方法
Li et al. Water vapor sorption on surfactant-templated porous silica xerogels
KR20190028348A (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR20170006951A (ko) 건조 장치용 흡습재
WO2016064138A1 (ko) 다공성 알루미노실리케이트를 포함하는 진공 단열재용 심재와 이를 구비한 진공 단열재
CN106563426A (zh) 一种氧化铝纳米层修饰硅胶色谱填料的制备方法
CN105778670B (zh) 一种环保型聚醋酸乙烯乳胶漆及其制备方法
CN107304053A (zh) 一种二氧化硅气凝胶浸渍处理的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant