CN101939689A - 带有弱导光波导模式的电吸收调制器 - Google Patents

带有弱导光波导模式的电吸收调制器 Download PDF

Info

Publication number
CN101939689A
CN101939689A CN2008801151497A CN200880115149A CN101939689A CN 101939689 A CN101939689 A CN 101939689A CN 2008801151497 A CN2008801151497 A CN 2008801151497A CN 200880115149 A CN200880115149 A CN 200880115149A CN 101939689 A CN101939689 A CN 101939689A
Authority
CN
China
Prior art keywords
absorption layer
electroabsorption modulator
thickness
layer
quantum wells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801151497A
Other languages
English (en)
Other versions
CN101939689B (zh
Inventor
戴维·格雷汉姆·穆迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Centre for Integrated Photonics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre for Integrated Photonics Ltd filed Critical Centre for Integrated Photonics Ltd
Publication of CN101939689A publication Critical patent/CN101939689A/zh
Application granted granted Critical
Publication of CN101939689B publication Critical patent/CN101939689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01708Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12078Gallium arsenide or alloys (GaAs, GaAlAs, GaAsP, GaInAs)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12126Light absorber
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0155Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption
    • G02F1/0157Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption using electro-absorption effects, e.g. Franz-Keldysh [FK] effect or quantum confined stark effect [QCSE]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/063Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/066Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide channel; buried

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种电吸收调制器,包括在至少一个p-掺杂半导体层(6)和至少一个n-掺杂半导体层(8)之间的一个吸收层(7),这些层形成了一个脊形波导结构,吸收层的厚度在9-60nm之间,脊形的宽度在4.5-12微米之间。

Description

带有弱导光波导模式的电吸收调制器
技术领域
本发明涉及半导体光电子组件,尤其是电吸收调制器(EAM)。
背景技术
电吸收调制器(EAM)典型的具有包括多量子阱(MQW)或者大量半导体的光吸收区域。无论在哪种情况下,典型的吸收区域厚度通常在0.12-0.28μm的范围,MQW装置典型具有8-15阱。它们通常是波导装置,其中的吸收区域还用作一光波导层。这些典型厚度导致一相对密封限制模,该模能够在吸收区域获得电场和光场的高度交叠。然而,缺点是调制器中的模的尺寸通常显著小于单模纤维的。
通常使用透镜端光纤(lens-ended fibre)或者自由空间透镜(free space lens)来增加耦合效率,以克服这一缺陷。由于定位公差相对小,这使得封装过程相对昂贵。
另一个方法是使用波导锥过渡器(waveguide taper)来增加面上的EAM的模尺寸。有几个设计被提出来用于获得“大焦点”有源半导体光电子器件(例如激光器、半导体、二极管、调制器);所有这些都带有光学模式转换器(参见I.Lealman等,″1.5μm InGaAsP/InP large mode size laser for high couplingefficiency to cleaved single mode fibre″,Semiconductor Laser Conference,1994.,14th IEEE International,1994年9月19-23页码:189-190;和I.Moerman等,″A review on fabrication technologies for the monolithic integration of tapers withIII-V semiconductor devices″,IEEE Journal of Selected Topics in QuantumElectronics,卷3,期6,1997年12月页码:1308-1320)。这些设计常常需要多级半导体光刻和蚀刻,由于必然的定位公差,使得产量减少,并且通常包含再生步骤。锥过渡器还影响性能,每锥过渡器增加大约1-3dB的光学损耗。
据报道,有适合于10Gbit/s调制的EAM,在一个掩埋异质结几何体中仅带有4个量子阱,每个厚度为13nm(参见K.Wakita等,″Very low insertion loss(<5dB)and high speed InGaAs/InAlAs MQW modulators buried in semi-insulating InP″Optical Fibre Communications(OFC′97)Technical Digest,页码137-138,1997)。据报道,带有10个阱的在40Gbit/s掩埋异质结EAM中有一个相对较弱的光学模式分布和<5dB插入损耗(参见D.G.Moodie等,″Applications of electroabsorption modulators in high bit-rate extended reachtransmission systems″,OFC 2003,Invited Paper TuPl,页码267-268,2003)。
还报道的是,带有3个阱的2.2μm宽脊形波导管EAM测试结构,每个阱的厚度为8nm(I.K.Czajkowski等,″Strain-compensated MQW electroabsorptionmodulator for increased optical power handling,″El.Lett.,卷30,no.11,页码900-901,1994),尽管这种情况下,仅有3个阱的原因是“因为与变成大量的张力阱相关的问题”。报道有宽度在2-4μm并且仅有5个量子阱的脊形EAM,每个量子阱5.5nm厚并带有8nm厚的栅(S.Oshiba等,″Low drive voltageMQW electroabsorption modulator for optical short pulse generation,″IEEE JQE,卷34,no.2,页码277-281,1998)。同样,脊宽度被认为太窄而不能扩展模以获得与劈开(cleaved)的SMF-
Figure GPA00001135052100021
纤维的输出很好的匹配。一个早先的MQWEAM论文(T.H.Wood等,″100ps waveguide multiple quantum well(MQW)optical modulator with 10∶1on/off ratio,″El.Lett.,卷21,no.16,页码693-694,1985)在一40μm宽的台面结构中使用了两个量子阱,每个量子阱9.4nm厚度,这一台面结构很宽,其性能近似于一维平板波导在横截面上的性能,同样,这一设计并不适用于与劈开纤维低损耗耦合。
本发明,至少在其优选实施方式中,力图对公知的结构进行改进。
发明内容
因此,本发明提供一种电吸收调制器,包括在至少一个p-掺杂半导体层和至少一个n-掺杂半导体层之间的一个吸收层,这些多个层形成了一个脊形波导结构。吸收层的厚度在9-60nm之间,脊的宽度在4.5-12微米之间。
因此,本发明提供一电吸收调制器,其带有相对宽的脊形结构和相对薄的吸收层。典型的,带有这样尺寸的脊形结构由于他们的相对高的电容而不被使用。然而,根据本发明,相对薄吸收层提供伸展到周围半导体材料的弱导光模。结果是获得了一个相对分散的光模,该光模特别适合用于与单模纤维耦合。电吸收调制器的这一优势和简易结构足以克服由于高电容所导致的任何缺陷。
吸收层可以由块状半导体形成。在优选的实施方式中,吸收层包括多个量子阱。特别的,吸收层可以包括三个或少于三个量子阱,例如两个或三个量子阱。多个量子阱的厚度总和可以大于9nm和/或小于40nm。在特别的实施方式中,多个量子阱的厚度总和可以大于12nm或甚至大于18nm。增加量子阱的厚度,因此吸收层的电容减小。然而,如果吸收层太厚,光学模式变得更平,这是与一单模光纤有效耦合所不期望的。因此,多个量子阱的厚度总和可以小于30nm或甚至小于25nm。
在特定的实施方式中,吸收层的厚度大于20nm。类似的,在特定实施方式中,吸收层的厚度可以小于50nm、小于40nm或甚至小于23nm。典型的,吸收层是相对轻微掺杂的层。例如,吸收层中P和n-掺杂的水平可以小于1×1017cm-3。p-掺杂半导体层和n-掺杂半导体层中,p-型和n-型掺杂物的水平典型的高于1×1017cm-3。因此,吸收层可以被认为是在两个更高掺杂层之间的低掺杂水平的层。
吸收层除了包括例如形成多个量子阱的层外还可以包括其它层。吸收层可能包括半导体材料的间隔层,例如在有源半导体和周围的掺杂层之间的InP。可以选择间隔层的厚度用来将吸收层的电容降低到需要的水平。
在特定的实施方式中,脊形的宽度可以大于5.5微米和/或小于8微米。更窄的脊形降低吸收层的电容,但是也降低光模的宽度。
在更远的方面,本发明提供一个掩埋异质结构电吸收调制器,包括在至少一个p-掺杂半导体层和至少一个n掺杂半导体层之间的一个吸收层,其中,吸收层形成于一个宽度在0.6-3微米之间的台面结构中,吸收层的厚度在9-65nm之间。
根据本发明的这一方面,使用掩埋异质结构几何体可以获得相对分散的光模。
根据本发明的这一方面的电吸收调制器中,吸收层可以包括多个量子阱,尤其是两个或三个量子阱。作为选择,吸收层可以包括块状半导体。
多个量子阱的厚度总和可以大于20nm和/或小于40nm。在特定的实施方式中,台面结构的宽度大于1微米和/或小于2微米。
根据本发明,提供了一种电吸收调制器,其中块状吸收层或者多个量子阱吸收区域的总厚度在9-23nm之间。
根据本发明的一个电吸收调制器可以设计为与分裂SMF-
Figure GPA00001135052100041
光纤的耦合损耗<3dB,优选的<2dB,而且不需要锥形波导管。
电吸收调制器可以是一反射式电吸收调制器或者一个双功能电吸收调制器光电二极管结构。
附图说明
下文仅是通过举例方式并参照附图描述本发明的一个具体实施方式,其中:
图1所示为根据本发明的一个具体实施方式的电吸收调制器结构的在垂直于光传播方向的平面的剖视图;
图2所示为图1的结构的模拟光模在1550nm波长和TE偏振下的10%强度等高线;和
图3所示为根据本发明的一个具体实施方式的带有6.4μm脊宽的组装弱模式脊形电吸收调制器的扫描电子显微镜图。
具体实施方式
本发明提供一种电吸收调制器,其光模足够弱,当耦合到透镜纤维时能够不需要锥形过渡器就能获得合理的低损耗(<3dB)。通过增加他们的光模尺寸以放宽与输入/输出纤维之间的定位公差,该新型装置设计能潜在的显著降低封装单个电吸收调制器和EAM阵列的成本。被设计来具有与劈开的光纤相配的扩展光学模式配置的光电组件可以以最小复杂/成本来实现,其中不需要光学模式转换器或锥形过渡器。
图1所示是根据本发明的一个电吸收调制器的优选实施方式。图1中,电吸收调制器依次包括金属接触层1、介电层2、和p+lnGaAs接触层3。两个p型lnP层4、6被p型lnGaAsP层5隔开,p型lnGaAsP层5的折光率高于周围的lnP的折光率,其目的是为了帮助扩展垂直方向上的光模。
吸收区7是装置的带有低故意掺杂的区域,当反相偏压施加到PiN结时,该区域故意被耗尽。优选的,这一区域P和n型掺杂的水平小于1×1017cm-3。在这一实施方式中,吸收区7包括数个半导体层:带有两个量子阱的多量子阱(MQW),优选由带有三个势垒区的InGaAs组成,该势垒区优选的由InAlAs组成;紧接于MQW上面和下面的薄InGaAsP层;以及位于InGaAsP层外部的InP层。选择吸收区7的总厚度以将装置的电容降低到需要的值。
吸收区7的下面,两个n-型InP层8和10被薄n-型InGaAsP层9分隔开,薄n-型InGaAsP层9的初始目的就是用作一个蚀刻终止层。蚀刻终止层下面,未掺杂或半隔离InP层11和13被一个未掺杂的或者半绝缘InGaAsP层12分隔开,InGaAsP层12的折光率高于周围的InP,其目的为了帮助有扩展垂直方向的光模。
在这个实施方式中,脊形的宽度是7μm,脊形的高度是3.7μm。吸收区7的活性材料仅包含两个量子阱和三个势垒,并且总厚度近似为37nm。可替代的,可以使用类似厚度的块状或量子点吸收体区域。由于机械原因,也可以在装置的脊形波导之外的不同点使用未蚀刻区域。
这一结构的模拟光模如图2所示。吸收区7内的限制因素非常低(<2%),因此光学功率处理极好。强烈垂直/水平模式配置中的模拟FWHM对于TE和TM都是9.3度/9.1度,预计与劈开的纤维的耦合损耗为1.6-1.8dB。耗尽区厚度假定为~0.11μm,这是异乎寻常的薄,这意味着在340μm长反射EAM中,吸收在窄电压范围内发生,产生最大dT/dV值为~0.4V-I(使用吸收值与其他MQW EAM中获得的电压进行对比),这对于现有装置是一个显著改善,这对于在例如为模拟天线远程应用中提供更低的系统损耗。基于这一结构的模拟阻抗,当与50Ohms搭配时,预期有2GHz 3dBe带宽。
使用更短的装置或者带有更宽的耗尽区的装置,可以获得更高的带宽。基于推断6.4μm脊形宽度的三量子阱EAM的(参见图3)测量性能的模拟预期可以在带有两个量子阱的~150μm长的反射EAM中获得10dB的调制和近似10GHz的带宽。这很有意义,因为这一设计可以获得阵列10Gbit/s调制器的宽应用。通过前进波电极方法,可能能够进一步扩展带宽。
低成本扩展模式光电二极管能具有与上述非常类似的结构。
总之,一种电吸收调制器,在至少一个p-掺杂半导体层6和至少一个n-掺杂半导体层8之间包括一吸收层7。该多个层形成脊形波导机构。吸收层的厚度在9-60nm之间,脊形的宽度在4.5-12微米之间。
设计允许EAM作为用于小型子系统的混合集成方案的一部分而被动的对准无源光波导(G.Maxwell等,″Very low coupling loss,hybrid-integratedall-optical regenerator with passive assembly″European Conference On OpticalCommunications,Post Deadline Paper,2002)。应用领域包括通讯和数据通讯的数字调制以及光纤传输天线远程处理。

Claims (14)

1.一种电吸收调制器,包括在至少一个p-掺杂半导体层和至少一个n-掺杂半导体层之间的一吸收层,其中,这些多个层形成一个脊形波导结构,吸收层的厚度在9-60nm之间,脊形的宽度在4.5-12微米之间。
2.根据权利要求1所述的电吸收调制器,其中吸收层包括多个量子阱。
3.根据权利要求2所述的电吸收调制器,其中吸收层包括三个或小于三个量子阱。
4.根据权利要求1或2所述的电吸收调制器,其中多个量子阱的总厚度在9-40nm之间。
5.根据权利要求4所述的电吸收调制器,其中多个量子阱的总厚度在18-25nm之间。
6.根据前述任一权利要求所述的电吸收调制器,其中吸收层的厚度在20-40nm之间。
7.根据前述任一权利要求所述的电吸收调制器,其中脊形的宽度在5.5-8微米之间。
8.一种掩埋异质结构电吸收调制器,包括在至少一个p-掺杂半导体层和至少一个n掺杂半导体层之间的一个吸收层,其中,吸收层形成于一个宽度在0.6-3微米之间的台面结构中,吸收层的厚度在9-65nm之间。
9.根据权利要求8所述的电吸收调制器,其中吸收层包括多个量子阱。
10.根据权利要求9所述的电吸收调制器,其中吸收层包括三个或小于三个的量子阱。
11.根据权利要求9或10所述的电吸收调制器,其中多个量子阱的总厚度在20-40nm之间。
12.根据权利要求8-11中任一所述的电吸收调制器,其中吸收层的厚度在20-40nm之间。
13.根据权利要求8-12中任一所述的电吸收调制器,其中台面结构的宽度在1-2微米之间。
14.一种基本上如上文并参考附图所描述的电吸收调制器。
CN200880115149.7A 2007-09-10 2008-09-10 带有弱导光波导模式的电吸收调制器 Active CN101939689B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0717606A GB2454452B (en) 2007-09-10 2007-09-10 Optoelectronic components
GB0717606.8 2007-09-10
PCT/GB2008/050806 WO2009034381A1 (en) 2007-09-10 2008-09-10 Electroabsorption modulators with a weakly guided optical waveguide mode

Publications (2)

Publication Number Publication Date
CN101939689A true CN101939689A (zh) 2011-01-05
CN101939689B CN101939689B (zh) 2014-06-04

Family

ID=38640530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880115149.7A Active CN101939689B (zh) 2007-09-10 2008-09-10 带有弱导光波导模式的电吸收调制器

Country Status (6)

Country Link
US (1) US20100215308A1 (zh)
EP (1) EP2195704A1 (zh)
JP (1) JP5557253B2 (zh)
CN (1) CN101939689B (zh)
GB (1) GB2454452B (zh)
WO (1) WO2009034381A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338940A (zh) * 2011-08-31 2012-02-01 清华大学 基于环腔的电吸收调制器
CN103576344A (zh) * 2012-07-30 2014-02-12 国际商业机器公司 半导体结构及其形成方法
WO2016015303A1 (zh) * 2014-07-31 2016-02-04 华为技术有限公司 锗硅电吸收调制器
WO2022222919A1 (zh) * 2021-04-20 2022-10-27 华为技术有限公司 电吸收调制激光器、光发射组件和光终端

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058624A (ja) * 2011-09-08 2013-03-28 Mitsubishi Electric Corp レーザダイオード素子の製造方法
US8606110B2 (en) 2012-01-08 2013-12-10 Optiway Ltd. Optical distributed antenna system
US9395563B2 (en) 2013-08-01 2016-07-19 Samsung Electronics Co., Ltd. Electro-optic modulator and optic transmission modulator including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165105A (en) * 1991-08-02 1992-11-17 Minnesota Minning And Manufacturing Company Separate confinement electroabsorption modulator utilizing the Franz-Keldysh effect
JP3489878B2 (ja) * 1993-10-22 2004-01-26 シャープ株式会社 半導体レーザ素子およびその自励発振強度の調整方法
US5432123A (en) * 1993-11-16 1995-07-11 At&T Corp. Method for preparation of monolithically integrated devices
JPH11212041A (ja) * 1998-01-29 1999-08-06 Mitsubishi Electric Corp 半導体光素子
JP2002169132A (ja) * 2000-12-04 2002-06-14 Toshiba Electronic Engineering Corp 電界吸収型光変調器およびその製造方法
AU2002342020A1 (en) * 2001-10-09 2003-04-22 Infinera Corporation Transmitter photonic integrated circuit
EP1372228B1 (en) * 2002-06-12 2006-10-04 Agilent Technologies, Inc. - a Delaware corporation - Integrated semiconductor laser and waveguide device
JP2004140083A (ja) * 2002-10-16 2004-05-13 Sharp Corp 半導体発光素子
US7142342B2 (en) * 2003-06-02 2006-11-28 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Electroabsorption modulator
JP2006114584A (ja) * 2004-10-13 2006-04-27 Nippon Telegr & Teleph Corp <Ntt> 光サブキャリア送信器
JP4814525B2 (ja) * 2005-01-11 2011-11-16 株式会社日立製作所 光半導体装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338940A (zh) * 2011-08-31 2012-02-01 清华大学 基于环腔的电吸收调制器
CN102338940B (zh) * 2011-08-31 2014-01-29 清华大学 基于环腔的电吸收调制器
CN103576344A (zh) * 2012-07-30 2014-02-12 国际商业机器公司 半导体结构及其形成方法
CN103576344B (zh) * 2012-07-30 2016-03-30 国际商业机器公司 半导体结构及其形成方法
WO2016015303A1 (zh) * 2014-07-31 2016-02-04 华为技术有限公司 锗硅电吸收调制器
US9804426B2 (en) 2014-07-31 2017-10-31 Huawei Technologies Co., Ltd. Silicon-germanium electro-absorption modulator
WO2022222919A1 (zh) * 2021-04-20 2022-10-27 华为技术有限公司 电吸收调制激光器、光发射组件和光终端

Also Published As

Publication number Publication date
GB2454452B (en) 2011-09-28
EP2195704A1 (en) 2010-06-16
JP2010539522A (ja) 2010-12-16
US20100215308A1 (en) 2010-08-26
CN101939689B (zh) 2014-06-04
WO2009034381A1 (en) 2009-03-19
JP5557253B2 (ja) 2014-07-23
GB0717606D0 (en) 2007-10-17
GB2454452A (en) 2009-05-13

Similar Documents

Publication Publication Date Title
CN101939689B (zh) 带有弱导光波导模式的电吸收调制器
Kato Ultrawide-band/high-frequency photodetectors
US7095938B2 (en) Vertical integration of active devices within passive semiconductor waveguides
JP3221916B2 (ja) 集積型光学ガイドと、光検出器とを備えたオプトエレクトロニックデバイス
US8817354B2 (en) Optical device having reduced optical leakage
US5121182A (en) Integrated optical semiconductor device
JP6318468B2 (ja) 導波路型半導体受光装置及びその製造方法
US9377581B2 (en) Enhancing the performance of light sensors that receive light signals from an integrated waveguide
CN1372710A (zh) 带有集成光调制器的可调谐激光源
DE112008003958B4 (de) Optische Nanodrahtblockgeräte zum Verstärken, Modulieren und Erfassen optischer Signale
JP3284994B2 (ja) 半導体光集積素子及びその製造方法
US6613596B2 (en) Monolithically integrated photonic circuit
JP4168437B2 (ja) 半導体受光素子
US5397889A (en) Guided-wave photoreceptor based on quantum wells made of semiconductor materials, particularly for coherent communications system with polarization diversity
Leclerc et al. High-performance semiconductor optical amplifier array for self-aligned packaging using Si V-groove flip-chip technique
JP2001168371A (ja) 装荷型半導体受光素子及びその製造方法
JP2005294669A (ja) 表面入射型受光素子
GB2464219A (en) Buried Heterostructure EAM
Harrison et al. Monolithic integration of 1.3-/spl mu/m Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters
Garmire Sources, modulators, and detectors for fiber optic communication systems
Taguchi PIN Photodiodes
JPH0353565A (ja) 多重量子井戸構造光検出器
KR100294626B1 (ko) N(-)-i-n(+)구조의 전계흡수 광변조기
CN115224584A (zh) 电吸收调制激光器、光发射组件和光终端
Tolstikhin et al. InP-based photonic integrated circuits for optical performance surveillance, signal conditioning, and bandwidth management in DWDM transmission systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: HUAWEI TECHNOLOGIES CO., LTD.

Free format text: FORMER OWNER: CT FOR INTEGRATED PHOTONICS LTD.

Effective date: 20120807

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; TO: SHENZHEN, GUANGDONG PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20120807

Address after: Bantian HUAWEI headquarters office building, Longgang District, Shenzhen

Applicant after: Huawei Technologies Co., Ltd.

Address before: Suffolk

Applicant before: Ct For Integrated Photonics Lt

C14 Grant of patent or utility model
GR01 Patent grant