CN101932529A - 净水装置 - Google Patents

净水装置 Download PDF

Info

Publication number
CN101932529A
CN101932529A CN200880124675XA CN200880124675A CN101932529A CN 101932529 A CN101932529 A CN 101932529A CN 200880124675X A CN200880124675X A CN 200880124675XA CN 200880124675 A CN200880124675 A CN 200880124675A CN 101932529 A CN101932529 A CN 101932529A
Authority
CN
China
Prior art keywords
coating
electrode
running contact
ftc
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880124675XA
Other languages
English (en)
Other versions
CN101932529B (zh
Inventor
H·R·赖因豪特
A·范德沃尔
E·H·M·塔布洛特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voltea Ltd
Original Assignee
Voltea Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voltea Ltd filed Critical Voltea Ltd
Publication of CN101932529A publication Critical patent/CN101932529A/zh
Application granted granted Critical
Publication of CN101932529B publication Critical patent/CN101932529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及改进的流通型电容器和净化水溶液的方法。尽管最近有所发展,但FTC叠柱中所用的电极的电容仍需要改进。现有技术状况的另一问题在于,需要高压缩力组装FTC叠柱以降低电极和集电器之间的电接触电阻。已经令人惊讶地发现,用聚合电解质活化的FTC电极实现这些目的中的至少一个。

Description

净水装置
发明领域
本发明涉及改进的流通型(flow through)电容器和净化水溶液的方法。
背景现有技术
近年来,已日益认识到人类活动对环境的影响及其可能产生的负面后果。缩减、再利用和再循环资源的方式变得越来越重要。特别地,净水成为稀缺商品。因此,近年来公开了用于净化水的各种方法和装置。
不同方法在本领域中已知用于净化水。为了除去离子,尤其是如WO01/30229中公开的硬性离子(Ca2+和Mg2+)离子交换或如EP-A-1769 116中公开的电去离子作用(EDI)是本领域已知和常用的。但是,这些方法中所用的离子交换材料需要定期再生。离子交换的进一步缺点是离子交换树脂的有限寿命和/或如在家用器具中用于制造软水量所需的树脂体积。
另一已知的水处理方法是使用尤其如美国专利6,309,532、EP-A-0861114、WO02/086195和WO03/009920中所述的流通型电容器(FTC)的电容性去离子作用。所述方法包括使用电可再生的电化电池进行电极的电容性去离子作用和电化学净化和再生。通过将电极充电,从电解质中除去离子并留在电极处的电双层中。该电池可以(部分)电再生以解吸这类之前除去的离子。可以在无外加化学物质的情况下进行该再生。
流通型电容器(FTC)通常包括一对或多对隔开的电极(阴极和阳极),并配有通常紧邻或非常接近电极的集电器或背衬层。也存在允许液体流过该流通型电容器并接触集电器和电极的流径。集电器是导电的并将电荷传入和传出电极。传统FTC包含将FTC分隔成正电荷侧和负电荷侧的隔板。紧邻隔板并也紧邻集电器放置高表面积电极。在传统FTC中,通过压缩力,通常通过机械紧固法将电极、隔板和集电器的层以“三明治”方式紧固在一起。
在最近的公开(US 6,709,560)中,提出FTC技术的改进形式,所谓的电荷屏障流通型电容器技术,表明紧邻流通型电容器的电极布置的电荷屏障可以补偿孔隙体积离子的吸附和排出造成的孔隙体积损失。术语电荷屏障是指可透或半可透并能够留住电荷的材料层。孔隙体积离子被留持或截留在类似带电的离子迁向的电荷屏障侧上。通常,电荷屏障通过形成离子浓缩层来发挥作用。形成离子浓缩层的作用抵消或补偿常与孔隙体积离子联系在一起的损失。这种作用能够大大提高离子效率,这又能够能量有效地净化浓缩流体。
但是,电荷屏障未充分改进电极电容。仍然需要提高的离子储存容量。电荷屏障的不利方面在于其使FTC更昂贵。添加的电荷屏障层也提高了FTC叠柱的厚度。
US2005/0042513公开了通过添加掺杂剂来提高PTFE基导电薄片(sheet)电极的性能。在US 6,297,293中公开了制造电极的另一方法,其中提出介孔聚合物材料。
US 7,206,189公开了通过混合膨胀石墨(exfoliated graphite)和电极材料由此形成混合物来制造复合集电薄片。这种方法的缺点在于,尽管可通过这类复合板降低接触电阻,但不提高电容。
无论如何,尽管有上述发展,但FTC叠柱中所用的电极的电容仍需要改进。目前,适用于FTC的商业电极,如来自Material Methods的PACMM系列电极(商标)的电容为大约10-25F/g。对于本发明,需要根据下文的实施例中公开的方法测得的大于25F/g的电容。
作为参考,根据B.E.Conway,Electrochemical Super capacitors:Scientific Fundamentals and Technological Applications(Springer,1999,ISBN:0306457369),电双层电容器(也称作超级电容器)的电极通常具有最多大约120F/g的电容。当这类超级电容器电极用在FTC中时,根据下文实施例中的方法测得的电容为大约最多25F/g。
现有技术状况的另一问题在于需要高压缩力组装FTC叠柱以降低电极和集电器之间的电接触电阻。
因此,本发明的目的是提供具有改进的电容的用在FTC器件中的电极。
本发明的另一目的是提供集成的集电器和电极以降低上述电接触电阻。这也能够制造挠性叠柱或甚至螺旋缠绕筒。
再一目的是提供更紧凑的FTC叠柱。这使该技术更适用在例如家用器具中。
已经令人惊讶地发现,用聚合电解质(poly-electrolytes)活化的FTC电极实现这些目的中的至少一个。这类电极具有比以传统方式活化,如用一价盐活化的电极更高的电容。
发明概述
相应地,本发明提供制备涂布的集电器的方法,包括下列步骤
a.制备涂布糊,其包含:
i.干涂料,包含:
1.50-98.5干质量%的比表面积为至少500平方米/克的碳;
2.1-40干质量%的粘合剂;
3.0.5-30干质量%的聚合电解质;和
ii.总涂布糊的20-80%的溶剂
b.在集电器上施加该涂布糊;
c.干燥该涂布的集电器。
另一方面,本发明提供电极涂层,其包含:
电极涂层,包含:
-50-98.5干质量%的比表面积为至少500平方米/克的碳;
-1-40干质量%的粘合剂;
-0.5-30干质量%的聚合电解质。
另一方面,本发明提供涂布的集电器,其包含
-集电器;和
-包含聚合电解质粘合剂和碳的电极涂层。
我们已经令人惊讶地发现,本发明的电极和提供所述电极的方法以及本发明的涂布的集电器提供比所述现有技术的电极高的离子储存容量。
本领域普通技术人员在阅读下列详述和所附权利要求时会看出这些和其它方面、特征和优点。为避免疑问,本发明的一个方面的任何特征可用在本发明的任何其它方面中。要指出,下列描述中给出的实施例旨在阐明本发明,而不是要将本发明限制于那些实施例本身。类似地,除非另行指明,所有百分比为重量/重量百分比。以格式“x至y”表示的数值范围被理解为包括x和y。当对于特定特征,以格式“x至y”描述多个优选范围时,要理解的是,也考虑结合不同端点的所有范围。
发明详述
FTC电池中所用的碳电极通常通过将它们置于浓盐溶液中来活化。电极中的高中性盐含量促进除离子容量以及离子电导率和因此去除速度。但是,在FTC电池使用过程中,这些离子会从电极材料中缓慢浸出,这造成降低的从进料水溶液中除去盐离子的电极总容量,以及降低的除盐动力。此外,由于在电极基质中存在孔隙体积,需要高的盐含量。在本发明中,我们使用聚合电解质活化碳电极。聚合电解质的一个优点在于,它们可吸附到碳粒子上,这防止它们从碳电极中浸出。另一优点在于,与传统方法中所用的一价盐相比,需要较低量的聚合电解质,因为没有材料浪费在填补孔隙体积上。
聚合电解质
在本发明中,聚合电解质可以是阴离子型或阳离子型的。含有该聚合电解质的碳电极可用在使用或不使用离子选择性膜构造的FTC电池中。原则上,阴离子型或阳离子型聚合电解质可用于阳极和阴极。阴离子型和阳离子型聚合电解质的混合物以及两性离子聚合物也可用于阳极和阴极。不过,优选地,阳离子型聚合物用于阳极,阴离子型聚合物用于阴极,以获得离子储存容量的最大提高。
本发明中合适的阳离子型聚合电解质是例如氮基聚合电解质。这种类型的市售聚合电解质是聚乙烯亚胺,如Lupasol(来自BASF)、聚季铵(polyquaterniums),如Merquat聚季铵(来自Nalco)、聚/多胺和聚乙烯基吡啶及其衍生物,以及阳离子型聚丙烯酰胺,如Accepta(来自Accepta)。
合适的阴离子型聚合电解质是磺化聚合物和羧化聚合物及其混合物。市售阴离子型聚合电解质是聚苯乙烯磺酸酯,如Flexan(来自National Starch),和聚羧酸酯,如Sokolan系列(来自Basf)。阳离子型和阴离子型聚合电解质都优选具有至少200D,更优选至少500D,再更优选至少1000D的分子量。该分子量优选不超过5,000,000D,优选小于100,000D,再更优选小于10,000D。聚合电解质可以均匀分散(homodisperse)或多分散以覆盖宽的分子量范围。
该聚合电解质优选以干涂层的按重量计至少0.5%,优选至少1%,更优选至少2%或甚至至少4%的浓度存在于该涂层中。该聚合电解质优选以干涂层的按重量计不大于30%,优选不大于20%,更优选不大于15%或甚至小于10%的浓度存在。
调节碳和聚合电解质的量以平衡阳极和阴极的电容。在实践中,这意味着与阴极相比,更多的聚合电解质和/或碳用于阳极。
粘合剂
该粘合剂可以是任何传统粘合剂。该粘合剂可与碳材料混合。该粘合剂优选是水基粘合剂。可以根据它们润湿碳粒子或集电器材料的能力来选择粘合剂体系,或可以将表面活性剂或其它试剂添加到该粘合剂混合物中以更好润湿碳粒子或石墨箔。
合适的商业粘合剂材料是聚丙烯酸基粘合剂,如来自3M的Fastbond系列。
该粘合剂优选以干涂层的按重量计至少1%,优选至少2%,更优选至少5%的浓度存在于该涂层中。该粘合剂优选以干涂层的按重量计小于50%,优选小于40%,更优选小于30%,再更优选小于20%,再更优选小于15%的浓度存在于该涂层中。
本发明的涂层中的碳包含活性炭和任选任何其它碳材料,如炭黑。该活性炭可以是蒸汽活化或化学活化的碳,优选为蒸汽活化的碳,如DLC,A supra eur(来自Norit)。该碳优选具有至少500平方米/克,优选至少1000平方米/克,更优选至少1500平方米/克的比表面积。该阳极和阴极甚至可以由不同的碳材料制成。碳表面积越高,该集电器的离子储存容量越高。可以例如通过本领域中常用的B.E.T.法测量碳的比表面积。
该碳优选以干涂层的按重量计至少50%,优选至少60%%,更优选至少70%或甚至至少75%的浓度存在于该涂层中。该组合物通常不含多于干涂层的98.5重量%的碳。
溶剂
适用于混合涂布糊的溶剂可以是适用于溶解聚合电解质的任何溶剂,优选水性溶剂,更优选水。该溶剂通常从该糊中蒸发以在集电器上形成固体涂层。该蒸发可以例如通过暴露在空气(环境空气或加热空气)中来实现。在干燥之前,该溶剂可以以总涂布糊的20-80%的量存在,但通常以总涂布糊的大约40-50%的量存在。在干燥后,该涂层优选含有少于25%溶剂,更优选少于15%,再更优选少于10%。
方法
在一个实施方案中,本发明提供制备涂布的集电器的方法,包括下列步骤
制备涂布糊,其包含:
碳;
粘合剂;
聚合电解质;和
溶剂
在集电器上施加该涂布糊;和干燥该涂布的集电器。
该集电器优选在两面上都涂布。不希望限制本发明,但集电器的两面通常都用相同涂布糊涂布。
干电极
通过本发明的方法制成的涂布到集电器上的干电极通常具有至少50,优选至少100,更优选至少200微米;和优选小于1000,更优选小于500微米的厚度。
如US2005/0042513中所公开的市售电极在施加到FTC上时通常具有10-25F/g的电容。本发明的电极通常具有大于25F/g,更优选至少30F/g的电容。
集电器
本发明的集电器可以是任何常见类型的集电器。该集电器的制造材料是导电材料。合适的材料是例如碳,如石墨,或具有高石墨含量的碳混合物,金属,如铜、钛、铂、(不锈)钢、镍和铝。该集电器通常为薄片(sheet)形式。这类薄片在本文中被规定为适合传输至少33Amps/m2,最多2000Amps/m2。当使用石墨箔表面时,这类表面可以电晕处理、等离子体蚀刻、化学或机械研磨或氧化以增强粘合剂粘合。石墨集电器的厚度随后通常变成100至1000微米,通常200至500微米。
电荷屏障层
电荷屏障在US 6,709,560中已被公开用于FTC。作为一个实施方案,本发明提供如上文公开的涂布的集电器,其进一步包含施加到电极涂层上的电荷屏障,该电荷屏障包含对阴离子或阳离子呈选择性的膜,该电荷屏障作为进一步涂层或作为层压层施加到电极涂层上。
在另一实施方案中,本发明提供包含本发明的涂布的集电器(其包含碳、粘合剂和聚合电解质)以及如US 6,709,560中公开的单独的传统电荷屏障的系统。
合适的膜材料可以是均匀或不均匀的。合适的膜材料包含阴离子交换和/或阳离子交换膜材料,优选为包含强离解阴离子基团和/或强离解阳离子基团的离子交换材料。这类膜材料的实例是Neosepta系列材料(商标,来自Tokuyama)、PC-SA和PC-SK系列(商标,来自PCAGmbH)、来自Fumatec的离子交换膜材料、离子交换膜材料Ralex(商标,来自Mega)或Excellion系列的不均匀膜材料(商标,来自Snowpure)。
叠柱(Stack)
FTC通常包含以下的至少一个重复单元:
-阴离子集电器/电极
-任选地阴离子交换膜作为电荷屏障
-传统FTC隔板
-任选地阳离子交换膜作为电荷屏障
-阴极集电器/电极。
通常,如实践中发现,传统FTC叠柱中的重复单元数受到所需压缩力的限制。在实践中,这意味着传统FTC叠柱包含1至20个重复单元。该新型的涂布的集电器具有较低的在电极和集电器之间的接触电阻,造成较低的每重复单元的所需压缩力。因此,相同数量的重复单元所需的压缩力可能较低,或可以在压缩力不变的情况下提高FTC中的重复单元数。本发明的FTC中的重复单元数优选为至少1,优选至少5,更优选至少10,再更优选至少20。出于实际原因,重复单元数通常不大于200,优选不大于150,不大于100或甚至不大于50。
本发明的叠柱通常在小于0.3巴,优选不大于0.22巴,优选不大于0.17巴或甚至小于0.1巴的压力下压缩。在传统FTC中,压缩压力为大约0.3-1巴。
尤其由于本发明的碳涂布的集电器的较低电接触电阻,本发明的涂布的集电器能够以螺旋缠绕方式构造FTC叠柱。在这种螺旋缠绕构造中,该FTC叠柱通常包含至少1个重复单元。螺旋缠绕形式的FTC叠柱通常包含少于20个重复单元。
涂布的集电器FTC的应用
涂布的集电器尤其可用于需要低系统成本的FTC器件,例如家用器具,如咖啡机、意式浓缩咖啡机(espresso machines)、洗衣机、洗碗机、带有出冰或出水器的冰箱、蒸汽熨斗等,其中除去硬性离子如钙和镁,以及其它离子是有益的。它们也可用于住宅水处理,如用于全家的使用点装置以及入口点装置。这些电极也可用于商业和工业用途,例如农业(例如地下水和地表水的处理)、锅炉水、冷却塔、工艺水、纸浆和纸、实验室水、废水处理、采矿中的水处理以及用于制造超纯水。最后,该电极可用于除去问题离子,如游泳池中的硝酸根和例如地下水中的砷和/或氟离子。
现在通过下列非限制性实施例例证本发明。
实施例1
此实施例涉及碳涂布糊的制备。
下面给出1千克活性炭涂布糊的配方。该糊中的聚合电解质含量取决于电极中的所需含量。在下列实施例中,阳极和阴极中的聚合电解质含量分别为14%w和11%w。
阳极
对于1千克干涂层
-140克聚乙烯亚胺(PEI),支化,Mw:25000(来自Sigma)
-800克碳A supra EUR(来自Norit)
-60克粘合剂:Fastbond 7434(3M,115克52%在水中)
-2升软化水
可以在混合之前将成分预溶解在一部分水中。
阴极
对于1千克干涂层
-110克聚(4-苯乙烯磺酸酯)Mw:70000(来自Sigma)
-810克碳A supra EUR(Norit).
-80克粘合剂:Fastbond 7434(3M,115克52%在水中)
-2升软化水
可以在混合之前将成分预溶解在一部分水中。
成分优选以下列次序混合:聚合电解质、水、活性炭和粘合剂。在3个步骤中进行碳的添加。在每次添加后混合溶液/分散体直至获得均匀糊。尤其在活性炭和粘合剂添加后,低速(大约80rpm)进行混合,而在3分钟后,该速度逐渐升至140rpm。
所得粘度为大约4000mPa.s,这适合在涂布时获得良好的铺展。最后,将该碳糊在室温下以140rpm的速度混合至少10分钟直至获得均匀糊。
实施例2
此实施例涉及碳涂布的电极的制造和本发明的电极的电容与传统电极的电容的比较。
通过将根据实施例1的湿阳极糊在室温下以30-60厘米/分钟的速度和大约0.5毫米的厚度涂施到石墨薄片上,制备阴离子型涂布的集电器。将带有该湿涂层的薄片在70℃下干燥大约30分钟。在此实施例中,在石墨薄片的一面上施加涂层。
该阴极是用氯化钠活化的材料PACMM-203(来自MaterialMethods)。阳极和阴极用的参比碳层都是用氯化钠活化的材料PACMM-203。已经根据下列程序活化碳电极(材料PACMM-203):
ο将碳电极在50%乙醇水溶液中浸泡2小时
ο将碳电极在水中浸泡4小时
ο将碳电极在0.6摩尔/升NaCl溶液中浸泡16小时
在下列FTC中,参比阴极由石墨集电器和在两面上的传统PACMM-203电极(如上)构成。
通过在电解电池中装入:
-阴离子型涂布的集电器
-阴离子交换膜(Neosepta AM-1)作为电荷屏障
-传统FTC隔板
-阳离子交换膜(Neosepta CM-1)作为电荷屏障
-参比阴极,构造单一单元FTC-叠柱。
这些层各自具有32平方厘米的表面积。该FTC电池在室温(大约24℃)下在1.5V下充电。通过将盐水溶液脱盐20分钟,测量电容。以4.8毫升/分钟的流速向FTC中加料。为使所有参数保持不变,实施例和对比例的FTC叠柱都压缩至0.35 105Pa(=0.35巴)的压力,即适合传统FTC′s的压力。
该盐水溶液为12mM NaCl在软化水中的溶液,所得电导率为1200microS/cm(在室温下)。
对比例的FTC的阳极和阴极都含有参比碳电极/集电器。实施例的FTC’s含有阴离子型碳涂布的集电器作为阳极(如上述)和与参比FTC相同的碳电极/集电器作为阴极。
测量FTC出口处的物流的电导率。由出口物流的电导率,如技术人员公知的那样,通过首先使用作为盐浓度的函数的盐水溶液电导率的校准曲线测定储存在电极上的离子量,计算电极的电容。绘制出口物流的电导率以及进料物流的基准基线。储存的离子量(Γ,每克活性炭的离子摩尔数)被规定为所述曲线之间的面积。通过Γ乘以法拉第常数(F)和除以外加电势(V),计算电容C:
C=Γ*F/V
其中C是如下确定的阳极电容(C阳极)和阴极电容(C阴极)的总电容
1/C=1/C阳极+1/C阴极
结果
Figure BPA00001182918600111
要指出的是,在大约15分钟后达到全容量。
上示结果表,表明,使用该碳涂布的集电器阳极的FTC达到比根据现有技术状况的FTC(对比)高的电容。

Claims (9)

1.电极涂层,其包含
a.50-98.5干质量%的比表面积为至少500平方米/克的碳;
b.1-40干质量%的粘合剂;
c.0.5-30干质量%的聚合电解质。
2.制备涂布的集电器的方法,包括下列步骤
a.制备涂布糊,其包含:
I.干涂料,包含:
-50-98.5干质量%的比表面积为至少500平方米/克的碳;
-1-40干质量%的粘合剂;
-0.5-30干质量%的聚合电解质;和
II.总涂布糊的20-80%的溶剂
b.在集电器上施加该涂布糊;
c.干燥该涂布的集电器。
3.根据权利要求2的方法,其中该溶剂是水性溶剂。
4.涂布的集电器,其包含
a.集电器
b.根据权利要求1的电极涂层。
5.根据权利要求4的涂布的集电器,进一步包含施加到电极涂层上的电荷屏障,该电荷屏障包含对阴离子和/或阳离子呈选择性的膜,该电荷屏障作为进一步涂层或作为层压层施加到电极涂层上。
6.包含根据权利要求4的涂布的集电器和单独的电荷屏障的系统。
7.包含至少一个重复单元的叠柱的流通型电容器,其包含:
a.包含根据权利要求4的涂布的集电器的阳极
b.隔板
c.包含根据权利要求4的涂布的集电器的阴极。
8.根据权利要求7的流通型电容器(FTC),其中该FTC为螺旋缠绕形式。
9.根据权利要求7或8的流通型电容器(FTC),其中该叠柱在小于0.3巴的压力下压缩。
CN200880124675.XA 2007-11-13 2008-11-05 净水装置 Active CN101932529B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07120525 2007-11-13
EP07120525.6 2007-11-13
PCT/EP2008/064992 WO2009062872A1 (en) 2007-11-13 2008-11-05 Water purification device

Publications (2)

Publication Number Publication Date
CN101932529A true CN101932529A (zh) 2010-12-29
CN101932529B CN101932529B (zh) 2015-11-25

Family

ID=39278379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880124675.XA Active CN101932529B (zh) 2007-11-13 2008-11-05 净水装置

Country Status (7)

Country Link
US (1) US8730650B2 (zh)
EP (1) EP2212254B1 (zh)
CN (1) CN101932529B (zh)
AR (1) AR069287A1 (zh)
AU (1) AU2008323015B2 (zh)
CL (1) CL2008003382A1 (zh)
WO (1) WO2009062872A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253592A1 (en) * 2009-05-13 2010-11-24 Voltea B.V. A method for preparing a coated current collector, a coated current collector and an apparatus for de-ionizing water comprising such current collector
KR20110019573A (ko) * 2009-08-20 2011-02-28 삼성전자주식회사 전기 흡착 탈이온 장치
US20110056843A1 (en) 2009-09-08 2011-03-10 Patrick Michael Curran Concentric layer electric double layer capacitor cylinder, system, and method of use
KR101688530B1 (ko) 2009-12-21 2016-12-21 삼성전자주식회사 전기 흡착 탈이온 장치
EP2383757B1 (en) 2010-04-29 2014-01-29 Voltea B.V. Apparatus and method for removal of ions
CN102372345B (zh) 2010-08-10 2013-07-31 通用电气公司 超级电容器脱盐装置及脱盐方法
WO2012036554A1 (en) 2010-09-16 2012-03-22 Voltea B.V. Apparatus for removal of ions comprising an ion exchange membrane that comprises a crosslinked hyperbranched (co)polymer (a crosslinked hbp) with ion exchange groups
NL2005799C2 (en) 2010-12-01 2012-06-05 Voltea Bv An apparatus for removal of ions comprising multiple stacks.
NL2005797C2 (en) * 2010-12-01 2012-06-05 Voltea Bv Method of producing an apparatus for removal of ions from water and an apparatus for removal of ions from water.
US9040144B2 (en) * 2012-09-04 2015-05-26 National Tsing Hua University Filtering film structure
CN105189338B (zh) * 2013-01-15 2017-04-26 西江大学校产学协力团 使用可逆电极反应的电渗透泵以及使用它的流体泵送系统
US9859066B2 (en) 2013-05-24 2018-01-02 Atlantis Technologies Atomic capacitor
US10376841B2 (en) * 2013-08-26 2019-08-13 Sogang University Research & Business Development Foundation Electroosmotic pump and fluid pumping system including the same
CN105612350B (zh) * 2013-08-26 2017-10-17 西江大学校产学协力团 电渗泵和具有该电渗泵的流体泵送系统
EP2962996B8 (en) * 2014-07-02 2020-12-30 Voltea Limited Method to prepare a coated current collector electrode for a flow through capacitor using two solvents with different boiling points
EP3303229A1 (en) 2015-05-29 2018-04-11 Voltea B.V. An apparatus for removal of ions from water and method of producing the same
KR102006908B1 (ko) * 2016-06-28 2019-08-02 이오플로우(주) 전기 삼투 펌프 및 이를 포함하는 유체 펌핑 시스템
KR101963964B1 (ko) * 2017-08-29 2019-03-29 두산중공업 주식회사 축전식 탈염 전극의 제조 방법 및 이에 의해 제조된 축전식 탈염 전극
CN107555498B (zh) * 2017-08-31 2020-07-10 航天凯天环保科技股份有限公司 一种地表黑臭水体及底泥一体化原位修复治理药剂及其制备方法和应用
US10787378B2 (en) 2018-05-30 2020-09-29 Atlantis Technologies Spirally wound electric double layer capacitor device and associated methods

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3293507A (en) * 1964-04-21 1966-12-20 Plessey Uk Ltd Electrolytic device comprising a sealed-container combination
US3466508A (en) * 1967-06-21 1969-09-09 Mallory & Co Inc P R Stabilization of solid electrolyte capacitors by means of atmospheric control
US3687829A (en) * 1971-01-11 1972-08-29 Gen Electric Deionization of liquid media
US3828227A (en) * 1973-04-09 1974-08-06 Sprague Electric Co Solid tantalum capacitor with end cap terminals
CA993058A (en) * 1973-07-26 1976-07-13 George A. Shirn Solid electrolytic capacitor with embedded counterelectrode
US4090288A (en) * 1976-03-15 1978-05-23 Sprague Electric Company Solid electrolyte capacitor with metal loaded resin end caps
US4203194A (en) * 1978-07-17 1980-05-20 Sprague Electric Company Batch method for making solid-electrolyte capacitors
US4571664A (en) * 1984-11-09 1986-02-18 Mepco/Electra, Inc. Solid electrolyte capacitor for surface mounting
US4660127A (en) * 1985-12-17 1987-04-21 North American Philips Corporation Fail-safe lead configuration for polar SMD components
US5415768A (en) 1990-04-23 1995-05-16 Andelman; Marc D. Flow-through capacitor
US5196115A (en) 1990-04-23 1993-03-23 Andelman Marc D Controlled charge chromatography system
US5192432A (en) 1990-04-23 1993-03-09 Andelman Marc D Flow-through capacitor
US5620597A (en) 1990-04-23 1997-04-15 Andelman; Marc D. Non-fouling flow-through capacitor
US5200068A (en) 1990-04-23 1993-04-06 Andelman Marc D Controlled charge chromatography system
US5360540A (en) 1990-04-23 1994-11-01 Andelman Marc D Chromatography system
JP2766446B2 (ja) * 1993-05-12 1998-06-18 ローム株式会社 固体電解コンデンサーの構造
US5538611A (en) 1993-05-17 1996-07-23 Marc D. Andelman Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor
US6309532B1 (en) 1994-05-20 2001-10-30 Regents Of The University Of California Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes
US5425858A (en) 1994-05-20 1995-06-20 The Regents Of The University Of California Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes
US6110354A (en) 1996-11-01 2000-08-29 University Of Washington Microband electrode arrays
US6127474A (en) 1997-08-27 2000-10-03 Andelman; Marc D. Strengthened conductive polymer stabilized electrode composition and method of preparing
US6183914B1 (en) 1998-09-17 2001-02-06 Reveo, Inc. Polymer-based hydroxide conducting membranes
US6238444B1 (en) * 1998-10-07 2001-05-29 Vishay Sprague, Inc. Method for making tantalum chip capacitor
WO2001030229A1 (en) 1999-04-22 2001-05-03 Eltek S.P.A. Household appliance using water, namely a washing machine, with improved device for softening the water
US6214204B1 (en) 1999-08-27 2001-04-10 Corning Incorporated Ion-removal from water using activated carbon electrodes
US6297293B1 (en) 1999-09-15 2001-10-02 Tda Research, Inc. Mesoporous carbons and polymers
US6709560B2 (en) 2001-04-18 2004-03-23 Biosource, Inc. Charge barrier flow-through capacitor
CA2444390C (en) 2001-04-18 2007-07-03 Marc D. Andelman Charge barrier flow-through capacitor
US7368191B2 (en) * 2001-07-25 2008-05-06 Biosource, Inc. Electrode array for use in electrochemical cells
KR100466071B1 (ko) * 2002-05-22 2005-01-13 삼성전기주식회사 고체전해 콘덴서
US6870727B2 (en) * 2002-10-07 2005-03-22 Avx Corporation Electrolytic capacitor with improved volumetric efficiency
US7206189B2 (en) 2002-12-20 2007-04-17 Advanced Energy Technology Inc. Composite electrode and current collectors and processes for making the same
US7175783B2 (en) 2003-08-19 2007-02-13 Patrick Michael Curran Carbon electrode for use in aqueous electrochemical devices and method of preparation
KR100568280B1 (ko) * 2003-11-14 2006-04-05 삼성전기주식회사 고체전해 콘덴서 및 그 제조방법
WO2005106100A1 (en) 2004-05-05 2005-11-10 Unilever N.V. Cleaning method
CN1839497B (zh) * 2004-05-17 2010-06-30 株式会社Lg化学 电极及其制备方法
WO2005112151A1 (en) 2004-05-17 2005-11-24 Lg Chem, Ltd. Electrode, and method for preparing the same
US7161797B2 (en) * 2005-05-17 2007-01-09 Vishay Sprague, Inc. Surface mount capacitor and method of making same
JP5013772B2 (ja) * 2006-01-31 2012-08-29 三洋電機株式会社 電気二重層キャパシタ
JP4879048B2 (ja) * 2006-05-31 2012-02-15 三洋電機株式会社 固体電解コンデンサの製造方法
KR100755655B1 (ko) * 2006-06-02 2007-09-04 삼성전기주식회사 칩 형 콘덴서
KR100826391B1 (ko) * 2006-07-18 2008-05-02 삼성전기주식회사 칩형 고체 전해콘덴서
KR100878412B1 (ko) * 2006-09-28 2009-01-13 삼성전기주식회사 탄탈륨 캐패시터
KR100917027B1 (ko) * 2007-12-17 2009-09-10 삼성전기주식회사 고체 전해 콘덴서 및 그 제조방법
KR100939765B1 (ko) * 2007-12-17 2010-01-29 삼성전기주식회사 고체 전해 콘덴서 및 그 제조방법
KR100914890B1 (ko) * 2007-12-17 2009-08-31 삼성전기주식회사 고체 전해 콘덴서 및 그 제조방법

Also Published As

Publication number Publication date
CN101932529B (zh) 2015-11-25
WO2009062872A1 (en) 2009-05-22
AU2008323015B2 (en) 2012-09-27
AR069287A1 (es) 2010-01-13
EP2212254A1 (en) 2010-08-04
CL2008003382A1 (es) 2009-06-26
EP2212254B1 (en) 2017-01-11
US8730650B2 (en) 2014-05-20
US20100328841A1 (en) 2010-12-30
AU2008323015A1 (en) 2009-05-22

Similar Documents

Publication Publication Date Title
CN101932529A (zh) 净水装置
Kim et al. Low energy desalination using battery electrode deionization
Park et al. Development of a carbon sheet electrode for electrosorption desalination
Długołecki et al. Energy recovery in membrane capacitive deionization
US20120199486A1 (en) Ion-Selective Capacitive Deionization Composite Electrode, and Method for Manufacturing a Module
Kim et al. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer
KR101686270B1 (ko) 이극성 전극 및 수퍼캐퍼시터 담수화 장치, 및 제조 방법
Tian et al. Preparation and characterization of cross-linked quaternised polyvinyl alcohol membrane/activated carbon composite electrode for membrane capacitive deionization
KR101004707B1 (ko) 이온제거용 축전식 전극 및 그를 이용한 전해셀
Paltrinieri et al. Functionalized anion-exchange membranes facilitate electrodialysis of citrate and phosphate from model dairy wastewater
EP2253592A1 (en) A method for preparing a coated current collector, a coated current collector and an apparatus for de-ionizing water comprising such current collector
CN103803683B (zh) 一种纳米钛渗碳电极电容去离子装置
Chang et al. Application of anion exchange membrane and the effect of its properties on asymmetric membrane capacitive deionization
Kim et al. Hybrid electrochemical desalination system combined with an oxidation process
WO2015076586A1 (en) Composition for electrode of capacitive deionization apparatus, and electrode including same
KR102206375B1 (ko) 전기 흡착 탈이온 장치용 전극 조성물, 및 이를 포함하는 전기 흡착 탈이온 장치용 전극
KR20150090757A (ko) 전기 흡착 탈이온 장치용 전극 조성물, 및 이를 포함하는 전기 흡착 탈이온 장치용 전극
EP2962996B1 (en) Method to prepare a coated current collector electrode for a flow through capacitor using two solvents with different boiling points
Fritz et al. Exergy analysis of membrane capacitive deionization (MCDI)
KR20140145017A (ko) 전기 흡착 탈이온 장치 및 이를 사용한 유체 처리 방법
KR20100025473A (ko) 전극의 제조 방법
CN108439555B (zh) 一种太阳能驱动的电容式除盐装置
KR20160120132A (ko) 흐름 축전식 탈염 전극 및 모듈의 제조방법
CN203866079U (zh) 一种纳米钛渗碳电极电容去离子装置
Anggoro et al. Evaluating Capacitive Deionization for Measurements of the Salt-Removal of NaCl, KCl and MgCl at Various Cell Voltages

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant