WO2022222919A1 - 电吸收调制激光器、光发射组件和光终端 - Google Patents

电吸收调制激光器、光发射组件和光终端 Download PDF

Info

Publication number
WO2022222919A1
WO2022222919A1 PCT/CN2022/087645 CN2022087645W WO2022222919A1 WO 2022222919 A1 WO2022222919 A1 WO 2022222919A1 CN 2022087645 W CN2022087645 W CN 2022087645W WO 2022222919 A1 WO2022222919 A1 WO 2022222919A1
Authority
WO
WIPO (PCT)
Prior art keywords
electro
layer
region
laser
absorption
Prior art date
Application number
PCT/CN2022/087645
Other languages
English (en)
French (fr)
Inventor
程远兵
李彦波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022222919A1 publication Critical patent/WO2022222919A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present application relates to the field of optical communications, and in particular, to electro-absorption modulated lasers, optical emitting components and optical terminals.
  • an optical transmitting terminal generates signal light through a modulator.
  • the signal light is transmitted to the light receiving terminal through the optical fiber.
  • the optical receiving terminal demodulates the signal light through the demodulator to obtain the electrical signal.
  • Electroabsorption modulated laser is a monolithically integrated externally modulated light source. Electroabsorption modulated lasers include a laser region and an electroabsorption modulator region. Laser light generated by the laser region is coupled into an electro-absorption modulator region connected to the laser region. When an electrical modulation signal is applied to the electro-absorption modulator region, the electro-absorption modulator region modulates the laser light to obtain signal light.
  • the output power of the laser region is the power of the laser light
  • the output power of the electro-absorption modulated laser or the electro-absorption modulator region is the power of the signal light. To a certain extent, the power of the laser is proportional to the power of the signal light.
  • the power of the signal light can be increased by increasing the power of the laser light.
  • the active layer of the electroabsorption modulator region will enter a saturation state, thus limiting the output optical power of the electroabsorption modulated laser.
  • the present application provides an electro-absorption modulated laser, an optical emitting component and an optical terminal.
  • the technical solution disclosed in the present application can increase the power of the laser when the electroabsorption modulator region enters a saturated state, thereby increasing the output power of the electroabsorption modulated laser.
  • a first aspect of the present application provides an electro-absorption modulated laser.
  • An electroabsorption modulated laser includes a laser region, an electrically isolated region and an electroabsorption modulator region on the same semiconductor substrate.
  • the electrical isolation area is arranged between the laser area and the electro-absorption modulator area, and the electrical isolation area is used to realize the electrical isolation of the laser area and the electro-absorption modulator area.
  • the laser zone is used to generate laser light.
  • the laser light is coupled into the electro-absorption modulator region connected to the laser region.
  • the electro-absorption modulator region is used to modulate laser light to obtain signal light.
  • the electro-absorption modulator region includes a first active layer and a waveguide layer.
  • the waveguide layer is disposed between the substrate and the first active layer.
  • the light confinement factor of the first active layer of the electroabsorption modulator region is reduced due to the introduction of the waveguide layer. At this time, part of the laser light emitted by the laser region is coupled into the waveguide layer, which increases the saturable absorption optical power in the electro-absorption modulator region. Therefore, the present application can improve the output power of the electro-absorption modulated laser.
  • the refractive index of the waveguide layer is smaller than the effective refractive index of the first active layer.
  • the waveguide layer will absorb part of the introduced laser light, thereby reducing the power of the signal light to a certain extent, resulting in loss.
  • the present application defines that the refractive index of the waveguide layer is smaller than the effective refractive index of the first active layer, thereby reducing the loss of laser light in the waveguide layer.
  • the electroabsorption modulator region has a length in the first direction greater than 300 microns.
  • the first direction is the propagation direction of the laser light in the laser region.
  • the present application can improve the extinction ratio of the signal light by increasing the length of the electro-absorption modulator region.
  • the electroabsorption modulator region includes a first P electrode and a first N electrode.
  • the first P electrode and the first N electrode are of traveling wave electrode structure.
  • the parasitic capacitance of the electro-absorption modulator region is relatively large, thereby reducing the modulation bandwidth of the electro-absorption modulator region.
  • the first P electrode and the first N electrode are traveling wave electrode structures, the influence of the parasitic capacitance of the electrodes on the modulation bandwidth can be reduced.
  • the transmission speed of the electrical modulation signal in the electrode is equal to the transmission speed of the optical signal in the waveguide, and the phases of the two are consistent, the modulation efficiency is the highest, and the theoretical modulation bandwidth is infinite.
  • the waveguide layer includes an upper cladding layer and a core layer.
  • the upper cladding layer is disposed between the first active layer and the core layer.
  • the thickness of the core layer can be reduced by increasing the upper cladding layer.
  • the processing cost of the core layer is generally greater than the processing cost of the upper cladding layer of the same thickness. This reduces processing costs.
  • the refractive index of the upper cladding layer is smaller than the effective refractive index of the first active layer.
  • the upper cladding will absorb part of the introduced laser light, thereby reducing the power of the signal light to a certain extent, resulting in loss.
  • the present application defines that the refractive index of the upper cladding layer is smaller than the effective refractive index of the first active layer, thereby reducing the loss of laser light in the upper cladding layer.
  • the waveguide layer further includes a lower cladding layer.
  • the lower cladding layer is disposed between the substrate and the core layer.
  • the thickness of the core layer can be reduced by increasing the thickness of the lower cladding layer.
  • the processing cost of the core layer is generally greater than that of the lower cladding layer of the same thickness. Therefore, the present application can reduce the processing cost.
  • the refractive index of the lower cladding layer is smaller than the effective refractive index of the first active layer.
  • the lower cladding will absorb part of the introduced laser light, thereby reducing the power of the signal light to a certain extent, resulting in loss.
  • the present application defines that the refractive index of the lower cladding layer is smaller than the effective refractive index of the first active layer, so as to reduce the loss of laser light in the lower cladding layer.
  • the thickness of the upper cladding layer is between 0.01 ⁇ m and 5 ⁇ m.
  • the thickness of the waveguide layer is between 0.03 microns and 6 microns.
  • the electro-absorption modulator region is a ridge-type structure.
  • the electroabsorption modulator region includes a first portion and a second portion underlying the first portion.
  • the width of the second portion is greater than the width of the first portion.
  • the first active layer belongs to the first part.
  • the substrate belongs to the second part.
  • the waveguide layer includes a first waveguide layer and a second waveguide layer.
  • the first waveguide layer belongs to the first part, and the second waveguide layer belongs to the second part.
  • the second part is a ridge structure, and includes a third part and a fourth part located below the third part.
  • the width of the fourth portion is greater than the width of the third portion.
  • the second waveguide layer belongs to the third part, and the substrate belongs to the fourth part. In this way, the proportion of the signal light in the first active layer and the waveguide layer can be changed according to the width of the third part, so as to flexibly control the light output power of the electro-absorption modulated laser.
  • the difference between the width of the first portion and the width of the third portion is greater than 4 microns.
  • the first active layer includes a first quantum well layer.
  • the laser region includes a second active layer, and the second active layer includes a second quantum well layer.
  • the projections of the first quantum well layer and the second quantum well layer on the first plane have a common area.
  • the first plane is perpendicular to the upper surface of the substrate.
  • the normal of the first plane is parallel to the propagation direction of the laser light in the laser region.
  • the material of the waveguide layer is indium gallium arsenide phosphorus (InGaAsP) or indium gallium aluminum arsenide (InGaAlAs).
  • the waveguide layer extends to the junction of the electrical isolation region and the laser region.
  • the lower light confinement layer in the electrical isolation region is the waveguide layer.
  • the waveguide layer has the function of increasing the output power of the electroabsorption modulated laser. Therefore, the present application can improve the utilization rate of the electrical isolation region.
  • the length of the laser region is 400 micrometers to 2000 micrometers.
  • the longer the length of the laser zone the generally greater the output power of the laser zone.
  • the output power of the laser region determines the output power of the electro-absorption modulated laser.
  • the present application increases the output power of the electro-absorption modulated laser by adding a waveguide layer. Accordingly, the present application further increases the output power of the laser region by increasing the length of the laser region.
  • a second aspect of the present application provides a light emitting assembly.
  • the light emitting component includes a light detector and the electro-absorption modulated laser according to the first aspect or any one of the embodiments of the first aspect.
  • the signal light generated by the electro-absorption modulated laser includes back light and forward light. Electroabsorption modulated lasers are used to output forward light.
  • the photodetector is used to receive the back light and convert the back light into an electrical signal.
  • a third aspect of the present application provides an optical terminal.
  • the optical terminal includes a processor and a light emitting component.
  • the light emitting component includes the electro-absorption modulated laser according to the first aspect or any one of the embodiments of the first aspect.
  • the processor is used to provide the electrical modulation signal for the electro-absorption modulated laser.
  • the electro-absorption modulated laser is used to modulate the laser light according to the electrical modulation signal to obtain the signal light.
  • FIG. 1 is a schematic diagram of a passive optical network system framework of an application scenario of the present application
  • FIG. 2 is a schematic structural diagram of an electro-absorption modulated laser provided in the application.
  • 3 is a side view of the electro-absorption modulated laser provided in the application.
  • FIG. 4 is a schematic cross-sectional view of the electro-absorption modulator region of the ridge structure provided in the present application.
  • FIG. 5 is a schematic cross-sectional view of the electro-absorption modulator region of the double-ridge structure provided in the present application.
  • FIG. 6 is a schematic cross-sectional view of the electro-absorption modulator region of the ridge structure including the upper cladding layer provided in the present application;
  • FIG. 7 is a schematic cross-sectional view of the electro-absorption modulator region of the double-ridge structure including the upper cladding layer provided in the present application;
  • FIG. 8 is a schematic diagram of an electrical connection of the electro-absorption modulator region provided in this application.
  • FIG. 9 is another schematic diagram of the electrical connection of the electro-absorption modulator region provided in this application.
  • FIG. 10 is a top view of the electro-absorption modulated laser provided in the application.
  • FIG. 11 is a schematic structural diagram of the light emitting assembly provided in the application.
  • FIG. 12 is a schematic structural diagram of an optical terminal provided in this application.
  • the present application provides an electro-absorption modulated laser, an optical emitting component and an optical terminal.
  • the technical solution of the present application can increase the saturable absorption optical power of the electro-absorption modulator, thereby increasing the output power of the electro-absorption modulated laser.
  • FIG. 1 is a schematic diagram of a PON system framework of an application scenario of the present application.
  • the PON system includes an optical line terminal (Optical Distribution Network, OLT) 101, an optical distribution network (Optical Distribution Network, ODN) 102 and optical terminals 103-105.
  • the PON system is a point-to-multipoint single-fiber bidirectional optical access network (in Figure 1, one OLT corresponds to 3 optical terminals).
  • ODN 102 in a PON system uses optical fibers and passive components (eg splitter/combiner 1021).
  • the splitter/combiner 1021 is a point-to-multipoint core device, and the PON system uses the splitter/combiner 1021 to separate and collect the signal light transmitted through the network.
  • the OLT 101 distributes the signal light to all the optical terminals through the splitter/combiner 1021; in the upstream direction, the signal light from each optical terminal is time-divided and coupled to the same optical splitter/combiner 1021. fiber, transmitted to OLT 101.
  • the optical terminals 103-105 may be optical network units (Optical Network Unit, ONU) or optical network terminals (Optical network terminal, ONT). It should be understood that the optical terminal may also be referred to as an optical network terminal or a PON client side device or the like. This application does not limit this.
  • the optical fiber and the splitter/combiner 1021 will generate losses.
  • the size of the loss is generally proportional to the distance between the OLT 101 and the optical terminal and the branch ratio of the splitter/combiner. Therefore, increasing the optical transmit power of the OLT 101 or the optical terminal is beneficial to increase the coverage area of the PON system.
  • the OLT 101 or the optical terminal can use an electro-absorption modulated laser to generate signal light.
  • Electroabsorption modulated lasers include a laser region and an electroabsorption modulator region. The output power of the laser region is the power of the laser light, and the output power of the electro-absorption modulated laser or the electro-absorption modulator region is the power of the signal light.
  • the power of the laser is proportional to the power of the signal light. Therefore, the power of the signal light can be increased by increasing the power of the laser light.
  • the active layer of the electroabsorption modulator region will enter a saturation state, thereby limiting the output power of the electroabsorption modulated laser.
  • Electroabsorption modulated lasers include a laser region, an electrically isolated region, and an electroabsorption modulator region on the same semiconductor substrate.
  • the electroabsorption modulator region includes a waveguide layer and a first active layer.
  • the waveguide layer is disposed between the substrate and the first active layer.
  • the electro-absorption modulator region can introduce part of the laser light into the waveguide layer, so as to improve the saturable absorption optical power of the electro-absorption modulator. Therefore, the present application can improve the output power of the electro-absorption modulated laser.
  • the PON system in FIG. 1 is only one application scenario of the electro-absorption modulated laser in the present application.
  • electroabsorption modulated lasers can also be applied to other scenarios.
  • the optical fiber communication between the gateway and the wireless access point (Access Point, AP) can also be applied to other scenarios.
  • the optical fiber communication between the gateway and the wireless access point (Access Point, AP) can also be applied to other scenarios.
  • FIG. 2 is a schematic structural diagram of the electro-absorption modulated laser provided in this application.
  • the electroabsorption modulated laser includes an electroabsorption modulator region, an electrically isolated region and a laser region located on the same semiconductor substrate 202 .
  • the interface between the electro-absorption modulator region and the electrically isolated region is located at plane 207
  • the interface between the electrically isolated region and the laser region is located at plane 208 .
  • the electro-absorption modulated laser includes an N-electrode layer 201, a substrate 202, an active layer, a ridge waveguide, and a P-electrode layer.
  • the active layer includes an upper light confinement layer, a quantum well layer and a lower light confinement layer respectively.
  • the upper light confinement layer and the lower light confinement layer are respectively used to provide carriers to the quantum well layers to confine photons in the vertical direction.
  • the thickness of the upper light confinement layer or the lower light confinement layer, respectively is between 0.05 and 0.1 microns.
  • the upper and lower respective light confinement layers may be unintentionally doped quaternary materials. For example, graded index InGaAlAs.
  • Quantum well layers are used to convert electrical energy into photons.
  • the quantum well layer is an unintentionally doped quaternary material.
  • the quantum well layer may be a multiple quantum well active region layer.
  • the thickness of the quantum well layer is between 0.1 ⁇ m and 0.2 ⁇ m.
  • the P electrode layer is also referred to as the upper electrode layer.
  • the material of the P-electrode layer is titanium, platinum or gold alloy or the like.
  • the thickness of the P-electrode layer is between 0.5 microns and 2 microns.
  • the N electrode layer is also referred to as a lower electrode layer.
  • the material of the N electrode layer is gold-germanium-nickel alloy or gold or the like.
  • the thickness of the N-electrode layer is between 0.2 ⁇ m and 0.5 ⁇ m.
  • the N electrode layers of the laser region and the electro-absorption modulator region have a common electrode structure (the same electrode).
  • the N electrode layer may be located on the front side of the electro-absorption modulated laser.
  • the subsequent description of the traveling wave electrode structure please refer to the subsequent description of the traveling wave electrode structure.
  • the laser region is used to generate laser light, and the laser region can be an excitation distributed feedback laser region or a distributed Bragg reflection laser region.
  • the laser region includes a second N electrode layer, a second substrate, a second active layer, a second ridge waveguide, and a second P electrode layer 210 .
  • the second active layer includes a second upper light confinement layer, a second quantum well layer, and a second lower light confinement layer, respectively.
  • the second quantum well layer generates stimulated radiation through laser oscillation, thereby generating laser light.
  • the left end face (plane 208) of the laser zone outputs laser light.
  • the laser light is introduced into the electro-absorption modulator region after passing through the electrically isolated region.
  • the electro-absorption modulator region is used to modulate laser light to obtain signal light.
  • the electroabsorption modulator region includes a first N-electrode layer, a first substrate, a waveguide layer 203 , a first active layer, a first ridge waveguide, and a first P-electrode layer 209 .
  • the first active layer includes a first upper light confinement layer 106, a first quantum well layer 205, and a first lower light confinement layer 204, respectively.
  • the waveguide layer is also called a passive waveguide layer.
  • the material of the waveguide layer can be InGaAsP or InGaAlAs InGaAlAs.
  • the electro-absorption modulator region After the laser light is introduced into the electro-absorption modulator region, a part of the laser light is introduced into the first active layer, and the other part of the laser light is introduced into the waveguide layer.
  • an electrical modulation signal is applied to the electro-absorption modulator region, the electro-absorption modulator region modulates the laser light to obtain signal light.
  • the waveguide layer will absorb part of the introduced laser light, thereby reducing the power of the signal light to a certain extent, resulting in loss. Specifically, after part of the laser light is introduced into the waveguide layer, the waveguide layer will absorb part of the laser light, resulting in a decrease in the power of the laser light.
  • the present application can define that the refractive index of the waveguide layer is smaller than the effective refractive index of the first active layer, thereby reducing the power of the laser light in the waveguide layer. In the case of reducing the power of the laser light in the waveguide layer, the losses in the waveguide layer will also be reduced.
  • the refractive index of the waveguide layer refers to the effective refractive index.
  • An electrical isolation region is located between the laser region and the electroabsorption modulator region. Because the working state of the laser region is forward-biased and the working state of the electro-absorption modulator region is reverse-biased, a high-resistance electrical isolation region is required between the laser region and the electro-absorption modulator region to reduce crosstalk.
  • the electrical isolation regions may be deep etched grooves, or ion implantation to form the isolation regions.
  • the electrical isolation region includes a first N electrode layer, a first substrate, a waveguide layer, a first active layer, and a first ridge waveguide.
  • the electrical isolation region isolates the crosstalk between the electrical modulation signal and the laser bias current. Specifically, the electrical isolation region isolates the electrical connection of the first P-electrode layer and the second P-electrode layer. Also, when a contact layer is included between the first ridge waveguide and the first p-electrode layer, the electrical isolation region may not include the contact layer.
  • the right end face of the laser region is coated with a high reflection film.
  • the high reflection film is used to improve the reflectivity of the right end face of the laser area and increase the output power of the laser area.
  • the left end face of the electro-absorption modulator region can be AR-coated.
  • the signal light output from the electro-absorption modulator region is output on the left end face.
  • electro-absorption modulated laser shown in FIG. 2 is only an example. In practical applications, those skilled in the art can adapt the electro-absorption modulated laser according to requirements.
  • the first quantum well layer and the second quantum well layer belong to the same quantum well layer.
  • the first quantum well layer and the second quantum well layer may belong to different quantum well layers.
  • the first quantum well layer and the second quantum well layer may include one or more of the following differences.
  • the thicknesses of the first quantum well layer and the second quantum well layer are different.
  • the materials of the first quantum well layer and the second quantum well layer are different.
  • the first quantum well layer and the second quantum well layer are dislocated in the Y-axis direction, or in other words, the first quantum well layer is on the plane 207
  • the projection of , and the projection of the second quantum well layer on the plane 207 do not coincide.
  • the first upper respective light confinement layer and the second upper respective light confinement layer may belong to different respective light confinement layers.
  • the first lower respective light confinement layer and the second lower respective light confinement layer may belong to different respective light confinement layers.
  • the first active layer, the waveguide layer, the first N-electrode layer, and the first ridge waveguide extend to the plane 208 .
  • the second active layer, the waveguide layer, the second N-electrode layer and the second ridge waveguide may extend to the plane 207 .
  • the electrical isolation region includes a second N electrode layer, a second substrate, a waveguide layer, a second active layer, and a second ridge waveguide. It should be understood that, in practical applications, the second active layer, the waveguide layer, the second N-electrode layer and the second ridge waveguide may extend to the middle region of the isolation region.
  • the electrical isolation region includes a first N electrode layer, a second N electrode layer, a first substrate, a second substrate, a waveguide layer, a first active layer, and a second active layer , a first ridge waveguide and a second ridge waveguide.
  • the first N-electrode layer extends to plane 208 and the second N-electrode layer extends to plane 208 .
  • the first N electrode layer and the second N electrode layer belong to the same N electrode layer.
  • the electrical isolation region may not include the first N-electrode layer.
  • the first N electrode layer extends to the plane 207
  • the second N electrode layer extends to the plane 208 .
  • the second N electrode layer and the first N electrode layer are isolated by the isolation region.
  • Figure 3 is a side view of an electroabsorption modulated laser provided in this application.
  • the electro-absorption modulated laser further includes a grating 302 , an upper cap layer 303 and a contact layer 304 .
  • the waveguide layer 203 includes a lower cladding layer 301 and a core layer 305 .
  • the material of the lower cladding layer 301 may be indium phosphide InP.
  • the lower cladding layer 301 is divided by the plane 208 into a first lower cladding layer and a second lower cladding layer.
  • the electroabsorption modulator region and the electrical isolation region include a first lower cladding layer, and the laser region includes a second lower cladding layer.
  • the grating 302 is located in the laser region.
  • the grating 302 is used for mode selection of the laser to realize single-mode lasing.
  • the material of the upper capping layer 303 may be InP.
  • the upper capping layer 303 is located between the upper light confinement layer and the contact layer 304, respectively.
  • the thickness of the contact layer 304 is between 0.05 microns and 0.3 microns.
  • the contact layer 304 is heavily doped In 0.53 Ga 0.47 As. The doping concentration is greater than 1E19cm -3 .
  • the output power of the electroabsorption modulated laser can be increased.
  • the present application reduces the extinction ratio of the signal light to a certain extent.
  • the calculation formula of the extinction ratio (ER) of the signal light is as follows:
  • is the light confinement factor of the second quantum well layer.
  • ⁇ QW (V off ) is the absorption coefficient of the electro-absorption modulator region when a low-level signal is applied.
  • ⁇ QW (V on ) is the absorption coefficient of the electro-absorption modulator region when a high-level signal is applied.
  • L is the length of the electroabsorption modulator region.
  • the present application may define that the length of the electroabsorption modulator region in the first direction is greater than 300 microns, or greater than 700 microns.
  • the first direction is the propagation direction of the laser light in the laser region.
  • the first direction is the negative direction of the Z axis in FIG. 2 .
  • the electro-absorption modulator region is a ridge-type structure.
  • the electroabsorption modulator region includes a first portion and a second portion underlying the first portion.
  • the width of the second portion is greater than the width of the first portion.
  • the second part includes the active layer, the waveguide layer and the substrate.
  • the boundary line between the second part and the first part may be arranged on the waveguide layer.
  • FIG. 4 is a schematic cross-sectional view of the electro-absorption modulator region of the ridge structure provided in the present application.
  • FIG. 4 is a schematic cross-sectional view of the plane 207 in FIG. 3 . As shown in FIG.
  • the electro-absorption modulator region includes a first N electrode layer 201, a substrate 202, a waveguide layer 203, a first lower light confinement layer 204, a first quantum well layer 205, The first upper light confinement layer 206 , the upper capping layer 303 , the first contact layer 304 and the first P electrode layer 209 are respectively.
  • the waveguide layer 203 includes the lower cladding layer 301 and the core layer 305 .
  • the electro-absorption modulator region is a ridge structure.
  • the electroabsorption modulator region includes a first portion of the upper layer and a second portion of the lower layer.
  • the first N electrode layer 201, the substrate 202 belong to the second part of the lower layer.
  • the first lower light confinement layer 204, the first quantum well layer 205, the first upper light confinement layer 206, the upper capping layer 303, the first contact layer 304 and the first P electrode layer 209 belong to the first part of the upper layer respectively.
  • the boundary line between the first part and the second part is a straight line 401 .
  • a straight line 401 divides the waveguide layer 203 into a first waveguide layer and a second waveguide layer.
  • the first waveguide layer belongs to the first part, and the second waveguide layer belongs to the second part.
  • the straight line 401 is located in the waveguide layer, since the waveguide layer can have a thicker thickness, there can be larger process tolerances in the process of processing the electro-absorption modulator region. Moreover, it is easier to realize fundamental transverse mode operation in the electro-absorption modulator region.
  • the electroabsorption modulator region may be a double ridge structure.
  • FIG. 5 is a schematic cross-sectional view of the electro-absorption modulator region of the double-ridge structure provided in the present application.
  • the second part of the electro-absorption modulator region includes a third part and a fourth part located under the third part.
  • the width of the fourth portion is greater than the width of the third portion.
  • the boundary line between the fourth part and the third part is the straight line 501 .
  • the second waveguide layer belongs to the third part.
  • the substrate 202 and the first N electrode layer 201 belong to the fourth part.
  • the proportion of the signal light in the first active layer and the waveguide layer is related to the ratio of the width of the second waveguide layer to the width of the first waveguide layer, that is, the ratio of the power of the first laser and the second laser to the power of the second waveguide layer. Width related. Therefore, by adjusting the width of the second waveguide layer (that is, the width of the third portion), the ratio of the width of the second waveguide layer to the width of the first waveguide layer can be changed, thereby changing the signal light in the first active layer and the waveguide layer. proportion of . Moreover, the proportion of the signal light in the first active layer and the waveguide layer is related to the light output power of the electro-absorption modulator region. Therefore, the present application can flexibly control the light output power of the electro-absorption modulator region by adjusting the width of the second waveguide layer.
  • the waveguide layer 203 may include an upper cladding layer, a core layer and a lower cladding layer.
  • FIG. 6 is a schematic cross-sectional view of an electro-absorption modulator region provided in the present application with a ridge structure including an upper cladding layer.
  • the waveguide layer 203 includes an upper cladding layer 601 , a core layer 305 and a lower cladding layer 301 .
  • the upper cladding layer 601 is disposed between the first lower light confinement layer 204 and the core layer 305, respectively.
  • the processing cost of the core layer 305 is generally greater than the processing cost of the upper cladding layer 601 or the lower cladding layer 301 of the same thickness. Therefore, when the waveguide layer 203 includes the under- or over-cladding layer, the processing cost can be reduced by reducing the thickness of the core layer.
  • FIG. 6 is a ridge-type structure.
  • the electro-absorption modulator region can also be a double-ridge structure.
  • FIG. 7 is a schematic cross-sectional view of the electro-absorption modulator region of the double-ridge structure including the upper cladding layer provided in the present application.
  • the waveguide layer 203 includes an upper cladding layer 601 , a core layer 305 and a lower cladding layer 301 .
  • the upper cladding layer 601 is disposed between the first lower light confinement layer 204 and the core layer 305, respectively.
  • the upper cladding layer 601 , the core layer 305 and the lower cladding layer 301 form a waveguide, thereby reducing the thickness of the core layer 305 .
  • the thickness of the upper cladding layer 601 may be 0.01 ⁇ m to 5 ⁇ m.
  • the thickness of the waveguide layer 203 may be 0.03 micrometers to 6 micrometers.
  • the waveguide layer absorbs part of the introduced laser light, the power of the second signal light is reduced to a certain extent, resulting in loss.
  • the present application may define that the refractive index of the upper cladding layer 601 and/or the lower cladding layer 301 is smaller than the effective refractive index of the first active layer, so as to reduce the loss of laser light in the waveguide layer.
  • the width of the first part is d1 micrometer
  • the width of the third part is d2 micrometer.
  • the difference between d2 and d1 may be limited to be greater than 4.
  • FIG. 8 is a schematic diagram of an electrical connection of the electro-absorption modulator region provided in this application. As shown in FIG. 8 , the electrical modulation signal is applied to the middle of the first P electrode layer 209 .
  • the electrical modulation signal has reflections at both ends of the electro-absorption modulator region, thereby affecting the modulation bandwidth of the electro-absorption modulator region. Also, the longer the length of the electro-absorption modulator region, the greater the effect of reflection.
  • FIG. 9 is another schematic diagram of the electrical connection of the electroabsorption modulator region provided in this application.
  • An electrical modulation signal is applied to the input of the first P-electrode layer 209 .
  • the input is the plane 207 in FIG. 2 .
  • the light transmission direction is shown by the arrow in FIG. 9 .
  • the optical transmission direction is the same as the transmission direction of the electrically modulated signal.
  • the output terminal of the first P electrode layer 209 is connected to the matching load.
  • the matching load is connected to the first N electrode layer 201 .
  • the first N electrode layer 201 is grounded.
  • the parallel capacitance C of the electro-absorption modulator region is compensated by the matching load in series, thereby forming a characteristic impedance.
  • the characteristic impedance can prevent the reflection of the electrical modulation signal from the output end of the first P electrode layer 209, thereby reducing the influence of reflection on the modulation bandwidth.
  • the first N-electrode layer is on the opposite side of the electro-absorption modulator region.
  • the electro-absorption modulator region is a ridge or double-ridge structure
  • the first N-electrode layer may be on the front side of the electro-absorption modulator region.
  • the first N electrode layer is located on the boundary line 501 in FIG. 5 .
  • FIG. 10 is a top view of the electro-absorption modulated laser provided in this application. As shown in FIG. 10, the electroabsorption modulated laser includes an electroabsorption modulator region, an electrical isolation region, and a laser region.
  • the electroabsorption modulator region includes a first P electrode layer 1002 , a first N electrode layer 1001 and a first N electrode layer 1003 .
  • the first N-electrode layer 1001 and the first N-electrode layer 1003 are on the front side of the electro-absorption modulator region.
  • the first P electrode layer 1002 is a signal electrode of the coplanar waveguide
  • the first N electrode layer 1001 and the first N electrode layer 1003 on both sides are ground electrodes.
  • Coplanar waveguide is also called coplanar microstrip transmission line.
  • the coplanar waveguide propagates transverse electromagnetic waves, and the coplanar waveguide can be flexibly designed to match its characteristic impedance with the load, reduce the electrical signal reflection of the load, and increase the modulation bandwidth.
  • the second N-electrode layer of the laser region is located on the front side of the laser region.
  • the laser region includes a second P electrode layer 1005 , a second N electrode layer 1004 and a second N electrode layer 1006 .
  • the second P-electrode layer 1005 and the second N-electrode layer 1004, or the second N-electrode layer 1006 are in different planes.
  • the second P-electrode layer 1005 may be on the contact layer 304 .
  • the second N electrode layer 1004 and the second N electrode layer 1006 may be on the boundary line 501 .
  • an included angle between the output direction of the signal light and the first direction is 4 degrees to 15 degrees.
  • the output direction of the signal light is perpendicular to the output end face (the left end face of the electro-absorption modulator region).
  • the signal light will produce end-face reflection on the output end face. End face reflections can affect the characteristics of the laser region, for example by causing a shift in the lasing wavelength of the laser region or deteriorating the eye pattern of the electro-absorption modulator region.
  • the first ridge waveguide and the second ridge waveguide are parallel to the Z-axis straight waveguide.
  • the first ridge waveguide may be a curved waveguide.
  • the first ridge waveguide is bent toward the X-axis.
  • the tangent of the curved first ridge waveguide on the output end face is the output direction of the signal light.
  • the projections of the first quantum well layer and the second quantum well layer on the first plane have a common area.
  • the first plane is perpendicular to the upper surface of the substrate, and the normal of the first plane is parallel to the propagation direction of the laser light in the laser region.
  • the first plane may be plane 207 or plane 208 .
  • the length of the laser region is 400 microns to 2000 microns.
  • the electro-absorption modulator region can introduce part of the laser light into the waveguide layer, thereby increasing the power of the laser when the electro-absorption modulator region enters a saturated state. Therefore, the present application can increase the output power of the laser region. The longer the length of the laser zone, the generally greater the output power of the laser zone. In practical applications, the length of the laser region is generally less than 400 microns. The present application defines the length of the laser region to be 400 microns to 2000 microns.
  • the electroabsorption modulated laser is described above.
  • the electro-absorption modulator region can introduce part of the laser light into the waveguide layer to improve the saturable absorption optical power of the electro-absorption modulator. Therefore, the present application can improve the output power of the electro-absorption modulated laser.
  • FIG. 11 is a schematic structural diagram of the light emitting component provided in this application.
  • the light emitting component 1101 includes an electro-absorption modulated laser 1103 and a photodetector 102 .
  • the signal light generated by the electro-absorption modulated laser 1103 includes back light and forward light.
  • An electro-absorption modulated laser 1103 is used to output forward light.
  • the photodetector 1102 is used to receive the back light and convert the back light into an electrical signal.
  • the electrical signal can be used to compare with the electrical modulation signal to determine whether the working state of the electro-absorption modulated laser 1103 is normal.
  • the electrical signal and the electrical modulation signal are the same, it indicates that the working state of the electro-absorption modulated laser 1103 is normal; when the electrical signal and the electrical modulation signal are different, it indicates that the working state of the electro-absorption modulated laser 1103 is abnormal.
  • the electro-absorption modulated laser 1103 reference may be made to the electro-absorption modulated laser in any one of the foregoing embodiments in FIGS. 2 to 4 and FIGS. 6 to 7 .
  • the electroabsorption modulated laser 1103 includes an electroabsorption modulator region and a laser region.
  • a waveguide layer is included between the first active layer of the electroabsorption modulator region and the substrate.
  • the electroabsorption modulator region of the electroabsorption modulated laser 1103 includes an upper cladding layer.
  • FIG. 12 is a schematic structural diagram of an optical terminal provided in this application.
  • the optical terminal 1201 includes a processor 1202 and a light emitting component 1203 .
  • the optical terminal 1201 may specifically be the OLT or the optical terminal in FIG. 1 . It should be understood that in practical applications, the optical terminal 1201 may also be a switch, a data center, or the like.
  • the light emitting component 1203 may refer to the aforementioned light emitting component 1201 in FIG. 12 .
  • the processor 1202 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor 1202 may further include a hardware chip or other general purpose processor.
  • the above-mentioned hardware chip may be an application specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the light emitting component 1203 includes an electro-absorption modulated laser.
  • the processor 1202 is used to provide an electrical modulation signal for the electro-absorption modulated laser.
  • the electro-absorption modulated laser is used to modulate the laser light according to the electrical modulation signal to obtain the signal light.
  • the signal light may specifically refer to forward light.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请实施例公开了一种电吸收调制激光器。电吸收调制激光器包括激光器区、电隔离区和电吸收调制器区。电隔离区设置在激光器区和电吸收调制器区之间。激光器区用于产生激光。激光被耦合进与激光器区相连电吸收调制器区。电吸收调制器区用于调制激光,得到信号光。电吸收调制器区的第一有源层下方包括波导层。在本申请中,电吸收调制器区可以将部分激光耦合进波导层,从而提高电吸收调制器的饱和吸收功率,提高电吸收调制激光器的输出功率。

Description

电吸收调制激光器、光发射组件和光终端
本申请要求于2021年4月20日提交中国国家知识产权局、申请号为202110426648.5、申请名称为“电吸收调制激光器、光发射组件和光终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及电吸收调制激光器、光发射组件和光终端。
背景技术
在光通信系统中,光发送终端通过调制器产生信号光。信号光通过光纤传输至光接收终端。光接收终端通过解调器解调信号光,得到电信号。
电吸收调制激光器是一种单片集成的外调制光源。电吸收调制激光器包括激光器区和电吸收调制器区。激光器区产生的激光被耦合进与激光器区相连的电吸收调制器区。当电吸收调制器区被施加电调制信号时,电吸收调制器区调制激光,得到信号光。其中,激光器区的输出功率为激光的功率,电吸收调制激光器或电吸收调制器区的输出功率为信号光的功率。在一定程度上,激光的功率和信号光的功率成正比。因此,可以通过提高激光的功率来提高信号光的功率。但是,随着激光的功率的增加,电吸收调制器区的有源层会进入饱和状态,从而限制了电吸收调制激光器的输出光功率。
发明内容
本申请提供了一种电吸收调制激光器、光发射组件和光终端。通过在调制器区材料结构中增加波导层,本申请揭示的技术方案可以提高电吸收调制器区进入饱和状态时激光的功率,进而提高电吸收调制激光器的输出功率。
本申请第一方面提供了一种电吸收调制激光器。电吸收调制激光器包括位于同一半导体衬底上的激光器区,电隔离区和电吸收调制器区。电隔离区设置在激光器区和电吸收调制器区之间,电隔离区用于实现激光器区和电吸收调制器区电隔离。激光器区用于产生激光。激光被耦合进与激光器区相连的电吸收调制器区。电吸收调制器区用于调制激光,得到信号光。其中,电吸收调制器区包括第一有源层和波导层。波导层设置在衬底和第一有源层之间。
在本申请中,由于引入了波导层,电吸收调制器区的第一有源层的光限制因子会减小。此时,激光器区发出的部分激光被耦合进波导层,提高了电吸收调制器区的饱和吸收光功率。因此,本申请可以提高电吸收调制激光器的输出功率。
在第一方面的一种可选方式中,波导层的折射率小于第一有源层的有效折射率。其中,波导层会吸收部分被引入的激光,从而在一定程度上降低信号光的功率,产生损耗。本申请限定波导层的折射率小于第一有源层的有效折射率,降低激光在波导层中的损耗。
在第一方面的一种可选方式中,电吸收调制器区在第一方向上的长度大于300微米。 第一方向为激光器区中激光的传播方向。其中,本申请通过增加电吸收调制器区的长度,可以提高信号光的消光比。
在第一方面的一种可选方式中,电吸收调制器区包括第一P电极和第一N电极。第一P电极和第一N电极为行波电极结构。其中,电吸收调制器区的长度较长时,电吸收调制器区的寄生电容较大,从而降低电吸收调制器区的调制带宽。当第一P电极和第一N电极为行波电极结构时,可以降低电极的寄生电容对调制带宽的影响。并且,当电调制信号在电极中的传输速度与光信号在波导中的传输速度相等,且两者的相位一致时,调制效率最高,理论的调制带宽是无穷大。
在第一方面的一种可选方式中,波导层包括上包层和芯层。上包层设置在第一有源层和芯层之间。当上包层为与衬底材料相同的结构时,可通过增加上包层,降低芯层的厚度。并且,芯层的加工成本一般大于相同厚度的上包层的加工成本。这样可以降低加工成本。
在第一方面的一种可选方式中,上包层的折射率小于第一有源层的有效折射率。其中,上包层会吸收部分被引入的激光,从而在一定程度上降低信号光的功率,产生损耗。本申请限定上包层的折射率小于第一有源层的有效折射率,降低激光在上包层中的损耗。
在第一方面的一种可选方式中,波导层还包括下包层。下包层设置在衬底和芯层之间。其中,通过增加下包层厚度,可以降低芯层的厚度。并且,芯层的加工成本一般大于相同厚度的下包层的加工成本。因此,本申请可以降低加工成本。
在第一方面的一种可选方式中,下包层的折射率小于第一有源层的有效折射率。其中,下包层会吸收部分被引入的激光,从而在一定程度上降低信号光的功率,产生损耗。本申请限定下包层的折射率小于第一有源层的有效折射率,降低激光在下包层中的损耗。
在第一方面的一种可选方式中,上包层的厚度在0.01微米至5微米之间。
在第一方面的一种可选方式中,波导层的厚度为在0.03微米至6微米之间。
在第一方面的一种可选方式中,电吸收调制器区为脊型结构。电吸收调制器区包括第一部分和位于第一部分下层的第二部分。第二部分的宽度大于第一部分的宽度。第一有源层属于第一部分。衬底属于第二部分。波导层包括第一波导层和第二波导层。第一波导层属于第一部分,第二波导层属于第二部分。其中,因为波导层可以有较厚的厚度,在加工电吸收调制器区的过程中,刻蚀形成第一部分时可以有较大的工艺容差。
在第一方面的一种可选方式中,第二部分为脊型结构,包括第三部分和位于第三部分下层的第四部分。第四部分的宽度大于第三部分的宽度。第二波导层属于第三部分,衬底属于第四部分。这么做可以根据第三部分的宽度改变信号光在第一有源层和波导层中的占比,从而灵活控制电吸收调制激光器的出光功率。
在第一方面的一种可选方式中,为了更好的保证加工过程中的工艺容差,第一部分的宽度和第三部分的宽度的差值大于4微米。
在第一方面的一种可选方式中,第一有源层包括第一量子阱层。激光器区包括第二有源层,第二有源层包括第二量子阱层。第一量子阱层和第二量子阱层在第一平面上的投影存在公共区域。第一平面垂直于衬底的上表面。第一平面的法线平行于激光器区中激光的传播方向。
在第一方面的一种可选方式中,波导层的材料为铟镓砷磷(InGaAsP)或铟镓铝砷 (InGaAlAs)。
在第一方面的一种可选方式中,波导层延伸至电隔离区和激光器区的交界处。其中,波导层延伸至电隔离区和激光器区的交界处时,电隔离区中的下分别光限制层下方为波导层。波导层有提高电吸收调制激光器的输出功率的功能。因此,本申请可以提高电隔离区的利用率。
在第一方面的一种可选方式中,激光器区的长度为400微米至2000微米。激光器区的长度越长,激光器区的输出功率一般越大。激光器区的输出功率决定了电吸收调制激光器的输出功率。本申请通过增加波导层增加电吸收调制激光器的输出功率。相应地,本申请进一步通过增加激光器区的长度增加激光器区的输出功率。
本申请第二方面提供了一种光发射组件。光发射组件包括光探测器和上述第一方面或第一方面任意一种实施方式所述的电吸收调制激光器。其中,电吸收调制激光器产生的信号光包括背向光和正向光。电吸收调制激光器用于输出正向光。光探测器用于接收背向光,将背向光转化为电信号。
本申请第三方面提供了一种光终端。光终端包括处理器和光发射组件。光发射组件包括上述第一方面或第一方面任意一种实施方式所述的电吸收调制激光器。处理器用于为电吸收调制激光器提供电调制信号。电吸收调制激光器用于根据电调制信号调制激光,得到信号光。
附图说明
图1为本申请的应用场景的无源光网络系统框架示意图;
图2为本申请中提供的电吸收调制激光器的一个结构示意图;
图3为本申请中提供的电吸收调制激光器的侧视图;
图4为本申请中提供的脊型结构的电吸收调制器区的一个截面示意图;
图5为本申请中提供的双脊型结构的电吸收调制器区的一个截面示意图;
图6为本申请中提供的包括上包层的脊型结构的电吸收调制器区的一个截面示意图;
图7为本申请中提供的包括上包层的双脊型结构的电吸收调制器区的一个截面示意图;
图8为本申请中提供的电吸收调制器区的一个电连接示意图;
图9为本申请中提供的电吸收调制器区的另一个电连接示意图;
图10为本申请中提供的电吸收调制激光器的俯视图;
图11为本申请中提供的光发射组件的结构示意图;
图12为本申请中提供的光终端的结构示意图。
具体实施方式
本申请提供了一种电吸收调制激光器、光发射组件和光终端。通过引入波导层,本申请的技术方案可以提高电吸收调制器的饱和吸收光功率,进而提高电吸收调制激光器的输出功率。
本申请中的电吸收调制激光器可以应用于光通信领域。例如,可以应用于无源光网络 (Passive Optical Network,PON)系统。图1为本申请的应用场景的PON系统框架示意图。如图1所示,PON系统包括光线路终端(Optical Distribution Network,OLT)101,光分配网络(Optical Distribution Network,ODN)102和光终端103~105。PON系统是一种点对多点的单纤双向光接入网络(在图1中,一个OLT对应3个光终端)。PON系统中的ODN 102使用光纤和无源组件(例如分光/合路器1021)。在PON系统中,分光/合路器1021是点到多点的核心器件,PON系统利用分光/合路器1021来分离和收集通过网络传输的信号光。具体地,在下行方向,OLT 101通过分光/合路器1021将信号光分配到所有的光终端;在上行方向,来自各个光终端的信号光分时的通过分光/合路器1021耦合到同一根光纤,传输到OLT 101。光终端103~105可以是光网络单元(Optical Network Unit,ONU)或光网络终端(Optical network terminal,ONT)。应理解,光终端也可以称为光网络终端或PON客户侧设备等。对此,本申请不做限定。
在信号光的传输过程中,光纤和分光/合路器1021会产生损耗。损耗的大小一般与OLT 101和光终端的距离及分光/合路器分支比成正比。因此,提高OLT 101或光终端的光发射功率有利于提高PON系统的覆盖面积。OLT 101或光终端可以采用电吸收调制激光器产生信号光。电吸收调制激光器包括激光器区和电吸收调制器区。激光器区的输出功率为激光的功率,电吸收调制激光器或电吸收调制器区的输出功率为信号光的功率。在一定程度上,激光的功率和信号光的功率成正比。因此,可以通过提高激光的功率来提高信号光的功率。但是,随着激光的功率的增加,电吸收调制器区的有源层会进入饱和状态,从而限制电吸收调制激光器的输出功率。
为此,本申请中提供了一种电吸收调制激光器。电吸收调制激光器包括位于同一半导体衬底上的激光器区、电隔离区和电吸收调制器区。电吸收调制器区包括波导层和第一有源层。波导层设置在衬底和第一有源层之间。此时,电吸收调制器区可以将部分激光引入波导层,提高电吸收调制器的饱和吸收光功率。因此,本申请可以提高电吸收调制激光器的输出功率。
应理解,图1中的PON系统只是本申请中电吸收调制激光器的一个应用场景。在实际应用中,电吸收调制激光器还可以应用于其他的场景。例如,网关和无线接入点(Access Point,AP)的光纤通信、海底光缆或基站之间的光纤通信等。
图2为本申请中提供的电吸收调制激光器的一个结构示意图。如图2所示,沿Z轴的正方向,电吸收调制激光器包括位于同一半导体衬底202上的电吸收调制器区,电隔离区和激光器区。电吸收调制器区和电隔离区的交界线位于平面207,电隔离区和激光器区的交界线位于平面208。沿Y轴的正方向,电吸收调制激光器包括N电极层201、衬底202、有源层、脊波导和P电极层。
其中,有源层包括上分别光限制层,量子阱层和下分别光限制层。上分别光限制层和下分别光限制层用于向量子阱层提供载流子,在垂直方向限制光子。上分别光限制层或下分别光限制层的厚度在0.05至0.1微米之间。为了减小损耗,上分别光限制层和下分别光限制层可以为非故意掺杂的四元材料。例如,折射率渐变的InGaAlAs。量子阱层用于将电能转化为光子。量子阱层为非故意掺杂的四元材料。例如,折射率渐变的InGaAlAs。量子阱层可以为多量子阱有源区层。量子阱层的厚度在0.1微米至0.2微米之间。
P电极层也称为上电极层。P电极层的材料为钛、铂或金合金等。P电极层的厚度在0.5微米至2微米之间。N电极层也称为下电极层。N电极层的材料为金锗镍合金或金等。N电极层的厚度在0.2微米至0.5微米之间。激光器区与电吸收调制器区的N电极层为共电极结构(同一电极)。对于行波电极调制器来说,N电极层可以位于电吸收调制激光器的正面,具体请查阅后续对行波电极结构的相关描述。
激光器区用于产生激光,激光器区可以是激分布反馈式激光器区或分布布拉格反射式激光器区。沿Y轴的正方向,激光器区包括第二N电极层、第二衬底、第二有源层、第二脊波导和第二P电极层210。第二有源层包括第二上分别光限制层、第二量子阱层和第二下分别光限制层。当在激光器区上施加超过其阈值的正向偏置电流,激光器区产生激光。具体地,当在第二P电极层210上施加足够强的正向偏置电流时,第二量子阱层作为谐振腔产生稳定的激光振荡。第二量子阱层通过激光振荡产生受激辐射,进而产生激光。激光器区的左端面(平面208)输出激光。激光通过电隔离区后被引入电吸收调制器区。
电吸收调制器区用于调制激光,得到信号光。沿Y轴的正方向,电吸收调制器区包括第一N电极层、第一衬底、波导层203、第一有源层、第一脊波导和第一P电极层209。第一有源层包括第一上分别光限制层106、第一量子阱层205和第一下分别光限制层204。波导层也称为无源波导层。波导层的材料可以是铟镓砷磷InGaAsP或铟镓铝砷InGaAlAs。当激光被引入电吸收调制器区后,一部分激光被引入第一有源层,另一部分激光被引入波导层。当电吸收调制器区被施加电调制信号时,电吸收调制器区调制激光,得到信号光。
波导层会吸收部分被引入的激光,从而在一定程度上降低信号光的功率,产生损耗。具体地,部分激光在被引入波导层后,波导层会吸收部分激光,造成激光的功率下降。本申请可以限定波导层的折射率小于第一有源层的有效折射率,从而降低波导层中激光的功率。在降低波导层中激光的功率的情况下,波导层中的损耗也将减少。其中,当波导层包括上包层和/或下包层时,波导层的折射率是指有效折射率。
电隔离区位于激光器区和电吸收调制器区之间。因为激光器区的工作状态为正偏,电吸收调制器区的工作状态为反偏,激光器区和电吸收调制器区需要一个高阻值的电隔离区来减小串扰。电隔离区可以是深刻蚀的凹槽,或离子注入来形成隔离区。沿Y轴的正方向,电隔离区包括第一N电极层、第一衬底、波导层、第一有源层和第一脊波导。通过隔离激光器区和电吸收调制器区的电连接,电隔离区隔离了电调制信号和激光偏置电流的串扰。具体地,电隔离区隔离了第一P电极层和第二P电极层的电连接。并且,当在第一脊波导和第一P电极层之间包括接触层时,电隔离区可以不包括接触层。
在其他实施例中,激光器区的右端面镀有高反射膜。高反射膜用于提高激光器区的右端面的反射率,提高激光器区的输出功率。电吸收调制器区的左端面可以镀增透膜。电吸收调制器区输出的信号光在左端面输出。通过增加增透膜,有利于降低信号光的反射损耗,提高电吸收调制器区的输出功率。
应理解,图2所示的电吸收调制激光器只是一个示例。在实际应用中,本领域技术人员可以根据需求对电吸收调制激光器进行适应性的修改。
例如,如图2所示,第一量子阱层和第二量子阱层属于同一量子阱层。在实际应用中,第一量子阱层和第二量子阱层可以属于不同的量子阱层。具体地,当第一量子阱层和第二 量子阱层属于不同的量子阱层时,第一量子阱层和第二量子阱层可以包括以下一项或多项区别点。第一量子阱层和第二量子阱层的厚度不同。第一量子阱层和第二量子阱层的材料不同。在第一量子阱层和第二量子阱层的厚度相同的情况下,第一量子阱层和第二量子阱层在Y轴方向上存在错位,或者说,第一量子阱层在平面207上的投影和第二量子阱层在平面207上的投影不重合。类似的,第一上分别光限制层和第二上分别光限制层可以属于不同的分别光限制层。第一下分别光限制层和第二下分别光限制层可以属于不同的分别光限制层。
例如,如图2所示,第一有源层、波导层、第一N电极层和第一脊波导延伸至平面208。在实际应用中,第二有源层、波导层、第二N电极层和第二脊波导可以延伸至平面207。此时,沿Y轴的正方向,电隔离区包括第二N电极层、第二衬底、波导层、第二有源层和第二脊波导。应理解,在实际应用中,第二有源层、波导层、第二N电极层和第二脊波导可以延伸至隔离区的中间区域。此时,沿Y轴的正方向,电隔离区包括第一N电极层、第二N电极层、第一衬底、第二衬底、波导层、第一有源层、第二有源层、第一脊波导和第二脊波导。
例如,如图2所示,第一N电极层延伸至平面208,第二N电极层延伸至平面208。第一N电极层和第二N电极层属于同一N电极层。在实际应用中,电隔离区可以不包括第一N电极层。此时,第一N电极层延伸至平面207,第二N电极层延伸至平面208。第二N电极层和第一N电极层被隔离区隔离。
例如,图3为本申请中提供的电吸收调制激光器的侧视图。如图3所示,电吸收调制激光器还包括光栅302、上盖层303和接触层304。其中,波导层203包括下包层301和芯层305。下包层301的材料可以是磷化铟InP。下包层301被平面208划分为第一下包层和第二下包层。电吸收调制器区和电隔离区包括第一下包层,激光器区包括第二下包层。光栅302位于激光器区。光栅302用于对激光器进行选模,实现单模激射。上盖层303的材料可以是InP。上盖层303位于上分别光限制层和接触层304之间。接触层304的厚度在0.05微米至0.3微米之间。为了便于和P电极层形成欧姆接触,接触层304为重掺杂的In 0.53Ga 0.47As。掺杂浓度大于1E19cm -3
在本申请中,通过增加波导层,可以提高电吸收调制激光器的输出功率。但是,本申请会在一定程度上降低信号光的消光比。具体地,信号光的消光比(Extinction ratio,ER)的计算公式如下:
ER=4.343×Γ×[α QW(V off)-α QW(V on)]×L
其中,Γ为第二量子阱层的光限制因子。α QW(V off)为施加低电平信号时,电吸收调制器区的吸收系数。α QW(V on)为施加高电平信号时,电吸收调制器区的吸收系数。L为电吸收调制器区的长度。在增加波导层后,第二量子阱层的光限制因子会减小。此时,根据上述公式可知,信号光的ER会减小。为此,本申请通过增加电吸收调制器区的长度来增大ER。具体地,本申请可以限定电吸收调制器区在第一方向上的长度大于300微米,或大于700微米。第一方向为激光器区中激光的传播方向。第一方向为图2中的Z轴的负方向。
在前述图2中,电吸收调制器区为脊型结构。电吸收调制器区包括第一部分和位于第一部分下层的第二部分。第二部分的宽度大于第一部分的宽度。第二部分包括有源层,波 导层和衬底。为了提高工艺容差,可以将第二部分和第一部分的交界线设置在波导层。具体地,图4为本申请中提供的脊型结构的电吸收调制器区的一个截面示意图。图4为图3中平面207的截面示意图。如图4所示,沿Y轴的正方向,电吸收调制器区包括第一N电极层201、衬底202、波导层203、第一下分别光限制层204、第一量子阱层205、第一上分别光限制层206、上盖层303、第一接触层304和第一P电极层209。波导层203包括下包层301和芯层305。
其中,电吸收调制器区为脊型结构。电吸收调制器区包括上层的第一部分和下层的第二部分。第一N电极层201,衬底202属于下层的第二部分。第一下分别光限制层204、第一量子阱层205、第一上分别光限制层206、上盖层303、第一接触层304和第一P电极层209属于上层的第一部分。第一部分和第二部分的交界线为直线401。直线401将波导层203划分为第一波导层和第二波导层。第一波导层属于第一部分,第二波导层属于第二部分。当直线401位于波导层时,因为波导层可以有较厚的厚度,在加工电吸收调制器区的过程中可以有较大的工艺容差。并且,使得电吸收调制器区较容易实现基横模工作。
为了灵活控制信号光的出光功率。电吸收调制器区可以为双脊型结构。具体地,图5为本申请中提供的双脊型结构的电吸收调制器区的一个截面示意图。如图5所示,在图4的基础上,电吸收调制器区的第二部分包括第三部分和位于第三部分下层的第四部分。第四部分的宽度大于第三部分的宽度。第四部分和第三部分的交界线为直线501。其中,第二波导层属于第三部分。衬底202和第一N电极层201属于第四部分。信号光在第一有源层和波导层中的占比与第二波导层的宽度和第一波导层的宽度的比值相关,即第一激光和第二激光的功率比值与第二波导层的宽度相关。因此,通过调整第二波导层的宽度(即第三部分的宽度),可以改变第二波导层的宽度和第一波导层的宽度的比值,进而改变信号光在第一有源层和波导层中的占比。并且,信号光在第一有源层和波导层中的占比和电吸收调制器区的出光功率相关。因此,本申请通过整第二波导层的宽度,可以灵活控制电吸收调制器区的出光功率。
为了降低波导层203的加工成本,波导层203可以包括上包层、芯层和下包层。具体地,图6为本申请中提供包括上包层的脊型结构的电吸收调制器区的一个截面示意图。如图6所示,在图4的基础上,波导层203包括上包层601、芯层305和下包层301。上包层601设置在第一下分别光限制层204和芯层305之间。芯层305的加工成本一般大于相同厚度的上包层601或下包层301的加工成本。因此,当波导层203包括下包括或上包层时,可以通过降低芯层的厚度来降低加工成本。
应理解,在波导层包括上包层时,图6中的电吸收调制器区为脊型结构。在实际应用中,电吸收调制器区还可以是双脊型结构。具体地,图7为本申请中提供的包括上包层的双脊型结构的电吸收调制器区的一个截面示意图。如图7所示,在图5的基础上,波导层203包括上包层601、芯层305和下包层301。上包层601设置在第一下分别光限制层204和芯层305之间。
此时,上包层601、芯层305和下包层301形成波导,从而减小芯层305的厚度。其中,上包层601的厚度可以为0.01微米至5微米。波导层203的厚度可以为0.03微米至6微米。进一步地,由于波导层会吸收部分被引入的激光,从而在一定程度上降低第二信 号光的功率,产生损耗。本申请可以限定上包层601和/或的下包层301折射率小于第一有源层的有效折射率,降低激光在波导层中的损耗。
当电吸收调制器区为双脊型结构时,第一部分的宽度为d1微米,第三部分的宽度为d2微米。为更好的保证加工过程中的工艺容差,可以限定d2和d1的差值大于4。
在增加电吸收调制器区的长度后,会增加寄生电容的大小,从而降低电吸收调制器区的调制带宽。另一方面,电吸收调制器区的等效电路不再是集总参数电路,电调制信号在电吸收调制器区两个端面会存在反射,从而降低调制带宽。具体地,图8为本申请中提供的电吸收调制器区的一个电连接示意图。如图8所示,电调制信号施加在第一P电极层209的中部。因此,电调制信号在电吸收调制器区的两端存在反射,从而影响电吸收调制器区的调制带宽。并且,电吸收调制器区的长度越长,反射的影响越大。
为此,本申请中的P电极和N电极为行波电极结构。拥有行波电极结构的电吸收调制器区为行波电极调制器。图9为本申请中提供的电吸收调制器区的另一个电连接示意图。如图9所示。电调制信号施加第一P电极层209的输入端。输入端为图2中的平面207。光传输方向如图9中的箭头所示。光传输方向和电调制信号的传输方向相同。第一P电极层209的输出端和匹配负载相连。匹配负载连接第一N电极层201。第一N电极层201接地。此时,在电调制信号传输方向上的每一小段长度内,电吸收调制器区的并联电容C被串联的匹配负载所补偿,从而形成特征阻抗。特征阻抗可以阻止第一P电极层209的输出端对电调制信号的反射,从而降低反射对调制带宽的影响。
在图2中,第一N电极层处于电吸收调制器区的反面。当电吸收调制器区为脊型或双脊型结构时,若第一部分和第二部分的分界线在波导层以下,则第一N电极层可以处于电吸收调制器区的正面。例如第一N电极层位于图5中的交界线501上。图10为本申请中提供的电吸收调制激光器的俯视图。如图10所示,电吸收调制激光器包括电吸收调制器区、电隔离区和激光器区。电吸收调制器区包括第一P电极层1002、第一N电极层1001和第一N电极层1003。第一N电极层1001和第一N电极层1003在电吸收调制器区的正面。并且,第一P电极层1002为共面波导的信号电极,两侧的第一N电极层1001和第一N电极层1003为地电极。共面波导又叫共面微带传输线。共面波导传播的是横电磁波,可以灵活设计共面波导使得其特征阻抗与负载匹配,减小负载的电信号反射,增加调制带宽。
在其他实施例中,激光器区的第二N电极层位于激光器区的正面。如图10所示,激光器区包括第二P电极层1005、第二N电极层1004和第二N电极层1006。在侧视图中,第二P电极层1005和第二N电极层1004,或第二N电极层1006处于不同的平面。例如,图5中,第二P电极层1005可以处于接触层304上。第二N电极层1004和第二N电极层1006可以处于交界线501上。
在其他实施例中,信号光的输出方向和第一方向存在4度到15度的夹角。具体地,当信号光的输出方向垂直于输出端面(电吸收调制器区的左端面)时。信号光会在输出端面产生端面反射。端面反射会影响激光器区的特性,例如使得激光器区的激射波长产生漂移或者造成电吸收调制器区的眼图恶化。图2所示,第一脊波导和第二脊波导平行于Z轴的直波导。在本申请中,第一脊波导可以为弯曲波导。此时,第一脊波导向X轴弯曲。弯曲的第一脊波导在输出端面(电吸收调制器区的左端面)上的切线为信号光的输出方向。输 出方向和Z轴的正方向(第一方向)存在4度到15度的夹角。
在其他实施例中,如图所示,在Y轴方向上,当第一有源层和第二有源层存在错位时,第一有源层和第二有源层存在一定的错位误差范围。具体地,第一量子阱层和第二量子阱层在第一平面上的投影存在公共区域。第一平面垂直于衬底的上表面,第一平面的法线平行于激光器区中激光的传播方向。例如第一平面可以为平面207或平面208。
在其他实施例中,激光器区的长度为400微米至2000微米。根据前述对图2中的电吸收调制激光器的描述可知,通过引入波导层,电吸收调制器区可以将部分激光引入波导层,提高电吸收调制器区进入饱和状态时激光的功率。因此,本申请可以增加激光器区的输出功率。激光器区的长度越长,激光器区的输出功率一般越大。在实际应用中,激光器区的长度一般小于400微米。本申请限定激光器区的长度为400微米至2000微米。
上面对电吸收调制激光器进行了描述。本申请中,电吸收调制器区可以将部分激光引入波导层,提高电吸收调制器的饱和吸收光功率。因此,本申请可以提高电吸收调制激光器的输出功率。
下面对本申请中提供的光发射组件进行描述。图11为本申请中提供的光发射组件的结构示意图。如图11所示,光发射组件1101包括电吸收调制激光器1103和光探测器102。其中,电吸收调制激光器1103产生的信号光包括背向光和正向光。电吸收调制激光器1103用于输出正向光。光探测器1102用于接收背向光,将背向光转化为电信号。电信号可以用于和电调制信号做比较,确定电吸收调制激光器1103的工作状态是否正常。具体地,当电信号和电调制信号相同时,表示电吸收调制激光器1103的工作状态正常;当电信号和电调制信号不同时,表示电吸收调制激光器1103的工作状态不正常。
其中,电吸收调制激光器1103可以参考前述图2至图4,图6至图7中任意一个实施例的电吸收调制激光器。例如,如图2所示,电吸收调制激光器1103包括电吸收调制器区和激光器区。电吸收调制器区的第一有源层和衬底之间包括波导层。例如,如图6所示,电吸收调制激光器1103的电吸收调制器区包括上包层。
上面对本申请的光发射组件进行了描述。下面对本申请中提供的光终端进行描述。图12为本申请中提供的光终端的结构示意图。如图12所示,光终端1201包括处理器1202和光发射组件1203。光终端1201具体可以是图1中的OLT或光终端。应理解,在实际应用中,光终端1201还可以是交换机或数据中心等。
光发射组件1203可以参考前述图12中的光发射组件1201。电吸收调制激光器可以参考前述图2至图4,图6至图7中任意一个实施例的电吸收调制激光器。处理器1202可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器1202还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。
其中,光发射组件1203包括电吸收调制激光器。处理器1202用于为电吸收调制激光器提供电调制信号。电吸收调制激光器用于根据电调制信号调制激光,得到信号光。信号光具体可以是指正向光。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本 技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (16)

  1. 一种电吸收调制激光器,其特征在于,包括:位于同一半导体衬底上的激光器区、电隔离区和电吸收调制器区;
    所述电隔离区设置在所述激光器区和所述电吸收调制器区之间;
    所述激光器区用于产生激光,所述激光被耦合进与所述激光器区相连的所述电吸收调制器区;
    所述电吸收调制器区用于调制所述激光,得到信号光;
    其中,所述电吸收调制器区包括第一有源层和波导层,所述波导层设置在所述衬底和所述第一有源层之间。
  2. 根据权利要求1所述的电吸收调制激光器,其特征在于,所述电吸收调制器区在第一方向上的长度大于300微米,所述第一方向为所述激光器区中激光的传播方向。
  3. 根据权利要求1或2所述的电吸收调制激光器,其特征在于,所述电吸收调制器区包括第一P电极和第一N电极,所述第一P电极和所述第一N电极为行波电极结构。
  4. 根据权利要求1至3中任意一项所述的电吸收调制激光器,其特征在于,所述波导层包括上包层和芯层,所述上包层设置在所述第一有源层和所述芯层之间。
  5. 根据权利要求4所述的电吸收调制激光器,其特征在于,所述波导层还包括下包层,所述下包层设置在所述衬底和所述芯层之间。
  6. 根据权利要求4或5所述的电吸收调制激光器,其特征在于,所述上包层的厚度在0.01微米至5微米之间。
  7. 根据权利要求4至6中任意一项所述的电吸收调制激光器,其特征在于,所述波导层的厚度在0.03微米至6微米之间。
  8. 根据权利要求1至7中任意一项所述的电吸收调制激光器,其特征在于,所述电吸收调制器区为脊型结构,所述电吸收调制器区包括第一部分和位于所述第一部分下层的第二部分,所述第二部分的宽度大于所述第一部分的宽度;
    所述第一有源层属于所述第一部分;
    所述衬底属于所述第二部分;
    其中,所述波导层包括第一波导层和第二波导层,所述第一波导层属于所述第一部分,所述第二波导层属于所述第二部分。
  9. 根据权利要求8所述的电吸收调制激光器,其特征在于,所述第二部分为脊型结构,所述第二部分包括第三部分和位于所述第三部分下层的第四部分,所述第四部分的宽度大于所述第三部分的宽度;
    其中,所述第二波导层属于所述第三部分,所述衬底属于所述第四部分。
  10. 根据权利要求9所述的电吸收调制激光器,其特征在于,所述第一部分的宽度和所述第三部分的宽度的差值大于4微米。
  11. 根据权利要求1至10中任意一项所述的电吸收调制激光器,其特征在于,所述第一有源层包括第一量子阱层,所述激光器区包括第二有源层,所述第二有源层包括第二量子阱层;
    其中,所述第一量子阱层和所述第二量子阱层在第一平面上的投影存在公共区域,所 述第一平面垂直于所述衬底的上表面,所述第一平面的法线平行于所述激光器区中激光的传播方向。
  12. 根据权利要求1至11中任意一项所述的电吸收调制激光器,其特征在于,所述波导层的材料为铟镓砷磷InGaAsP或铟镓铝砷InGaAlAs。
  13. 根据权利要求1至12中任意一项所述的电吸收调制激光器,其特征在于,所述波导层延伸至所述电隔离区和所述激光器区的交界处。
  14. 根据权利要求1至13中任意一项所述的电吸收调制激光器,其特征在于,所述激光器区的长度为400微米至2000微米。
  15. 一种光发射组件,其特征在于,包括:光探测器和上述权利要求1-14中任一所述的电吸收调制激光器;
    其中,所述电吸收调制激光器产生的信号光包括背向光和正向光;
    所述电吸收调制激光器用于输出所述正向光;
    所述光探测器用于接收所述背向光,将所述背向光转化为电信号。
  16. 一种光终端,其特征在于,包括:处理器和光发射组件;
    所述光发射组件包括上述权利要求1-14中任一所述的电吸收调制激光器;
    所述处理器用于为所述电吸收调制激光器提供电调制信号;
    所述电吸收调制激光器用于根据所述电调制信号调制激光,得到信号光。
PCT/CN2022/087645 2021-04-20 2022-04-19 电吸收调制激光器、光发射组件和光终端 WO2022222919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110426648.5A CN115224584A (zh) 2021-04-20 2021-04-20 电吸收调制激光器、光发射组件和光终端
CN202110426648.5 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022222919A1 true WO2022222919A1 (zh) 2022-10-27

Family

ID=83604191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087645 WO2022222919A1 (zh) 2021-04-20 2022-04-19 电吸收调制激光器、光发射组件和光终端

Country Status (2)

Country Link
CN (1) CN115224584A (zh)
WO (1) WO2022222919A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069136A (ja) * 2001-08-29 2003-03-07 Furukawa Electric Co Ltd:The 光集積デバイス及びその作製方法
JP2005129824A (ja) * 2003-10-27 2005-05-19 Opnext Japan Inc 半導体レーザ装置
CN1630149A (zh) * 2003-12-16 2005-06-22 中国科学院半导体研究所 电吸收调制分布反馈半导体激光器件的制作方法
US20070189344A1 (en) * 2004-02-20 2007-08-16 Nec Corporation Modulator-integrated light source and its manufacturing method
CN101471541A (zh) * 2007-12-26 2009-07-01 中国科学院半导体研究所 选择区域外延叠层行波电吸收调制激光器的制作方法
CN101939689A (zh) * 2007-09-10 2011-01-05 集成光子学中心有限公司 带有弱导光波导模式的电吸收调制器
US20120008895A1 (en) * 2010-07-07 2012-01-12 Opnext Japan, Inc. Semiconductor optical device, optical transmitter module, optical transceiver module, and optical transmission equipment
CN1997924B (zh) * 2004-04-15 2016-05-04 英飞聂拉股份有限公司 用于wdm传输网络的无制冷且波长栅格漂移的集成光路(pic)
CN207149876U (zh) * 2017-06-12 2018-03-27 陕西源杰半导体技术有限公司 一种双量子阱电吸收调制激光器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069136A (ja) * 2001-08-29 2003-03-07 Furukawa Electric Co Ltd:The 光集積デバイス及びその作製方法
JP2005129824A (ja) * 2003-10-27 2005-05-19 Opnext Japan Inc 半導体レーザ装置
CN1630149A (zh) * 2003-12-16 2005-06-22 中国科学院半导体研究所 电吸收调制分布反馈半导体激光器件的制作方法
US20070189344A1 (en) * 2004-02-20 2007-08-16 Nec Corporation Modulator-integrated light source and its manufacturing method
CN1997924B (zh) * 2004-04-15 2016-05-04 英飞聂拉股份有限公司 用于wdm传输网络的无制冷且波长栅格漂移的集成光路(pic)
CN101939689A (zh) * 2007-09-10 2011-01-05 集成光子学中心有限公司 带有弱导光波导模式的电吸收调制器
CN101471541A (zh) * 2007-12-26 2009-07-01 中国科学院半导体研究所 选择区域外延叠层行波电吸收调制激光器的制作方法
US20120008895A1 (en) * 2010-07-07 2012-01-12 Opnext Japan, Inc. Semiconductor optical device, optical transmitter module, optical transceiver module, and optical transmission equipment
CN207149876U (zh) * 2017-06-12 2018-03-27 陕西源杰半导体技术有限公司 一种双量子阱电吸收调制激光器

Also Published As

Publication number Publication date
CN115224584A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
US10826267B2 (en) Surface coupled systems
US7760782B2 (en) Distributed bragg reflector type directly modulated laser and distributed feed back type directly modulated laser
KR100244821B1 (ko) 발광소자와 외부변조기의 집적소자
KR102495786B1 (ko) 반도체 레이저, 광 전송기 컴포넌트, 광 회선 단말 및 광 네트워크 유닛
KR20170071985A (ko) 반도체 광 소자
US6519270B1 (en) Compound cavity reflection modulation laser system
JP6717733B2 (ja) 半導体光集積回路
CN114094438B (zh) 一种双电极共调制发射激光器
US20100215308A1 (en) Electroabsorption modulators with a weakly guided optical waveguide mode
US20130207140A1 (en) Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
CA2165711C (en) Semiconductor light source having a spectrally broad, high power optical output
JP2019008179A (ja) 半導体光素子
JPH0365621A (ja) レーザー光検出器の組み合せ
US9281661B2 (en) Integrated optoelectronic device comprising a Mach-Zehnder modulator and a vertical cavity surface emitting laser (VCSEL)
WO2018196689A1 (zh) 多波长混合集成光发射阵列
WO2022222919A1 (zh) 电吸收调制激光器、光发射组件和光终端
CN114530762B (zh) 一种半导体光放大器芯片
CN114924362A (zh) 一种收发双向集成芯片及其在光双向收发组件中的应用
US6760141B2 (en) Semiconductor optical modulator and semiconductor optical device
JPH08248364A (ja) 光強度変調素子及び光強度変調素子付き半導体レーザ
US4747107A (en) Single mode injection laser
Cheng et al. Demonstration of a High-Power and High-Reflection-Tolerance Semiconductor Laser for Co-Packaged Optics
Otsubo et al. Low-driving-current high-speed direct modulation up to 40 Gb/s using 1.3-μm semi-insulating buried-heterostructure AlGaInAs-MQW distributed reflector (DR) lasers
WO2012124741A1 (ja) 半導体レーザー
JP3164063B2 (ja) 半導体光変調器及び半導体光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791026

Country of ref document: EP

Kind code of ref document: A1