CN101925377A - 睡眠阶段的检测 - Google Patents

睡眠阶段的检测 Download PDF

Info

Publication number
CN101925377A
CN101925377A CN2008801256111A CN200880125611A CN101925377A CN 101925377 A CN101925377 A CN 101925377A CN 2008801256111 A CN2008801256111 A CN 2008801256111A CN 200880125611 A CN200880125611 A CN 200880125611A CN 101925377 A CN101925377 A CN 101925377A
Authority
CN
China
Prior art keywords
patient
sleep stages
sleep
bio signal
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2008801256111A
Other languages
English (en)
Inventor
J·吴
G·F·莫尔纳
G·C·米亚扎瓦
T·J·丹尼森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN101925377A publication Critical patent/CN101925377A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • A61B5/374Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M21/02Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis for inducing sleep or relaxation, e.g. by direct nerve stimulation, hypnosis, analgesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36078Inducing or controlling sleep or relaxation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4082Diagnosing or monitoring movement diseases, e.g. Parkinson, Huntington or Tourette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • A61M2005/1726Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure the body parameters being measured at, or proximate to, the infusion site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0072Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus with application of electrical currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3507Communication with implanted devices, e.g. external control
    • A61M2205/3523Communication with implanted devices, e.g. external control using telemetric means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3553Range remote, e.g. between patient's home and doctor's office
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3584Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/005Parameter used as control input for the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/08Other bio-electrical signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/08Other bio-electrical signals
    • A61M2230/10Electroencephalographic signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/205Blood composition characteristics partial oxygen pressure (P-O2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/30Blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/42Rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/50Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/60Muscle strain, i.e. measured on the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/63Motion, e.g. physical activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/65Impedance, e.g. conductivity, capacity
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/70ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation

Abstract

基于患者测定的睡眠阶段,给予患者的治疗可被控制。在实施例中,基于指示患者脑活动的生物信号的频率特性,睡眠阶段可被测定。频率特性可包括,例如,在生物信号的一个或更多个频带之内的功率水平、两个或更多的频带中的功率水平之比或一个或更多个频带的功率水平随着时间的模式。基于睡眠阶段的测定,治疗程序可被选择或修改。根据选择的或修改的治疗程序,在睡眠阶段过程中治疗可被递送。在一些实施例中,在基于生物信号和另一个生理参数分开测定睡眠阶段和确认睡眠阶段的测定是一致的之后,治疗递送可被控制。

Description

睡眠阶段的检测
技术领域
本公开涉及医学治疗系统,更具体地是医学治疗系统的控制。
背景
在某些情况下,精神失调或医疗状态可影响患者的睡眠质量。例如,神经障碍会引起患者入睡困难,并可扰乱患者的睡眠,例如引起患者在夜间和/或清晨经常醒来。此外,神经障碍会引起患者到达深睡期阶段困难,诸如一个或更多的非快速眼动(NREM)睡眠阶段。
影响患者睡眠质量的神经障碍的例子包括运动障碍,诸如震颤、帕金森氏病、多发性硬化症或痉挛状态。与这样的运动障碍相关的不受控制的运动可引起患者入睡困难、扰乱患者的睡眠或引起患者达到深睡期阶段困难。帕金森氏病还可引起快速眼动(睡眠)行为病(RBD),在这种情况下,在快速眼动(REM)阶段睡眠过程中,患者可表现为戏剧性的和/或激烈的梦、呼喊或发出其它的响声(例如,呼噜声)。
癫痫是影响睡眠治疗的另一个神经障碍的例子。在一些患者中,癫痫性发作可被睡眠或睡眠阶段之间的转换触发,并可在睡眠过程中更频繁地发生。而且,发作的发生可干扰睡眠,例如弄醒患者。常常,癫痫症患者不知道在它们睡觉时发生的发作,遭受受干扰的睡眠的影响,诸如白天疲劳和注意力问题,却不知道究竟为什么。
心里紊乱,诸如抑郁、躁狂、双相型障碍或强迫性神经失调也可类似地影响患者睡眠或至少感受优质睡眠的能力。在抑郁的情况下,患者可一天长时间地“睡眠”,但是睡眠是不平静的,例如包括过度的干扰,并不包括较深的、更平静的睡眠阶段。此外,慢性疼痛,不论是否是神经起源的,与充血性心力衰竭、胃肠疾病和失禁一样,可干扰睡眠或要不然影响睡眠质量。
药物常常用于治疗神经障碍。在某些情况下,神经障碍通过可植入的医疗器械(IMD)诸如可植入的刺激器或药物递送装置来治疗。神经障碍的治疗本身可影响睡眠质量。
此外,在某些情况下,不良的睡眠可增加患者体验的症状。例如,劣质的睡眠质量可导致在运动障碍患者中增加的运动障碍症状。劣质的睡眠质量和增加的症状之间的联系不限于不利地影响睡眠质量的精神失调,诸如上面列出的那些。然而,当症状干扰睡眠质量时,带有这样的精神失调的患者的状态可进行性地恶化,这会反过来增加患者疾病的症状的频率和/或强度。
发明概述
一般而言,本公开涉及基于来自患者脑的生物信号的频率特性,测定患者睡眠状态的睡眠阶段。生物信号的频率特性可包括,例如在生物信号的一个或更多个频带之内的功率水平(或能量)、两个或更多的频带中的功率水平之比、两个或更多的频带之间的功率的改变的相互关系、一个或更多个频带的功率水平随着时间流逝的模式和类似特性。在某些情况下,生物信号的频率特性可与一个以上的睡眠阶段相关。因此,睡眠阶段的测定可包括是否患者通常在作为与相同或相似的生物信号频率特性相关的一组睡眠阶段一部分的睡眠阶段中的测定。
在一些实施例中,基于测定的睡眠阶段,在睡眠状态中给予患者的治疗可被控制。例如,基于检测到的睡眠阶段,治疗程序可被选择或基于检测到的睡眠阶段,治疗程序可被修改。根据选择的或修改的治疗程序,在检测到的睡眠阶段中给予患者的治疗可被递送。
在一些实施例中,基于在患者的脑内检测到的生物信号,对患者的睡眠阶段做第一次测定,基于患者的另一个生理参数,对患者的睡眠阶段做第二次测定,之后,递送给患者的治疗可被控制。如果第一次和第二次睡眠阶段的测定是一致的,可根据测定的睡眠阶段,递送给患者的治疗可被控制。如果第一次和第二次睡眠阶段的测定不是一致的,治疗递送可不作调整,但是,在第一次和第二次睡眠阶段的测定之前执行的治疗参数值可保持。
一方面,本公开涉及一种方法,包括接收指示患者脑内活动的生物信号、测定生物信号的频率特性、将生物信号的频率特性与至少一个阈值或模板相比较、并基于生物信号的频率特性和至少一个阈值或模板之间的比较测定患者的睡眠阶段,其中睡眠阶段发生在患者的睡眠状态中,睡眠状态包括多个睡眠阶段。
另一方面,本公开涉及一种方法,包括检测来自患者脑的生物信号、测定生物信号的频率特性、基于生物信号的频率特性测定是否患者是在清醒状态、第一睡眠阶段或第二睡眠阶段至少一个中、如果患者是在清醒状态或第一睡眠阶段中就激活递送给患者治疗,如果患者是在第二睡眠阶段中就灭活或减少递送给患者的治疗强度。
另一方面,本公开涉及一种系统,包括检测在患者脑内产生的生物信号的传感模块和接收生物信号、测定生物信号的频率特性、将生物信号的频率特性与至少一个阈值或模板相比较、并基于生物信号的频率特性和至少一个阈值或模板之间的比较测定患者的睡眠阶段的处理器,其中睡眠阶段发生在患者的睡眠状态中,睡眠状态包括多个睡眠阶段。
另一方面,本公开涉及一种系统,包括接收指示患者脑内活动的生物信号的装置、测定生物信号的频率特性的装置、将生物信号的频率特性与至少一个阈值或模板进行比较的装置及基于生物信号的频率特性和至少一个阈值或模板之间的比较测定患者的睡眠阶段的装置,其中睡眠阶段发生在患者的睡眠状态中,睡眠状态包括多个睡眠阶段。
另一方面,本公开涉及一种含有指令的计算机可读的介质。这些指令使程序控制的处理器接收指示患者脑内活动的生物信号、测定生物信号的频率特性、将生物信号的频率特性与至少一个阈值或模板进行比较,基于生物信号的频率特性和至少一个阈值或模板之间的比较测定患者的睡眠阶段,其中睡眠阶段发生在患者的睡眠状态中,睡眠状态包括多个睡眠阶段。
另一方面,本公开涉及一种方法,包括监测患者睡眠状态过程中的生物信号,其中该生物信号指示患者脑内的活动,评价生物信号的一个或更多的频率特性,测定患者的睡眠阶段,其中睡眠阶段发生在患者的睡眠状态中,睡眠状态包括多个睡眠阶段,将生物信号的一个或更多的频率特性与睡眠阶段相关联,其中一个或更多的频率特性包括至少一个阈值或模板。
另一方面,本公开涉及一种含有指令的计算机可读的介质。这些指令使程序控制的处理器评价指示患者脑内活动的生物信号的一个或更多个频率特性、测定患者的睡眠阶段,其中睡眠阶段发生在患者的睡眠状态中,睡眠状态包括多个睡眠阶段,将生物信号的一个或更多个频率特性与睡眠阶段相关联,其中一个或更多个频率特性包括至少一个阈值或模板。
另一方面,本公开涉及一种系统,包括产生指示患者脑内活动的生物信号的传感模块和接收患者在睡眠状态过程中的生物信号、测定生物信号的频率特性、评价生物信号的一个或更多个频率特性、测定患者的睡眠阶段,其中睡眠阶段发生在患者的睡眠状态中,睡眠状态包括多个睡眠阶段,将生物信号的一个或更多个频率特性与睡眠阶段相关联,其中一个或更多个频率特性包括至少一个阈值或模板。
另一方面,本公开涉及一种含有指令的计算机可读的介质。这些指令使程序控制的处理器执行这里描述的任何技术。
本公开的一个或更多个实施例的详情在下面的附图和说明书中阐述。
附图简述
图1是说明示例深部脑刺激(DBS)系统的示意图。
图2是说明示例医疗器械的部件的功能框图。
图3是说明示例医疗器械存储器的结构的框图。
图4说明可被存储在医疗器械的存储器内的示例治疗程序的表。
图5是说明示例医疗器械程序器的部件的功能框图。
图6和7是基于检测到的患者睡眠阶段说明示例控制递送给患者的治疗的技术的流程图。
图8说明将不同的睡眠阶段和患者的清醒状态与β频带内的阈值功率值和治疗程序相关联的示例表。
图9说明将不同的睡眠阶段和患者的清醒状态与α频带内的阈值功率值相关联的示例表。
图10A-10E是说明患者清醒状态和睡眠状态的不同睡眠阶段的不同频带内的功率水平概念图。
图11是说明在特定的频带内生物信号的功率水平随着时间变化的概念图。
图12A-12D是说明在清醒状态和不同的睡眠阶段过程中人类受试者随着时间的生物信号的功率分布的概念图。
图13是说明示例电路的逻辑图,该电路由基于患者脑内局部场电位(LFP)产生的生物信号来测定睡眠阶段。
图14是说明基于测定的患者睡眠阶段控制治疗递送的另一个示例技术的流程图。
图15A说明将不同的睡眠阶段和患者的清醒状态与治疗程序和指示σ和高β频带之间的功率之比的共同阈值相关联的示例表。
图15B说明将不同的睡眠阶段和患者的清醒状态与治疗程序和指示β与α频带之间的功率之比的不同阈值相关联的示例表。
图15C说明将不同的睡眠阶段和患者的清醒状态与治疗程序和指示θ与α频带之间的功率之比的共同阈值相关联的示例表。
图16是说明生物信号的两个频带的功率之比随着时间变化的概念图。
图17是说明示例电路的逻辑图,该电路可被执行来由生物信号的两个频带之间的功率水平之比测定睡眠阶段,该生物信号是基于患者脑内局部场电位(LFP)产生的。
图18是说明基于测定的患者睡眠阶段控制治疗递送的另一个示例技术的流程图。
图19是说明将生物信号的一个或更多个频率特性与患者的睡眠阶段相关联的示例技术的流程图。
图20是说明基于多个睡眠阶段的测定控制治疗递送的示例技术的流程图。
图21是可被用于产生指示患者的一个或更多个生理参数的生理信号的不同传感模块的示例的概念上的图解。
图22是说明递送治疗剂给患者的示例医疗器械的部件的功能框图。
详细描述
图1是说明处理患者12的医疗状态诸如神经障碍的示例深部脑刺激(DBS)系统10的概念图。DBS系统10包括医疗器械程序器14、可植入的医疗器械(IMD)16、导线延伸部分18和带有各自的电极22A、22B的导线20A和20B。患者12通常会是人类患者。在某些情况下,然而,DBS系统10可被用于其它的哺乳动物或非哺乳动物非人类的患者。一些患者的状态,诸如帕金森氏病和其它的神经状态,导致受损的睡眠状态。DBS系统10有助于使严重性和持续时间最小化,并且,在某些情况下,消除与患者状态相关的症状,包括受损的睡眠状态。
在图1显示的示例中,DBS系统10包括测定是否患者12处于睡眠状态中,并且根据测定患者12处于睡眠状态中控制给患者12的治疗的处理器。睡眠状态可指患者12想要睡觉(例如睡觉的最初的想法)、试图睡觉或具有启动的睡眠并且现在正在睡觉的状态。此外,处理器可基于在患者12的脑13内检测到的生物信号测定睡眠状态的睡眠阶段,并基于测定的睡眠阶段控制递送给患者的治疗。示例生物信号在下面被描述。
在睡眠状态内,患者12可处于多个睡眠阶段的一个中。示例睡眠阶段包括,例如阶段1(也指阶段N1或S1)、阶段2(也指阶段N2和S2)、深睡期(也指慢波睡眠)和快速眼动睡眠(REM)。深睡期阶段可包括多个睡眠阶段,诸如阶段N3(也指阶段S3)和阶段N4(也指阶段S4)。在某些情况下,患者12在睡眠状态过程中可通过阶段1、阶段2、深睡期、REM睡眠阶段循环超过一次。阶段1、阶段2和深睡期阶段可被认为是非REM(NREM)睡眠阶段。
在阶段1的睡眠阶段过程中,患者12可处于睡眠的开始阶段,并开始失去对外部环境有意识的知觉。在阶段2和深睡期阶段,患者12的肌活动可减少,并且对外部环境有意识的知觉可消失。在REM睡眠阶段过程中,与阶段1和2和深睡期阶段相比,患者12可显示出相对增加的心率和呼吸。在某些情况下,尽管实际的时间范围可在患者之间变化,阶段1、阶段2和深睡期阶段可每个持续约五分钟至约十五分钟。在某些情况下,尽管实际的时间范围可在患者之间变化,REM睡眠可在睡眠开始的约九十分钟之后开始,并可具有约五分钟至约十五分钟或更多的持续时间。
在一些实施例中,DBS系统10储存多个治疗程序(例如一套治疗参数值),而且至少一个储存的治疗程序是与至少一个睡眠阶段相关的。IMD 16的处理器或程序器14可选择储存的治疗程序,该治疗程序基于测定的睡眠阶段递为送给患者12的治疗确定治疗参数值。以这种方式,处理器可基于测定的睡眠阶段控制递送给患者12的治疗。在一些实施例中,至少一个储存的治疗程序与至少两个不同的睡眠阶段中各自的一个相关。此外,在一些实施例中,至少一个储存的治疗程序与至少两个不同的睡眠阶段相关。
DBS系统10对处理导致受损的睡眠状态的患者的状况是有用的,受损的睡眠状态可表现为在一个或更多个睡眠阶段中受损的睡眠质量。不同的治疗参数值可为患者12的不同的睡眠阶段提供有效的治疗(例如改善的睡眠质量)。不是不管患者目前的睡眠阶段,根据一个或更多个治疗程序递送治疗,而是DBS系统10有选择地在患者12的检测到的睡眠阶段中递送有助于提供有效治疗的治疗程序。此外,在一些实施例中,递送给患者12的治疗可根据检测到特定的睡眠阶段而较少甚至失效,因此保存IMD 16的功率,IMD 16可能具有有限量的储存的功率。
在其它的实施例中,DBS系统10可基于测定的睡眠阶段修改储存程序的至少一个治疗参数值。对治疗程序的修改可基于与测定的睡眠阶段相关的指令进行。以这种方式,DBS系统10被配置为使治疗参数值适应目前的睡眠阶段并在睡眠阶段中递送响应性治疗。目前的睡眠阶段可以是患者12的睡眠阶段,在睡眠阶段被检测的大约相同的时间,在某些情况下,在治疗程序被选择的大约相同的时间。
如先前讨论的,睡眠阶段可以指在患者12的睡眠状态中的特定的睡眠时期,而睡眠状态指患者12想要睡觉(例如睡觉的最初的想法)、试图睡觉或具有启动的睡眠和正在睡觉的情形。当患者12试图睡觉时,患者12可成功地开始睡眠,但是也许不能保持一定的睡眠阶段(例如深睡期阶段)。作为另一个例子,当患者12试图睡觉时,患者12也许不能启动睡眠或不能启动一定的睡眠阶段。在某些情况下,患者的状态,诸如帕金森氏病可影响患者睡眠的质量。例如,受神经障碍折磨的患者可遭受睡眠障碍诸如失眠症、REM睡眠中的障碍(例如REM睡眠行为病)、扰乱的睡眠结构、间歇的肢体运动或睡眠呼吸病或日间催眠状态。日间催眠状态可包括由在夜间降低的睡眠质量引起的过度的睡意。相应地,神经障碍可引起患者12入睡困难和/或可扰乱患者的睡眠,例如引起患者12周期性地醒来。此外,神经障碍可引起患者12达到较深的睡眠阶段困难,诸如一个或更多个NREM睡眠阶段。睡眠障碍症状可能与夜间的强直、运动减少、疼痛、抗帕金森药物的作用、焦虑和抑郁(它可与运动障碍共存)、参与睡眠调节一个或更多个脑结构的功能障碍有关。
癫痫是影响睡眠质量的神经障碍的一个例子。其它可影响患者睡眠质量的神经障碍包括运动障碍,诸如震颤、帕金森氏病、多发性硬化症或痉挛状态。运动障碍可包括症状诸如强直、运动迟缓(即躯体运动缓慢)、有节律的运动过度(即震颤)、非节律的过度运动(即抽搐)或运动不能(即身体运动的丧失)。与一些运动障碍或困难的移动相关的不受控制的运动可引起患者入睡困难、扰乱患者的睡眠或可引起患者12难以达到较深的睡眠阶段。此外,在某些情况下,由于神经障碍,劣质的睡眠质量可增加患者12经历的症状的频率或强度。例如,劣质的睡眠质量已与运动障碍的患者中增加的运动障碍症状联系在一起。
在一些实施例中,DBS系统10或其它类型的治疗系统可有助于处理带有除了神经状态之外的状态的患者的睡眠障碍症状,诸如精神(或心理的)障碍。可导致一个或更多个受损的睡眠阶段的精神疾病的例子包括严重抑郁障碍、焦虑、轻躁狂或双相型障碍。
在一些实施例中,向脑13的一个或更多个区域诸如底丘脑核递送的刺激可以是运动障碍诸如帕金森氏病的有效的治疗,并且运动障碍的治疗还可以在一定方面改善睡眠质量,诸如减少睡眠破碎。然而,通过DBS来治疗运动障碍,患者睡眠的其它方面依然未加改善。相应地,DBS系统10在特定的睡眠阶段提供递送给患者12的治疗,为了有助于减轻至少一些睡眠干扰,其中治疗递送可以被特别地配置来解决与特定的睡眠阶段相关的睡眠障碍症状。基于患者的睡眠阶段动态地改变治疗参数值对解决患者的睡眠障碍症状是有用的。
当患者12试图睡着时,具有帕金森氏病或其它的与困难的移动(例如,运动不能、运动迟缓或强直)相关的运动障碍的患者在睡眠阶段的阶段1过程中可能具有劣质的睡眠。例如,在睡眠阶段的阶段1过程中无力活动对患者12是来说是令人不适的,这会影响入睡的能力。相应地,在与睡眠阶段的阶段1相关的睡眠阶段过程中,IMD 16的处理器或程序器14可选择有助于改善患者12的运动技能的治疗程序,这样患者12可开始运动或维持运动,例如,来调整睡眠位置。
此外,具有与困难的移动相关的运动障碍的患者发现醒来之后起床困难。相应地,基于脑13内的生物信号,根据测定患者不再处于睡眠状态(例如,不再睡熟了或试图睡觉),DBS系统10可控制治疗的递送来帮助患者12起床或要不然开始运动。相比之下,只是依赖运动检测器(例如加速度计)来控制治疗系统的治疗系统对患有帕金森氏病或其它的开始运动困难的患者是无效的,因为患者可以是醒的,但是不能运动。换言之,主要依赖加速度计或其它的运动传感器的治疗系统不能测定什么时候帕金森氏病患者已醒来,因为患者不能运动。相比之下,DBS系统10可选择有助于在检测到患者的清醒状态(即,当患者12没在睡觉时)时提高患者12的运动技能的治疗程序,这样患者12可开始运动或保持运动,例如帮助患者12起床。
在一些具有运动障碍的患者中,患者在REM睡眠阶段过程中可变得身体上有更多活动。例如,患者12可在REM睡眠阶段过程中不知不觉地动腿或具有其它的周期肢体活动。当患者12处于REM睡眠阶段中,患者12的身体活动可能打断患者的睡眠以及患者12周围其它人的睡眠。相应地,一旦检测到与REM睡眠阶段相关的睡眠阶段,DBS系统10可选择有助于使患者的活动减少到最少的治疗程序。
在一些实施例中,为了帮助患者12入睡、维持睡眠阶段或维持更深的睡眠阶段(例如REM睡眠),在睡眠阶段过程中DBS系统10可向脑13的一定区域诸如蓝斑核、背缝神经核、下丘脑后部、网状脑桥嘴核(reticularis pontis oralis nucleus)、网状脑桥尾侧核(nucleus reticularis pontis caudalis)或基底前脑递送刺激。在患者12的一个或更多个睡眠阶段过程中,用于治疗递送的治疗递送位点可以与用于递送治疗给患者12来处理患者的其它状况(例如神经障碍)的治疗递送位点相同或不同。除电刺激治疗外或代替电刺激治疗,合适的药物剂,诸如乙酰胆碱、多巴胺、肾上腺素、去甲肾上腺素、血清素(serotonine)、去甲肾上腺素或任何影响睡眠障碍的药剂的抑制剂或其组合可被递送到患者12的脑13。通过减轻患者的睡眠障碍并改善患者的睡眠质量,患者12可感觉更轻松,并且,因而DBS系统10可有助于改善患者生活的质量。
IMD 16包括治疗模块和处理器,该治疗模块包括分别通过导线20A和20B的电极22A、22B向患者递送电刺激治疗的刺激发生器,该处理器基于检测到的患者12的睡眠阶段选择治疗参数值(例如通过选择治疗程序或修改治疗程序)。在一些实施例中,如下面进一步详细描述的那样,基于分别通过导线20A和20B的电极22A、22B或用电偶联到IMD 16的独立的电极阵列或独立的感应装置在患者12脑13内检测到的一个或更多个生物信号的频率特性,IMD 16的处理器可测定患者12的睡眠阶段。此外,在一些实施例中,生物信号可从放置在患者头皮上来感应脑信号的外部电极来检测。
指示脑活动的生物信号(例如脑信号)的例子包括但并不限于从脑13的一个或更多个区域内的局部场电位产生的电信号,诸如,但不限于脑电图(EEG)信号或脑皮层电图(ECoG)信号。在一些实施例中,脑13内的电信号可反映整个脑组织中的电位差别之和产生的电流的改变。
检测到的生物信号可在作为递送电刺激的靶组织位点的脑13的相同的组织位点内被检测。在其它的实施例中,生物信号可在另一个组织位点内被检测。例如,电刺激可被递送到脚桥核(PPN),而生物信号可在脑13的初级视皮层(例如Brodmann区17)内被检测。PPN定位在脑13的脑干中,尾部到达黑质,邻近小脑上脚。PPN是主要的脑干运动区,可控制患者12的步态和运动的平衡、以及肌张力、强直和姿势。靶治疗递送位点可取决于正被治疗的患者的疾病。在另一个实施例中,生物信号可在脑13的丘脑、丘脑底核、内部的苍白球或PPN内被检测。除深的脑位点外或代替深的脑位点,生物信号可在脑13的表面上诸如患者的颅骨和脑13的硬膜之间被检测到。
IMD 16产生的电刺激可用来处理多种异常和状况。IMD 16内的治疗模块可以治疗程序限定的方式产生电刺激,该治疗程序是基于测定的患者的睡眠阶段而被选择的。在一些实施例中,IMD 16的刺激发生器用来产生电脉冲和递送给患者12。然而,在其它的实施例中,IMD 16的刺激发生器用来产生连续的波信号,例如正弦波或三角波。在任一情况下,IMD 16根据在治疗中那个给定的时间选择的治疗程序为DBS产生电刺激治疗。在IMD 16以刺激脉冲的形式递送电刺激的实施例中,治疗程序可包括一组治疗参数值,诸如向患者12递送刺激的电极组合、脉冲频率、脉冲宽度和脉冲的电流或电压幅度。电极组合可指示具体的电极22A、22B,它们被选择来向患者12的组织和选择的电极的各自的极性递送刺激信号。
尽管DBS系统10的描述主要涉及IMD 16测定患者12的睡眠阶段并基于测定的阶段选择治疗程序的实施例,然而在其它的实施例中,与IMD 16独立的装置诸如程序器14、与IMD 16或另一个计算装置分开的传感模块,可测定患者12的睡眠阶段并给IMD 16提供指示。此外,尽管IMD 16可基于测定的睡眠阶段选择治疗程序,但是在其它的实施例中,另一个装置可基于测定的患者睡眠阶段选择治疗程序,不论患者的睡眠阶段是被IMD 16或独立的装置测定,并向IMD 16输入治疗程序的治疗参数值。此外,在一些实施例中,IMD 16或另一个装置可基于检测的睡眠阶段选择治疗程序组,其中治疗程序组包括两个或更多个治疗程序。根据该组的治疗程序的刺激治疗或以重叠或非重叠的方式,可被同时或在时间交错的基础上被递送。
IMD 16可在锁骨上方的皮下袋内,或可选地在患者12的腹部、背部或臀部被植入。植入的导线延伸部分18通过连接器24偶联到IMD 16。在图1的实施例中,导线延伸部分18从IMD 16的植入位点跨过并沿着患者12的脖子到达患者12的颅骨,进入脑13。在图1显示的实施例中,导线20A和20B(统称为“导线20”)分别被植入在患者12的右和左半球以向脑13的一个或更多个区域递送电刺激,这是基于被DBS系统10控制的患者的状态或紊乱来选择的。其它的导线20和IMD 16植入位点被考虑。例如,在一些实施例中,IMD 16可被植入到颅骨26上或内。或者导线20A、20B可别植入到同一个半球或者IMD 16可与单一的导线偶联。外部程序器14无线地与IMD 16通讯,需要时提供或收回治疗信息。
尽管导线20在图1中显示被偶联到共同的导线延伸部分18,但是在其它的实施例中,导线20可通过独立的导线延伸部分偶联到IMD 16或直接偶联到连接器24。导线20可被放置以向脑13内的一个或更多个靶组织位点递送电刺激来处理与患者12的睡眠损害——在某些情况下患者12的神经障碍诸如运动障碍——相关的患者症状。在图1显示的实施例中,导线20被放置来给患者12提供治疗以处理运动障碍和睡眠损害。脑13内导线20的实施例位置可包括PPN、丘脑、基底核结构(例如苍白球、黑质或丘脑底核)、未定区、纤维束、豆核束(和其分支)、豆状核袢和/或Forel区(丘脑束)。导线20可被植入以通过颅骨26中的各自的孔把电极22A、22B(统称为“电极22”)放置到脑13的预期的位置上。导线20可被放置在脑13内的任何位置,这样电极22能在治疗过程中向脑13内的靶组织位点提供电刺激。例如,在实施例中,电极22可通过患者12的颅骨26中的钻孔被经手术植入到脑13的硬膜下或脑13的大脑皮质内,并通过一个或更多个导线20用电偶联到IMD 16。
递送治疗来处理运动障碍的示例技术描述在Molnar等的美国专利申请序列号________中(律师案件编号第1023-644US01/P0026246.01),其名称为“基于患者的运动状态的治疗控制(THERAPY CONTROL BASED ON A PATIENT MOVEMENT STATE)”,其与本公开以及Denison等的美国临时专利申请号60/999,097在同一天提交,本公开为Molnar等的美国临时专利申请号60/999,096,其在2007年10月16日提交、名称为“基于预期的运动的装置控制(DEVICE CONTROL BASED ON PROSPECTIVE MOVEMENT)”,Denison等美国临时专利申请号60/999,097在2007年10月16日提交、名称为“起反应的治疗系统(RESPONSIVE THERAPY SYSTEM)”。在Molnar等的美国专利申请号_________________(律师案件编号第1023-644US01/P0026246.01)和Molnar等的美国临时专利申请号60/999,096描述的一些实施例中,脑信号在患者的背侧前额叶(DLPF)皮质内被检测到,这预示着患者预期的运动。预示患者预期运动的DLPF皮质内的信号可被用于控制运动障碍治疗的递送,诸如电刺激的递送、液体递送或感觉暗示(例如视觉的、身体感觉的或听觉的暗示)。
在Molnar等的美国专利申请号____________(律师案件编号第1023-644US01/P0026246.01)和Denison等的美国临时专利申请号60/999,097描述的一些实施例中,脑信号,诸如EEG或ECoG信号,可被用于测定患者是否处于运动状态或静止状态。运动状态包括患者产生运动(即想要运动)的想法、试图开始运动或实际上正在进行运动的状态。运动状态或静止状态的测定然后可被用于控制治疗递送。例如,一旦检测到患者的运动状态,治疗递送可被活化以便帮助患者开始运动或维持运动,以及一旦检测到患者的静止状态,则治疗递送可被灭活或要不然进行修改。
在图1显示的实施例中,导线20的电极22显示为环状电极。环状电极可被用在DBS应用中,因为它们编程相对简单,并能向邻近电极22的任何组织递送电场。在其它的实施例中,电极22可具有不同的结构。例如,在一些实施例中,导线20的电极22可具有复杂的电极排列几何图形,它能产生成形的电场。复杂的电极排列几何图形可包括每个导线20外周周围的多重电极(例如部分环状或节段的电极),而不是一个环状电极。以这种方式,电刺激可指向来自导线20的特定的方向来提高治疗效率并减少来自刺激大体积的组织的可能的不良副作用。在一些实施例中,IMD 16的外壳可包括一个或更多个刺激和/或感应电极。在可选的实施例中,导线20可具有如图1所示的除延长的圆柱体外的形状。例如,导线20可以是桨状导线、球状的导线、可弯曲的导线或在治疗患者12中有效的任何其它类型的形状。
在图1显示的实施例中,IMD 16包括存储器来存储多个治疗程序,每个治疗程序规定一组治疗参数值。一旦测定患者12当前的睡眠阶段,诸如通过基于在脑13内监测的生物信号测定当前的睡眠阶段,IMD 16可选择来自存储器的治疗程序,其中该治疗程序与当前的睡眠阶段相关,并产生电刺激来处理与测定的睡眠阶段相关的患者症状。如果DBS系统10被配置以在多个患者睡眠阶段的过程中提供治疗,那么每个治疗阶段可与不同的治疗程序相关,因为与其它的治疗程序相比,不同的治疗程序可为一定的睡眠阶段提供更有效的治疗。可选地,两个或更多个睡眠阶段可与一个共同的治疗程序相关。相应地,IMD 16可存储多个程序或程序器14可存储多个程序,这些程序通过无线遥测术提供给IMD 16。
在试验阶段——其中IMD 16被评估以测定是否IMD 16向患者12提供有效的治疗,多个治疗程序可被测试和评估与一个或更多个睡眠阶段相关的效率。基于试验阶段的结果,治疗程序可被选择存储在IMD 16内。在慢性治疗过程中——其中IMD 16被植入在患者12内以在非临时的基础上递送治疗,基于测定的患者12的睡眠阶段,不同的治疗程序可被递送给患者12。如先前描述的那样,在一些实施例中,基于一个或更多个生物信号,IMD 16可自动地测定患者12当前的睡眠阶段,或可接收来自另一个自动测定患者12的睡眠阶段的装置的输入信号。此外,为了在程序器14的帮助下改变患者12感觉到的治疗的效率,患者12可在单个给定的程序内或程序之间的转换中修改一个或更多个治疗参数值。IMD 16的存储器可存储规定患者12可调节治疗参数、在程序之间转换或进行其它的治疗调整的程度的指令。患者12可在治疗过程中的任何时间或临床医生指定的时间产生由IMD 16通过外部程序器14使用的另外的程序。
一般地,IMD 16由生物相容性材料构成,该材料可抵抗来自体液的腐蚀和降解。IMD 16可包含密封的壳来基本上将部件诸如处理器、治疗模块和存储器封入。IMD 16可被植入到接近刺激位点的皮下袋内。如先前描述的那样,尽管在图1所示的实施例中IMD 16被植入在患者12锁骨上方的皮下袋内,但是在其它的实施例中,IMD 16可被植入到颅骨26上或内、患者的背部、腹部或患者12的任何其它合适的位置内。
程序器14是外部计算装置,用户,诸如临床医生和/或患者12可使用该装置来与IMD 16通讯。例如,程序器14可以是临床医生程序器,临床医生使用该装置与IMD 16通讯并为IMD 16规划一个或更多个治疗程序。可选地,程序器14可以是患者程序器,它可允许患者12选择程序和/或观察和修改治疗参数。临床医生程序器可比患者程序器包括更多的程序特征。换言之,更复杂或敏感的工作只允许临床医生程序器来做以防止未经训练的患者对IMD 16做所不希望的改变。
程序器14可以是手提式的带有用户可视的显示器和为程序器14提供输入的界面(即用户输入机构)的计算装置。例如,程序器14可包括给用户提供信息的小的显示屏(即液晶显示器(LCD)或发光二极管(LED)显示器)。此外,程序器14可包括触摸屏显示器、小键盘、按钮、周围的点击设备或允许用户通过程序器14的用户界面操纵并提供输入的另一个输入机构。如果程序器14包括按钮和小键盘,那么按钮可用于执行一定的功能,即功率按钮或按钮和小键盘可以是软键,它依赖用户当前观察到的用户界面的部分在功能上进行改变。可选地,程序器14的屏幕(未显示)可以是允许用户直接向显示器上显示的用户界面提供输入的触摸屏。用户可使用输入笔或他们的手指来向显示器提供输入。
在其它的实施例中,程序器14可以是较大的工作站或另一个多功能装置内的单独的应用,而不是专用的计算装置。例如,多功能装置可以是笔记本电脑、台式电脑、工作站、手机、个人数字助理或另一个计算装置可运行使计算装置作为医疗器械程序器14来操作的申请。偶联到计算装置的无线适配器可使计算装置和程序器14之间能够安全通讯。
当程序器14被临床医生配置使用,程序器14可用于向IMD 16传送最初的编程信息。这个最初的信息可包括硬件信息,诸如导线20的类型和电极排列、脑13内导线20的位置、电极排列22的结构、定义治疗参数值的最初的程序和临床医生想要编入IMD 16的任何其它的信息。程序器14还能完成功能试验(例如测量导线20的电极22的阻抗)。
临床医生还可在程序器14的帮助下在IMD 16内存储治疗程序。在编程期间,临床医生可确定一个或更多个治疗程序,这些治疗程序可提供给患者12有效的治疗来解决与一个或更多个不同的患者睡眠阶段相关的症状。患者12可向临床医生提供关于被评估的具体程序的效力的反馈。一旦临床医生已鉴别在处理患者12的一个或更多个睡眠阶段中是有效的一个或更多个治疗程序,患者12可继续评估过程,并为每个患者睡眠阶段鉴别最好的减轻与睡眠阶段相关的症状的一个或更多个程序。治疗程序的评价可在患者12醒来后完成。在某些情况下,相同的治疗程序可被应用到两个或更个睡眠阶段。程序器14可在治疗程序的创立/鉴定中通过为鉴定潜在的有益的治疗参数值提供有方法的系统而协助临床医生。
程序器14还可被患者12为了使用而配置。当被配置为患者的程序器时,为了防止患者12改变IMD 16的关键函数或对患者12有害的应用,程序器14可具有有限的功能性(与临床医生程序器相比)。以这种方式,程序器14可只允许患者12为一定的治疗参数调值或为特定的治疗参数设定可用的值的范围。
当治疗正在被递送时,当患者的输入已触发治疗的改变或当程序器14或IMD 16内的动力源需要被替换或再充电时,程序器14还可向患者12提供指示。例如,程序器14可包括警报LED,可通过程序器显示器向患者12闪现信息,产生可听声或身体感觉来证实患者的输入被接收,例如指示患者的状态或手工修改治疗参数。
不论程序器14为了临床医生或患者的使用被配置,程序器14被配置以通过无线通讯与IMD 16和,任选地,另一个计算装置通讯。程序器14,例如,可使用本领域已知的射频遥测技术通过无线通讯与IMD 16通讯。使用多种局部无线通讯技术,诸如根据802.11或蓝牙规格说明设置的RF通讯、根据IRDA规格说明设置的红外线(IR)通讯或其它的标准的或专有的遥测方案,通过有线的或无线的连接,程序器14还可与另一个程序器或计算装置通讯。程序器14还可通过可移动的介质,诸如磁盘或光盘、存储卡或存储棒的交换与其它的编程或计算装置通讯。此外,程序器14可通过本领域已知的远程遥测技术,例如,通过局域网(LAN)、广域网(WAN)、公共交换电话网络(PSTN)或手机网的通讯,与IMD 16和另一个程序器通讯。
DBS系统10可在几个月或几年的时间段里被用来向患者12提供慢性刺激治疗。然而,系统10还可在进行完全的植入之前在试验的基础上被用来评价治疗。如果被暂时地执行,系统10的一些部件可不被植入到患者12内。例如,患者12可被外部医疗装置诸如试验刺激器,而不是IMD 16来装备。外部医疗装置可以偶联到经皮的导线或通过经皮的延长部分偶联到植入的导线。如果试验刺激器表明DBS系统10向患者12提供有效的治疗,为了相对长期的治疗临床医生可在患者12内植入慢性刺激器。
图2是说明示例IMD 16的部件的功能性框图。在图2显示的示例中,IMD 16产生并输送电刺激治疗给患者12。IMD 16包括处理器50、存储器52、刺激发生器54、传感模块55、遥测模块56、动力源(电源)58和睡眠阶段检测模块59。尽管睡眠阶段检测模块59在图2中显示为处理器50的一部分,但是在其它的示例中,睡眠阶段检测模块59和处理器50可以是独立的部件,并可以是经电偶联的,例如通过有线的或无线的连接。
存储器52可包括任何易失性和非易失性的介质,诸如随机存取存储器(RAM)、只读存储器(ROM)、非易失性RAM(NVRAM)、电可擦除可编程ROM(EEPROM)、闪速存储器和类似介质。存储器52可存储处理器50执行的指令和为患者12规定治疗递送的信息,诸如但并不限于治疗程序或治疗程序组、将治疗程序与一个或更多个睡眠阶段相关的信息、基于生物信号用于检测睡眠阶段的阈值或其它信息,和关于患者12的治疗的任何其它信息。为了用户的长期的存储和提取,治疗信息可被记录在存储器52中。如参考图3进一步详细地描述的那样,存储器52可包括用于存储信息的独立存储器,诸如用于治疗程序、睡眠阶段信息、诊断信息和患者信息的独立存储器。在一些实施例中,存储器52可存储程序指令,当这些指令被处理器50执行时,它们使IMD 16和处理器50执行归因于它们的功能。
通过一个或更多个导线,处理器50控制刺激发生器54以递送电刺激治疗。被认为在DBS中处理患者的运动障碍有效的电刺激参数的示例范围包括:
1.频率:大约100Hz至大约500Hz之间,诸如大约130Hz。
2.电压幅度:大约0.1伏至大约50伏之间,诸如大约0.5伏至大约20伏之间,或大约5伏。在其它的实施例中,当电压中的生物负载被递送,当前的幅度可被确定。
3.在电流控制系统中,假设大约500欧姆的较低水平的阻抗,电流振幅可以在大约0.2毫安至大约100毫安之间,诸如大约1毫安至大约40毫安之间,或大约10毫安。然而,在一些实施例中,阻抗可在约200欧姆至约2千欧姆之间变动。
4.脉冲宽度:大约10微秒姆大约5000微秒之间,诸如大约100微秒姆大约1000微秒之间或大约180微秒姆大约450微秒之间。
治疗参数值的其它范围也可以是有用的,并可依赖患者12内的靶刺激位点,该位点可在或不在脑13内。当刺激脉冲被描述时,刺激信号可以是任何形式的,诸如连续的时间信号(例如正弦波)或类似形式。上面提供的治疗参数值对处理患者12没有睡觉时的运动障碍症状是有用的。
在DBS中处理在睡眠状态中存在的症状被认为是有效的电刺激参数的示例范围包括:
1.频率:大约0.1Hz至大约500Hz之间,诸如大约0.5Hz至大约200Hz之间。在某些情况下,在刺激的递送过程中刺激的频率可以改变,并可被修改,例如,基于感觉到的睡眠阶段或在睡眠状态中感觉到的生物信号的模式。例如,刺激的频率可具有给定的范围内的模式,诸如在中心频率周围大约5Hz至大约150Hz的频率范围内的随机或伪随机模式。在一些实施例中,可基于感觉到的信号,波形还以完全的或部分的方式被形成为或是建设性的或破坏性的,或从约0度至约180度异相相位移。
2.振幅:大约0.1伏至大约50伏之间。在其它的实施例中,除了电压控制系统,刺激系统可控制电流。
3.脉冲宽度:大约10微秒至大约5000微秒之间,诸如大约100微秒至大约1000微秒之间,或大约180微秒至大约450微秒之间。
然而,上面提供的电刺激参数值可与给定的范围不同,这取决于特定的患者和发生在睡眠状态过程中的特定的睡眠阶段(例如清醒阶段、阶段1、阶段2、深睡期或REM)。例如,就睡眠阶段而论,基于睡眠阶段,刺激参数值可以被修改,在该睡眠阶段期间电刺激被提供(例如清醒阶段、阶段1、阶段2、深睡期或REM)。如下面进一步详细描述的那样,在一些实施例中,期望刺激发生器54在一些睡眠阶段期间中向患者12递送刺激,在其它的睡眠阶段期间递送最小的刺激或没有刺激。
在这里描述的每一个示例中,如果刺激发生器54在两个治疗程序之间转移刺激能量的递送,IMD 16的处理器50可提供指令,该指令使刺激发生器54在两个治疗程序的电极组合之间时间交替刺激能量,如在共同转让的的Steven Goetz等在2006年4月10日提出的名称为“电刺激装置中电极组合之间的转移(SHIFTING BETWEEN ELECTRODE COMBINATIONS IN ELECTRICAL STIMULATION DEVICE)”的美国专利申请号11/401,100中描述的那样。在时间交替转移示例中,在直到第二电极组合的振幅达到目标振幅的增量步骤中,第一和第二治疗程序的电极组合的振幅分别是向下倾斜和向上倾斜的。增量步骤在倾斜向下或倾斜向上之间可以是不同的。振幅中增量步骤可以是固定的大小或可以变化,例如,根据指数的、对数的或其它的算法变化。当第二电极组合达到其目标振幅或可能在这之前,第一电极组合可被切断。转移两个治疗程序之间的刺激信号的递送的其它技术可在其它的示例中被使用。
处理器50可包括微处理器、控制器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、离散的逻辑电路的任何一个或更多个,这里归因于处理器50的功能可作为固件、硬件、软件或其任何组合被体现。睡眠检测阶段模块59可测定患者12当前的睡眠阶段。如下面被进一步详细描述的那样,在一些实施例中,睡眠阶段检测模块59也可被偶联到产生指示患者12的脑13内的电活动的信号的传感模块55,如图2所示。以这种方式,传感模块55可检测或感应患者12的脑13内的生物信号。尽管在图2中传感模块55与刺激发生器54和处理器50被装到共同的外壳中,但是在其它的实施例中,传感模块55可以在与IMD 16独立的外壳中,并可与处理器50通过有线的或无线通讯技术进行通讯。
电信号例子包括但并不限于从脑13的一个或更多个区域内的局部场电位产生的信号。EEG和ECoG信号是可在脑13内测量到的局部场电位的例子。然而,局部场电位可包括患者12的脑13内较宽种类的的电信号。处理器50可分析生物信号,例如生物信号的频率特性,来测定患者当前的睡眠阶段。生物信号的频率特性可包括,例如生物信号的一个或更多个频带内的功率水平(或能量)、两个或更多的频带中的功率水平之比、两个或更多的频带之间的功率变化中的相互关系、一个或更多个频带的功率水平随时间的模式,等等。
在示例中,睡眠阶段检测模块59(或更概括地,处理器50)可分析频域中的生物信号,以比较选择的生物信号的振幅波形的频率构成与相应的模板信号或阈值的频率构成。例如,一个或更多个特异的频带较其它的阶段可更多地展示特定的睡眠阶段,睡眠阶段检测模块59可在显示的频带中进行生物信号的光谱分析。生物信号的光谱分析可在频率范围内的每个给定的频带内表明每个信号的功率水平。
在一些示例中,睡眠阶段检测模块59可接收来自传感模块55的信号,它通过至少一些电极22或其它的电极监测患者12的脑13内的生物信号。在一个示例中,电极22(或其它的电极)可产生指示脑活动的信号,睡眠阶段检测模块59可接收信号并分析信号来确定患者12处于那个睡眠阶段,如果有的话。除通过偶联到导线20中的至少一个的电极监测患者12的生物信号外或代替通过偶联到导线20中的至少一个的电极监测患者12的生物信号,睡眠阶段检测模块59可接收来自偶联到另一个经电偶联到传感模块55的导线的电极的生物信号、来自偶联到IMD 16的外壳和经电偶联到传感模块55的电极的生物信号和/或来自与IMD 16独立的传感模块的生物信号。
一旦测定患者的当前的睡眠阶段,睡眠阶段检测模块59可产生睡眠阶段指征。睡眠阶段指征可以是值、标志或信号,它们被储存或传送以指示患者12当前的睡眠阶段。在一些示例中,睡眠阶段检测模块59可向另一个装置诸如程序器14,通过遥测模块56传送睡眠阶段指征。在图2所示的示例中,基于睡眠阶段检测模块59产生的睡眠阶段指征,处理器50可选择治疗程序或修改治疗程序,并因此控制治疗的递送。可选地,处理器50可从存储器52(例如,通过选择储存的治疗程序或选择反映对储存的治疗程序修改的指令)选择治疗程序,并向处理器50传送选择的治疗程序,处理器50然后控制刺激发生器54来根据选择的治疗程序递送治疗。
“选择的”治疗程序可包括,例如,基于测定的睡眠阶段选自储存器52的储存的程序、储存的治疗程序和基于测定的睡眠阶段指示对储存的治疗程序所做修改的指令、储存的已被修改的治疗程序或与前面提到的任何治疗程序相关的指示器(例如,与治疗程序相关的字母数字指示器)。在一些实施例中,处理器50可在储存器52中记录关于睡眠阶段指征的信息,例如特定患者状态的日期和时间,以为了临床医生日后的提取和分析。
处理器50控制遥测模块56来发送和接收信息。IMD 16中的遥测模块56以及其它装置和这里描述的系统中的遥测模块,诸如程序器14,可通过RF通讯技术实现通讯。此外,遥测模块56可通过IMD 16与程序器14的近端电感相互作用与外部的医疗器材程序器14通讯。相应地,遥测模块56可在连续的基础上、定期间歇地或根据来自IMD 16或程序器14的请求向外部程序器14发送信息。
电源58向IMD 16的各个部件递送操作动力。电源58可包括小的可再充电的或不可再充电的电池和的发电电路以产生操作动力。再充电可通过外部充电器和IMD16内电感充电线圈之间的近端电感相互作用来完成。在一些实施例中,动力的需求可以小至足够允许IMD 16利用患者的运动和使动态的能量清除装置涓流充电可再充电的电池。在其它的实施例中,传统的电池可在有限的时期内使用。
图3是说明IMD 16的存储器52的示例结构的框图。在图3的示例中,存储器52存储治疗程序表60、睡眠阶段信息61、患者信息62和诊断信息63。治疗程序表60可将治疗程序作为许多记录来储存,这些记录被储存在将治疗程序与一个或更多个睡眠阶段(例如,阶段1、阶段2、深睡期或REM)和/或频率特性(例如阈值或模板)相关联的表或其它的数据结构中。尽管本公开的剩余部分主要指表,本公开还适用于其它类型的储存治疗程序和相关联的生理参数的数据结构。
在电刺激治疗的情况下,治疗程序表60中的每个程序可包括许多治疗参数的各自的值,诸如电压或电流振幅、信号持续时间、频率和电极配置。IMD 16的处理器50基于测定的睡眠阶段至少部分基于患者12的脑13内感应到的生物信号可从程序表60选择一个或更多个程序。储存在程序表60中的治疗程序可使用程序器14生成,例如在最初或接下来的编程期间,并通过遥测模块56被来自程序器14的处理器50接收。在其它的实施例中,程序器14可储存程序60,IMD 16的处理器50可接收通过遥测电路56从程序器14中选择的程序。
睡眠阶段信息61可储存将各个睡眠阶段指示,例如生物信号和,在某些情况下,指示患者12除脑活动外的生理参数的生理信号,与各自的睡眠阶段相关联的信息。例如,睡眠阶段信息61可储存许多阈值或模板,其中每个阈值或模板可对应与至少一类睡眠阶段。阈值可以是,例如,选择的频带内的功率水平阈值,其指示特定的睡眠阶段,或基于两个或更多的频带之间的功率之比而产生的值。阈值可以是患者特异的。模板可以是,例如,选择的频带内的生物信号的功率水平随着时间的波形模板或模式。睡眠阶段检测模块59可参考睡眠阶段信息61,以基于阈值或模板来测定接收的生物信号是否指示特定的睡眠阶段。
如下面进一步详细描述的那样,阈值可以是特定的患者睡眠阶段的阈能值。如果,例如,特别的频带(例如,约10Hz至约30Hz)内的生物信号的能量水平低于阈值,睡眠阶段检测模块59(或更概括地,处理器50)可确定生物信号指示患者12处于阶段1或阶段2睡眠阶段。作为另一个例子,如果特别的频带(例如,约10Hz至约30Hz)内的电信号的能量水平大于阈值,睡眠阶段检测模块59可确定生物信号指示患者12处于阶段1或REM睡眠阶段。
在一些实施例中,睡眠阶段检测模块59(或更概括地,处理器50)可将波形模板的频带构成与来自脑13内的生物信号的频带构成进行比较以确定是否该生物信号指示特定的睡眠阶段。如果,例如,特别的频带(例如,约10Hz至约40Hz)内的波形模板的能量水平基本上等于相同的频带内的波形模板的能量水平或在其特定的范围内(例如1%至约25%),睡眠阶段检测模块59可确定生物信号指示患者12处于与波形模板相关的睡眠阶段,即生物信号指示特定的睡眠阶段。
存储器52的患者信息部分62可储存关于患者12的数据,诸如患者的姓名和年龄、植入到患者12内的IMD 16或导线20的类型、开给患者12的药物等等。IMD 16的处理器50还可收集诊断信息63并将诊断信息63储存在存储器52内以为临床医生将来的提取。诊断信息63可,例如,包括传感模块55的输出的选择的记录或睡眠阶段检测模块59产生的睡眠阶段指征。在一些实施例中,诊断信息63可包括识别不同的睡眠阶段发生的时间的信息。临床医生可日后从诊断信息63提取信息,并基于该信息确定一个或更多个患者的睡眠阶段的长度。
诊断信息63可包括使用程序器14患者12指示的其它的信息或活动,诸如症状的改变、药物的摄入或患者12进行的其它的活动。临床医生可以阅览许多种形式的诊断信息63,诸如计时图或来自诊断信息63的统计分析的图,例如条形图。临床医生可,例如,通过程序器14或另一个计算装置从IMD 16下载诊断信息63。诊断信息63还可包括电极20(图1)的校对常规和故障算法以鉴别刺激功能障碍。
图4说明可被存储在存储器52内的实施例治疗程序表60。处理器50可检索表60,以基于是否患者被确定为醒着的或睡着的来选择治疗程序,如果患者12被确定为睡着的,睡眠阶段检测模块59检测到的患者12当前的睡眠阶段。特别地,处理器50可使治疗程序与测定的患者状态和/或睡眠阶段相匹配,并控制刺激发生器54以根据选择的治疗程序递送治疗。选择的治疗程序可以被预设,当患者12处于与选择的治疗程序相关的测定的患者状态和/或睡眠阶段时,向患者12提供治疗益处。
如图4所示,表60包括许多记录。每个记录含有清醒状态和睡眠状态各期即睡眠阶段的指征。特别地,表60包括阶段1、阶段2、深睡期和REM睡眠阶段以及相关治疗程序的许多记录。清醒状态和睡眠阶段的指征可作为,例如,储存的值、标志或其它的指征被储存,对特定的睡眠阶段指征是唯一的。因此,尽管图4中显示的表60将清醒和睡眠阶段表示为“清醒”、“阶段1”、“阶段2”、“深睡期”和“REM”,但是在存储器52内,治疗程序可以另一个计算机可读的格式被储存。
在睡眠阶段检测模块59基于一个或更多个频带内的能量水平或监测的来自脑13的两个或更多个频带内的能量水平之比确定患者12当前的睡眠阶段的实施例中(图1),储存在表60内的睡眠阶段指示符可以是阈能值,而不是“清醒”、“阶段1”、“阶段2”、“深睡期”和“REM”指示符。处理器50可分析接收的生物信号的频率构成并定期地将能量水平或两个或更多个频带中的能量水平之比与表60中的值进行比较。一旦检测到能量水平的基本匹配,处理器50可选择与能量水平相符的治疗程序。在一些实施例中,基本上与储存在表60中的值匹配的能量水平可以是,例如储存在表60中的值的约25%或更少(例如,约10%或更少)以内。然而,用于测定脑13内感觉的检测到的生物信号的能量水平和表60中储存的值之间的基本匹配的其它的灵敏度范围被考虑。
在睡眠阶段检测模块59基于一个或更多个频带内的能量随着时间的模式确定当前的睡眠阶段的实施例中,储存在表60内的睡眠阶段指示符可以是储存的波形模板,而不是“清醒”、“阶段1”、“阶段2”、“深睡期”和“REM”指示符。处理器50可分析接收的生物信号的频率构成并定期地将生物信号的一个或更多个频带中的能量水平与储存在表60中的模板波形的各自的频带构成进行比较。一旦检测到能量模式的基本匹配,处理器50可选择与波形模板相符的治疗程序。为了检测与模板相关的睡眠阶段,在一些实施例中生物信号的能量模式与模板之间的准确匹配可以不是必需的。在一些实施例中,被确定为与储存在表60中的模板基本上匹配的生物信号可包含与储存在表60中的模板的能量模式75%或更多匹配的能量模式。然而,测定储存在表60中的模板和检测到的生物信号之间的基本匹配的其它的灵敏度范围北考虑。
在图4中显示的治疗程序表60的实施例中,每个治疗程序的治疗参数值显示在表60中,并且包括电压幅度、脉冲宽度、脉冲频率和电刺激信号的电极配置的值。振幅用伏特表示,脉冲宽度用微秒(μs)表示,脉冲频率用赫兹(Hz)表示,根据记录,电极配置决定用来递送刺激的电极和极性。程序表60的振幅是电压振幅,用伏特(V)表示,但是表60的其它实施例可储存电流振幅。在图解的实施例中,每个记录包括一组治疗参数值,例如治疗程序,作为治疗信息。在其它的实施例中,每个记录可包括一个或更多个单个的参数值,或表征对一个或更多个参数值进行调节的的信息。
当与其它的治疗程序比较时,不同的治疗程序在特定的睡眠阶段过程中可更有益于向患者12提供有效的治疗。例如,取决于睡眠阶段,不同组的电极可被激活来对准不同的组织位点。脑13内特定靶组织位点的刺激较另一个靶组织位点在处理患者12的睡眠状态的症状是可以是更有效的。因此,不同的电极组合可被选择来对准不同的治疗递送位点。
IMD 16的处理器50或另一个装置可根据测定的睡眠阶段或清醒状态的检测动态地控制递送给患者12的治疗。作为一个实施例,基于第一睡眠阶段的检测,第一治疗程序可被选择以有助于改进患者12发动机任务的执行,要不然这会很困难。这些任务可包括起始运动或维持运动(例如在床上翻身)的至少一个,这在一些睡眠阶段诸如与阶段1睡眠相关的睡眠阶段期间是重要的。如果患者12具有运动障碍,不能动或运动困难可使患者12醒来或入睡困难。
作为另一个实施例,基于第二睡眠阶段的检测,第二治疗程序可被选择以有助于限制患者12的运动。如先前描述的那样,在一些具有运动障碍的患者中,患者在REM睡眠阶段期间可变得身体上更活动,这对患者的睡眠或患者12周围的其他人的睡眠可以是破坏性的,并且,在某些情况下是危险的。相应地,一旦检测到与REM睡眠阶段相关的第二睡眠阶段,处理器50可选择有助于使患者的运动减到最少的治疗程序。在一些实施例中,IMD 16的处理器50可选择多于一个的治疗程序来解决检测到的睡眠阶段。根据多个检测到的程序,刺激治疗可以以重叠或不重叠的方式被同时或在时间交错的基础上被递送。
在其它的实施例中,除了储存每个治疗程序的许多参数值外,表60可储存对与基线或另一个储存的治疗程序的不同的治疗参数值的修改。例如,如果IMD 16以约2V的振幅、约200μs的脉冲宽度、约10Hz的频率向患者12递送刺激,表60可指出,一旦检测到阶段1睡眠阶段,处理器50应控制刺激发生器54以约130Hz的频率递送治疗,但是维持其它的刺激参数值。这种修改通过储存的程序之间的转换或通过为现存的、储存的程序调整治疗参数来达到。
对参数值的修改可以对一个或更多个治疗参数或完全的治疗程序的绝对的或百分比调节来储存。例如,在图4显示的表60中,除了提供绝对的振幅值,记录1中的″2.0V″,治疗程序表可显示″+0.5V″以表明如果阶段1睡眠阶段被检测到,基线的治疗程序的振幅应增加0.5V或者″-0.25V″以表明如果REM睡眠阶段被检测到,振幅应减少0.25V。修改其它的治疗参数的指令,诸如脉冲宽度、频率和电极配置还可被储存在表或另一个数据结构中,该表或数据结构被储存在IMD 16的存储器52或另一个装置诸如程序器14内。
在一些实施例中,给患者12的治疗递送在一个或更多个睡眠阶段,诸如阶段2和深睡期过程中被停止或减少到最小的强度。刺激的强度可以是例如刺激信号的任一或更多的电压或电流振幅值、刺激信号的频率、信号持续时间(例如在刺激脉冲的情况下的脉冲宽度)、信号爆发模式等等的函数。刺激的强度可,例如影响被电刺激激活的组织的体积。在治疗递送停止或在强度上减少的睡眠阶段过程中,患者12不会有意识地象在其它的睡眠阶段运动得那么多,并不会经历不随意运动或至少经历最少的不随意运动。因此,如果患者12具有运动障碍,在这些睡眠阶段期间的治疗递送可不提供任何额外的好处。
在这些一个或更多个睡眠阶段过程中灭活治疗或减少刺激的强度可有助于保存IMD 16的电源58,这可有助于延长IMD 16的使用寿命。基于睡眠阶段动态地控制给患者12的治疗递送还可有助于预防患者12适应IMD 16给予的治疗递送。现已发现患者12可随着时间推移适应IMD 16提供的DBS。即,提供给脑13的一定水平的电刺激可随着时间推移变得不太有效。这种现象可被指作“适应”。结果,来自DBS的对患者12的任何有益的作用可随着时间推移而减少。尽管电刺激水平(例如电刺激信号的振幅)可被增加以克服这样的适应,刺激水平的增加可消耗较多的电力,并可最终达到不希望的或有害的水平的刺激。根据在不同的睡眠阶段的不同的治疗程序向患者12递送治疗或甚至在一些睡眠阶段过程中灭活治疗递送可有助于降低患者12适应治疗的速度。
在图4显示的治疗程序表60中,与阶段2睡眠阶段相关的治疗参数值表示相对最低的刺激强度,而与深睡期睡眠阶段相关的治疗参数值表示治疗被灭活。图4中显示的治疗参数值仅仅是例子,并不是意欲代表每个睡眠阶段的合适的治疗参数值。不同的睡眠阶段的合适的治疗参数值在患者12之间可不同,并且,因此,可在慢性的基础上在执行DBS系统10之前试验不同的治疗程序。
尽管参考IMD 16的存储器52来描述治疗程序表60,但是在其它的实施例中,程序器14或另一个装置可储存不同的治疗程序和相关的运动、睡眠或患者状态的指征。治疗程序和各自的患者状态可以表格形式,就象图4中的治疗程序表60或另一个数据结构被储存。
图5是示例外部医疗器械装置程序器14的概念性框图,它包括处理器70、存储器72、遥测模块74、用户界面76和电源78。处理器70控制用户界面76和遥测模块74,并向存储器72储存信息和指令,并接收来自存储器72的信息和指令。程序器14可被配置用作临床医生程序器或患者程序器。处理器70可包含一个或更多个处理器的任何组合,该处理器包括一个或更多个微处理器、DSPs、ASICs、FPGAs或其它的等同的集成的或离散的逻辑电路。相应地,处理器70可包括任何合适的结果,不论在硬件、软件、固件或其任何组合中,以执行这里归因于处理器70的功能。
处理器70监测来自输入控制器的活动,并控制用户界面76的显示。用户,诸如临床医生或患者12,可通过用户界面76与程序器14相互作用。用户界面76包括显示器(未显示),诸如LCD或其它类型的屏幕,以显示与治疗相关的信息,和输入控制器(未显示)以向程序器14提供输入。输入控制器可包括按钮、键盘(例如字母数字键盘)、周围的点击设备或允许用户通过程序器14的用户界面操纵并提供输入的另一个输入机械装置。如果程序器14包括按钮和键盘,按钮可被用于执行一定的功能,即动力按钮,或按钮和键盘可以是依赖用户当前看到的用户界面的部分在功能上改变的软键。可选地,程序器14的屏幕(未显示)可以是允许用户直接地向在显示器上显示的用户界面提供输入的触摸屏。用户可使用输入笔或其手指来向显示器提供输入。在其它的实施例中,用户界面76还包括向患者12提供听得见的指令或声音和/或接收来自患者12的语音命令的声音电路,如果患者12具有有限的运动功能,这会是有用的。
在一些实施例中,至少一些IMD 16的治疗递送的控制可被程序器14的处理器70执行。例如,在一些实施例中,处理器70可接收来自IMD 16或来自与IMD 16分开的传感模块的生物信号,其中该生物信号被IMD 16或与IMD 16分开的传感模块在脑13内被感觉到。分开的传感模块可,但不必被植入到患者12内。在一些实施例中,处理器70可基于检测到的生物信号确定患者12当前的睡眠阶段,并可通过遥测模块74向IMD 16传送信号以指示测定的睡眠阶段。例如,处理器70可包括与IMD16的睡眠阶段检测模块59(图2)相似的睡眠阶段检测模块。IMD 16的处理器50可通过其各自的遥测模块56(图3)接收来自程序器14的信号。IMD 16的处理器50可基于当前的睡眠阶段从存储器52中选择储存的治疗程序。可选地,程序器14的处理器70可选择治疗程序并向IMD 16传送信号,其中该信号指示在治疗递送过程中IMD 16要执行的治疗参数值以有助于改善患者的睡眠质量,或可提供储存在IMD 16的存储器52内的选择的治疗程序的指征。指征可以是,例如,与IMD 16的存储器52中的治疗程序相关的字母数字标识符或符号。
患者12、临床医生或另一个用户还可与程序器14相互作用以通过个别的或全面的调整手工选择治疗程序、产生新的治疗程序、修改治疗程序,并向IMD 16传送新的程序。在学习模式中,程序器14可允许患者12和/或临床医生确定哪些治疗程序是最适于一个或更多个特定的睡眠阶段和清醒患者状态的。
存储器72可包括操作用户界面76、遥测模块74和管理电源78的指令。存储器72还可储存在治疗过程中从IMD 16接收的任何治疗数据。为了预测将来的治疗,临床医生可使用这些治疗数据以确定患者状况的进展。存储器72可包括任何易失性或非易失性存储器,诸如RAM、ROM、EEPROM或闪速存储器。存储器72还可包括可被用于提供存储器更新或存储容量增加的可去除的存储器部分。可去除的存储器还可在程序器14被不同的患者使用之前允许敏感的患者数据被去除。
程序器14中的无线的遥测术可通过RF通讯或外部程序器14与IMD 16的近端电感相互作用实现。通过遥测模块74的使用,这种无线通讯是可能的。相应地,遥测模块74可与包含在IMD 16内的遥测模块相似。在可选的实施例中,程序器14可通过有线的连接进行红外线通讯或直接的通讯。以这种方式,其它的外部装置可与程序器14通讯,而无需建立安全的无线连接。
电源78向程序器14的部件递送工作动力。电源78可包括电池和电力产生电路以产生工作动力。在一些实施例中,电池可以是可再充电的以允许延长的操作。再充电可通过经电将电源78偶联到与交流电(AC)电源插座连接的发源地或插头来完成。此外,再充电可通过外部的充电器和程序器14内的电感充电线圈之间的近端电感相互作用来完成。在其它的实施例中,传统的电池(例如镍镉或锂离子电池)可被使用。此外,程序器14可被直接地偶联到交流电电源插座来工作。电源78可包括电路来监测电池内剩余的电力。以这种方式,用户界面76可提供当前的电池水平指示符或当电池需要被替换或再充电时提供低电池水平指示符。在某些情况下,电源78能使用当前的电池估计剩余的工作时间。
在一些实施例中,程序器14的处理器70或IMD 16的处理器50可监测除了生物电脑信号外患者12的另一个生理参数以证实患者12处于睡眠阶段或处于确定的睡眠阶段。可指示睡眠状态或睡眠阶段的生理参数的例子包括,例如活动水平、姿势、心率、呼吸率、呼吸量、血压、血氧饱和度、血中的氧分压、脑脊液中的氧分压、肌活动、体核温度、动脉血流和皮电反应。
在一些实施例中,在启动给患者12的治疗递送以有助于改善患者的睡眠质量之前,基于患者12除了生物电脑信号或生物信号(即生物电脑信号)外的生理参数,IMD 16的处理器50或另一个装置可证实患者12是睡着的。在一个实施例中,如在Heruth等的共同转让的2004年4月15日提出的名称为“检测睡眠”的美国专利申请系列号10/825,964中描述的那样,基于患者的一个或更多个生理参数的当前值,IMD 16的处理器50可确定指示患者是睡着的可能性的一个或更多个睡眠韵律的值。
如在Heruth等的美国专利申请系列号10/825,964中描述的那样,与IMD 16合成一体的传感器或独立的传感器可产生作为患者的至少一个生理参数的函数的信号,当患者睡着时该信号可辨别地改变。指示睡眠阶段的生理参数的例子包括,例如活动水平、姿势、心率、呼吸率、呼吸量、血压、血氧饱和度、血中的氧分压、脑脊液中的氧分压、肌活动、体核温度、动脉血流和皮电反应。在一些实施例中,基于生理参数,IMD 16的处理器50可确定指示患者是睡着的可能性的睡眠韵律的值。特别地,处理器50可将函数或检查表应用于当前的值和/或生理参数的可变性以确定睡眠韵律值。处理器50可比较睡眠韵律值和阈值以确定是否患者是睡着的。在一些实施例中,这种可能性可以是超出“睡眠状态”或“清醒状态”这样的指示,但可包括机会的指示,例如患者12处于睡眠状态的1%至约100%之间。
图6是基于患者12的睡眠阶段的测定说明IMD 16控制治疗递送的示例技术的流程图。尽管图6以及其它的图,诸如图7-18、20和21是参考IMD 16的处理器50被描述的,在其它的示例中,其它的装置的处理器,诸如程序器14的处理器70或与IMD 16分开的睡眠阶段检测模块的处理器,可依照这里描述的技术控制IMD 16的治疗递送。
处理器50可使用任何合适的技术来确定是否患者12处于睡眠阶段(80)。例如,患者12可通过指示患者12正开始一个睡眠状态(例如试图睡觉)的用户界面76(图5)向程序器14提供输入。患者12还可通过经运动传感器提供输入来提供指示睡眠状态开始的意志的提示,它然后向处理器50传送信号。例如,患者12可以不同的模式轻拍运动传感器以表明患者12处于睡眠状态。下面参考图21描述运动传感器的例子。
作为另一个实施例,处理器50可通过检测与有意志的患者输入相关的脑13内的脑信号确定患者12处于睡眠阶段,其中脑信号与患者的症状不相关或是作为患者状况的结果附带产生的。在共同转让的2007年10月16日提出的名称为“患者定向的治疗控制”的美国专利申请系列号11/974,931中描述了有意志的患者输入的例子。
在另一个实施例中,处理器50可基于一个或更多个生理参数值检测睡眠状态。例如,处理器50可基于指示患者姿势的运动传感器或加速度计检测到患者12坐着或躺下之时,并当检测到相对低的活动水平时并确定患者12处于睡眠状态。在另一个实施例中,处理器50可基于一个或更多个指示患者12是睡着的可能性的睡眠韵律值检测睡眠状态,诸如使用Heruth等的美国专利申请系列号10/825,964或Heruth等的共同转让的2004年4月15日提出的名称为“用医疗器械收集活动和睡眠质量信息”的美国专利申请系列号10/825,955描述的技术。睡眠韵律可基于患者12的生理参数,诸如活动水平、姿势、心率、呼吸率、呼吸量、血压、血氧饱和度、血中的氧分压、脑脊液中的氧分压、肌活动、体核温度、动脉血流和皮电反应。
如在美国专利申请系列号10/825,964中描述的那样,处理器50可将函数或检查表应用于当前的值和/或生理参数的可变性以确定睡眠韵律值并比较睡眠韵律值和阈值以确定是否患者是睡着的。在一些实施例中,如参考图20描述的,处理器50可比较睡眠韵律值和许多阈值的每一个以确定患者12当前的睡眠阶段,这然后被用于基于脑13内监测到的生物信号的频带特性控制治疗递送,除了睡眠阶段确定外。
除了基于患者输入或患者12的生理参数检测睡眠状态外或替代基于患者输入或患者12的生理参数检测睡眠状态,处理器50可基于时间表检测睡眠状态(80),这可被储存在IMD 16的存储器52中。该时间表可被临床医生选择或者IMD 16可基于过去的患者输入或其它的测定得知时间表。时间表可阐述患者12典型地处于清醒状态(例如不在睡眠状态)和/或处于睡眠状态的每天的时间。例如,时间表可基于对患者12特异的昼夜节律产生。处理器50可用时钟追踪每天的时间,时钟可作为处理器50的一部分或IMD 16内分开的部件被包括。在一些实施例中,处理器50可基于典型患者的昼夜节律,即一般的昼夜节律,而不是对患者12特异的昼夜节律,自动地执行时钟。
在处理器50基于预设的时间表检测睡眠状态(80)的实施例中,处理器50可基于时间表(或每晚的另一个时间)在每晚的第一时间(例如10:00p.m.)检测睡眠状态。处理器50可确定睡眠状态在第一时间开始,那时处理器50可开始测定患者的睡眠阶段,如图6所示,并在第二时间(例如8a.m.)结束,那时处理器50可恢复到不同的治疗控制系统或控制刺激发生器54(图2)以根据不同的治疗程序(例如在清醒状态向患者12提供有效的治疗的治疗程序)向患者12递送治疗。当患者12是清醒时提供治疗的治疗控制系统可,例如,向患者12提供基本上连续的治疗或一旦检测到运动或运动的意图向患者12提供治疗。检测睡眠状态的其它的技术被考虑。
在检测到患者12处于睡眠状态(80)后,处理器50可接收生物信号(82),例如来自传感模块55(图2)或感应患者12脑13内的生物信号的独立传感模块。睡眠阶段检测模块59,或更概括地,处理器50可测定生物信号(84)的频率特性。在一些实施例中,处理器50可在确定睡眠状态之前接收生物信号,因此图6显示的技术不限于在检测到睡眠状态(80)后接收生物信号。在一些实施例中,处理器50可连续地或以周期性间隔接收来自传感模块55(图2)的生物信号(82),这可由临床医生设定。例如,处理器50可定期地询问传感模块55以接收生物信号(82)。作为另一个实施例,处理器50可定期地向处理器50传送生物信号,诸如以约0.1Hz至约100Hz的频率。
睡眠阶段检测模块59可使用任何合适的技术测定生物信号(84)的频率特性。频率特性可包括,例如,生物信号的一个或更多个频带内的至少一个功率水平(或能量)、两个或更多个频带中功率水平之比、两个或更多个频带之间的功率的改变的相关性或一个或更多个频带随着时间推移的功率水平的模式。在一个实施例中,睡眠阶段检测模块59可包含放大接收的生物信号的放大器和带通或过滤监测的生物信号以提取生物信号的一个或更多个选择的频带的低通滤波器。基于揭示正被检测的一个或更多个睡眠阶段的频带,提取的频带可被选择。然后睡眠阶段检测模块59可基于提取的生物信号的频带构成确定频率特性。
不同的频带与脑13中不同的活动相关。现已认为来自脑13内的生物信号的一些频带组分较其它的频率组分可更多地揭示特定的睡眠阶段。表1显示了频带的一个例子:
Figure BPA00001186316500241
表1:频带
表1显示的频带的频率范围仅仅是例子。频率范围在其它的例子中可不同。例如,表2显示了频带的频率范围的另一个例子:
Figure BPA00001186316500242
表2:频带
处理器50可使用任何合适的技术选择频带测定患者睡眠阶段。在一个实施例中,临床医生可基于对患者12特异的信息或基于从多于一个患者12收集的数据选择频带。有益于区分两个或更多个不同患者的睡眠阶段或要不然基于来自脑13的生物信号测定患者的睡眠阶段的频带在患者之间可不同。在一些实施例中,临床医生基于,例如睡眠研究可对特别的患者校准频率范围。在睡眠研究过程中,临床医生可监测生物信号并确定哪些,如果有,频带或频带之比显示有助于检测睡眠阶段和/或区分不同的睡眠阶段的特性。
睡眠阶段检测模块59可基于生物信号(86)的频率特性确定睡眠阶段。在一些技术中,如图7和12所示,为了确定睡眠阶段或包括多于一个睡眠阶段并与通常的治疗程序相关的睡眠阶段组,睡眠阶段检测模块59可比较频率特性与一个或更多个阈值。在其它的实施例中,如图14所示,为了测定睡眠阶段,睡眠阶段检测模块59可比较生物信号的频带内功率水平随时间推移的趋势与模板。
在测定患者12的睡眠阶段(86)之后,处理器50可基于测定的睡眠阶段(88)控制治疗递送。例如,处理器50可基于测定的睡眠阶段控制刺激发生器54(图2)。在一些实施例中,处理器50可基于测定的睡眠阶段通过选择治疗程序来控制治疗递送,例如,使用储存在存储器52(图3和4)中的治疗程序表60。在其它的实施例中,处理器50可基于测定的睡眠阶段通过修改储存在IMD 16的存储器52(图2)中的治疗程序来控制治疗递送。此外,在某些情况下,响应于检测到特定的睡眠阶段,处理器50可失活治疗递送,例如通过停止刺激发生器54向患者12递送刺激信号。如描述的那样,例如,具有运动障碍的患者12在睡眠状态的一些睡眠阶段(例如阶段2和深睡期)可能需要最小的至没有电刺激治疗。
处理器50还可确定是否睡眠状态已结束(90),以便,例如恢复不同的治疗程序或恢复不同的技术用于当患者12醒着时IMD 16控制治疗递送。在一些实施例中,为了确定是否睡眠状态已结束,处理器50可使用与上面描述的那些技术相似的技术检测睡眠状态。例如,患者12可向程序器14提供输入,指示目前的患者状态是清醒状态,程序器14的处理器70可向处理器50传送信号以指示睡眠状态已结束,例如,因为清醒状态是当前的患者状态。在其它的实施例中,基于监测到的生物信号和/或监测到的生理参数值,诸如患者的姿势或活动水平和上面描述的其它的生理参数,处理器50可确定患者12处于清醒状态或要不然不处于睡眠状态。
如果睡眠状态已结束(90),处理器50可停止检测患者的睡眠阶段直到睡眠状态被再次检测到(80)。如果睡眠状态尚未结束(90),为了控制治疗(88),处理器50可继续监测来自脑13的生物信号(82),并基于生物信号(84,86)的频率特性继续测定睡眠状态。
图7是基于测定的患者12的睡眠阶段说明控制给患者的治疗递送的另一个技术的流程图。根据图7显示的技术,睡眠阶段检测模块59可接收生物信号(82)并比较生物信号的选择的频带内的功率水平与阈值(92)。阈值可被储存在IMD 16的存储器52或另一个装置的存储器内,诸如程序器14。阈值可指示,例如,指示患者12处于特定的睡眠阶段的功率水平。为了测定是否患者12处于特定的睡眠阶段,睡眠阶段检测模块59可测定是否频带内的功率水平大于或等于阈值(94)。在其它的实施例中(图4未显示),为了测定是否患者12处于特定的睡眠阶段,睡眠阶段检测模块59可测定是否频带内的功率水平小于或等于阈值。生物信号的选择的频带内的功率水平与指示患者12处于特定的睡眠阶段的阈值之间的确切的关系可依赖特定的患者和被分析的特定的频带以及其他因素。
在一些实施例中,睡眠阶段检测模块59可只对检测一个睡眠阶段感兴趣,并且,相应地,睡眠阶段检测模块59可只比较生物信号的频带内的功率水平与一个阈值。在其它的实施例中,睡眠阶段检测模块59可检测两个或更多个睡眠阶段,其中每个睡眠阶段可与不同的阈值相关。相应地,为了测定患者12处于哪个睡眠阶段,睡眠阶段检测模块59可将生物信号的频带内的功率水平与多个阈值比较。例如,睡眠阶段检测模块59可首先比较生物信号的频带内的功率水平与对应第一睡眠阶段(即阶段1)的第一阈值,接下来比较对应与第一睡眠阶段不同的第二睡眠阶段(即阶段2)的第二阈值,以及为每个相关的睡眠阶段等等。睡眠阶段检测模块59可以以定期的间隔循环通过生物信号频带内的水平比较,诸如以约0.1Hz至约100Hz的频率。
在其它的实施例中,睡眠阶段检测模块59可检测两个或更多个睡眠阶段,其中至少两个睡眠阶段与共同的阈值相关。根据一个实施例,睡眠阶段检测模块59可比较生物信号的选择的频带内的功率水平与阈值并基于阈值与时钟的比较确定睡眠阶段。时钟可追踪自被检测到的先前睡眠阶段起已过去的时间。如先前讨论的那样,每个睡眠阶段都有典型的持续时间,这可被用作测定哪个睡眠阶段被检测到的向导。相应地,如果选择的频带内的生物信号的功率水平大于或等于(或在某些情况下小于或等于)阈值,睡眠阶段检测模块59可基于自从先前的睡眠阶段被检测到起已过去的近似的时间确定患者12处于哪个睡眠阶段。如果,例如具有约20分钟的最长持续时间的第一睡眠阶段被检测到,睡眠阶段检测模块59接下来确定选择的频带内的生物信号的功率水平大于或等于接下来发生的第一和第二睡眠阶段所常见的阈值,睡眠阶段检测模块59可确定是否从第一睡眠阶段被检测到起20分钟已经过去。如果是这样,睡眠阶段检测模块59可确定患者12处于睡眠状态的第二睡眠阶段。如果第一睡眠阶段的最长持续时间还没有过去,睡眠阶段检测模块59可确定患者12仍处于第一睡眠阶段。
在其它的实施例中,睡眠阶段检测模块59可检测两个或更多个睡眠阶段,其中至少两个睡眠阶段与共同的阈值和共同的治疗程序相关。两个或更多个睡眠阶段可定义睡眠阶段组。如果患者12处于两个或更多个睡眠阶段任一个中,处理器50可根据相同的治疗程序向患者12递送治疗。相应地,在某些情况下,睡眠阶段检测模块59不能确定患者12所处的特定的睡眠阶段,但是可仅仅确定是否患者12处于睡眠阶段组。在确定患者12处于睡眠阶段组之后,处理器50可根据与睡眠阶段组相关的治疗程序控制治疗递送。
如果睡眠阶段检测模块59确定选择的频带内的功率水平大于或等于阈值(94),睡眠阶段检测模块59可确定患者12处于与阈值(96)相关的睡眠阶段。阈值可与检查表或储存在存储器52内的另一个数据结构中的睡眠阶段相关。在某些情况下,如上面描述的那样,睡眠阶段检测模块59可仅仅确定生物信号指示患者12处于睡眠阶段组,不能确定患者12的具体的睡眠阶段。然而,睡眠阶段组的确定可通常包括在睡眠阶段测定内,如这里使用的那样。基于测定的睡眠阶段(88),处理器50可控制刺激发生器54或要不然控制给患者12的治疗递送。测定的睡眠阶段可以是患者12的特别的睡眠阶段或可仅仅是与共同的治疗程序相关的许多睡眠阶段的一个。
在一些实施例中,不同的睡眠阶段可在不同的频带中相互区别。例如,第一频带可更多地揭示第一睡眠阶段和第二睡眠阶段之间的区别,但不能揭示第二睡眠阶段和第三睡眠阶段之间的区别。即,在第一频带中,第一和第二睡眠阶段可与不同的功率水平相关,而第二和第三睡眠阶段可与相同的功率水平相关。相应地,为了区分第二和第三睡眠阶段,睡眠阶段检测模块59还可分析与第一频带不同的第二频带中的生物信号。在第二频带中,第二和第三睡眠阶段可具有不同的功率水平。
在这些情况下,为了基于生物信号确定睡眠阶段,睡眠阶段检测模块59可比较两个或更多个频率特性与各自的阈值。两个或更多个频率特性可以是,例如,各自的频带内的功率水平。第一频带和第一阈值可被用于确定是否患者12处于第一睡眠阶段。如果患者12不处于第一睡眠阶段,为了确定是否患者12处于第二或第三睡眠阶段,睡眠阶段检测模块59可比较第二频带中的第二频率特性与第二阈值。睡眠阶段检测模块59可基本上平行的或连续地比较两个或更多个频率特性与各自的阈值。
图8说明将不同的患者状态和睡眠阶段与阈值和治疗程序相关联的示例表。如先前表明的那样,在某些情况下,存储器52可储存将两个或更多个睡眠阶段与共同的阈值和共同的治疗程序相关的数据,由此定义睡眠阶段组。睡眠阶段组可代表睡眠阶段的组,根据相同的治疗程序治疗递送为组中与睡眠阶段相关的睡眠障碍症状为其提供有效的治疗。在图8中,患者清醒状态和两个睡眠阶段(阶段1和REM)集合并与第一治疗程序(程序A)相关,两个睡眠阶段(阶段2和深睡期)集合并与第二治疗程序(程序B)相关。一旦检测到具有选择的频带内的功率水平——其大于阈值(阈值A)——的生物信号,处理器50根据程序A定义的参数值可控制刺激发生器54以向患者12递送治疗。通过基于选择的频带内的生物信号的功率水平的比较选择程序A,处理器50可确定患者12处于清醒状态或阶段1或REM睡眠阶段中的至少一个中。
另一方面,一旦检测到具有选择的频带内的功率水平——其小于阈值(阈值A)——的生物信号,处理器50根据程序B定义的参数值可控制刺激发生器54以向患者12递送治疗。通过基于选择的频带内的生物信号的功率水平的比较,选择程序B,处理器50可确定患者12处于阶段2或深睡期阶段中的至少一个中。
在图8显示的示例中,处理器50可根据相同的治疗程序向患者递送治疗,不论是否患者12是清醒状态(即不在睡眠状态)或在阶段1或REM睡眠阶段。相应地,在一些实施例中,在图7显示的技术中,在接收生物信号并测定生物信号的频率特性以测定患者12的睡眠阶段从而控制治疗递送之前,处理器50不能测定患者12是否在睡眠阶段(80,图7)。此外,在图7显示的技术中,在一些实施例中,理器50不能检测睡眠阶段(90,图7)的结束,但是可基于生物信号的频率特性,连续地监测生物信号以确定是否患者12处于什么睡眠阶段或是否患者12处于清醒状态。
患者12脑组织内产生的生物信号的β带内的活动可揭示患者12的不同的睡眠阶段。特别地,生物信号的β带内的功率水平对测定患者12的睡眠阶段是有益的。如图8所示,当患者处于清醒状态,处于阶段1或REM睡眠阶段,生物信号的β带内的功率水平可超过阈值(图8中的阈值A)。因此,生物信号的β带活动对区分患者12的清醒状态和睡眠状态的阶段2和深睡期阶段,以及阶段1和REM睡眠阶段和阶段2和深睡期阶段是有用的。在一些实施例中,β频带可包括约10Hz至约30Hz范围的频率,尽管其它的频率范围也被考虑。此外,在一些实施例中,与阈值进行比较的功率水平可以在β频带亚组内,诸如约20Hz至约30Hz范围的频率。“亚组”可以是,例如,特定的频带内较小范围的频率。
如图9所示,IMD 16的存储器52或另一个装置的存储器可存储将不同的睡眠阶段与α带频率范围中,例如治疗程序表60内(图4)的功率水平阈值相关联的数据。α带可包括,例如,约8Hz至约14Hz范围的频率,尽管其它的频率范围也被考虑。例如,在其它的实施例中,α带可包括约8Hz至约12Hz或约13Hz范围的频率。另外,在一些实施例中,与阈值进行比较的功率水平可以在α频带亚组内,诸如约8Hz至约10Hz范围的频率。
图9说明,在某些情况下,有用于区分患者患者12的清醒状态和睡眠阶段(例如阶段1、阶段2、深睡期和REM睡眠阶段)的生物信号的α带组成。一旦检测到具有大于阈值,阈值B的α带内的功率水平的生物信号,处理器50可确定患者12处于睡眠状态。生物信号的α带组成可不如β带组成那样可用于区分不同的睡眠阶段。为了测定患者12所处的睡眠阶段,基于生物信号的α带频率组成,它可用于为两个或更多个睡眠阶段测定不同的功率阈值。
图10A-10E是说明在清醒状态和各种睡眠阶段期间人类受试者的生物信号的功率分布(以微伏(μV)平方测量的)概念性光谱功率图。在图10A-10E显示的实施例中,生物信号是在诊断有帕金森氏病的人类受试者的底丘脑核中的测量的局部场电位。
图10A是受试者清醒状态过程中,即当受试者没睡着或试图睡觉时的生物信号的光谱功率图。图10B是睡眠状态的阶段1期间的光谱功率图。图10C是睡眠状态的阶段2期间的光谱功率图。图10D是睡眠状态的深睡期期间的光谱功率图。图10E是睡眠状态的REM阶段期间的光谱功率图。
如图10A中的圆圈100、图10B中的圆圈102和图10E中的圆圈104显示的那样,帕金森氏受试者的生物信号的光谱分析显示,与阶段2和深睡期阶段相比,在清醒状态、阶段1和REM睡眠阶段过程中,约16Hz至约30Hz的频率范围的振动是相对高的。即,在图10A-10E显示的实施例中,与阶段2(图10C)和深睡期(图10D)睡眠阶段相比,约16Hz至约30Hz的频带范围的生物信号的功率水平在清醒状态(图10A)和阶段1(图10B)和REM睡眠阶段(图10E)过程中较高(以微伏(μV)平方测量的)。相应地,现已认为监测患者的生物信号的β带活动可有益于在患者清醒状态、阶段1和REM睡眠阶段过程中控制治疗递送。
在某些情况下,约16Hz至约30Hz的频率范围可以是β频带的一部分,尽管依赖用于用不同的名字分类频带的标准,频带命名可不同。
如上面关于图7描述的那样,IMD 16的处理器50可比较监测到的生物信号的β带内的功率水平与阈值,如果功率水平超过阈值,处理器50可控制刺激发生器54(图2)以产生并向患者12递送电刺激。因此,当患者12是清醒或处于包含阶段1或REM睡眠阶段的睡眠阶段组时,处理器50可通过监测监测到的生物信号的β带内的功率水平控制IMD 16以向患者12递送治疗。指示生物信号的约16Hz至约30Hz的频率范围内的活动的、来自患者12脑13内的生物信号的频率特性可根据第一治疗程序用于在清醒状态或阶段1和REM睡眠阶段期间递送治疗,并灭活或最小化在睡眠状态的阶段2或深睡期阶段期间递送的治疗强度。
图11是说明约16Hz至约30Hz范围的β频带内生物信号的功率水平随着时间推移变化的曲线图。用于产生图11的曲线图显示的数据的生物信号可以是在诊断有帕金森氏病的人类受试者的底丘脑核中测量到的局部场电位。如图11所示,当患者是清醒时,β带内的生物信号的能量(或功率水平)是相对高的,如曲线图的106部分显示的那样,在睡眠状态的阶段1过程中,能量开始降低,如曲线图的108部分显示的那样。在受试者的睡眠状态的阶段2和深睡期过程中,β带内的生物信号的能量是相对低的,如曲线图的110部分显示的那样,当患者12进入REM睡眠阶段时,能量相对快速地增加,如曲线图的112部分显示的那样。
与清醒状态和阶段1和REM睡眠阶段相比,在阶段2和深睡期过程中处理器50根据的不同的治疗程序控制递送给患者12的治疗的实施例中,基于包含约16Hz至约30Hz的频率范围的频带中的生物信号的一半功率点,处理器50可控制刺激发生器54以转换治疗程序。一半功率点可指选择的频带内的功率水平降到最大功率水平一半的时间。在图11中,最大功率水平似乎出现在清醒状态(106)或REM睡眠阶段(112)过程中。图11的曲线图中的生物信号在阶段2和深睡期过程中降低到一半功率点或更低。因此,一半功率点可以是当患者12从阶段1睡眠阶段转换到阶段2睡眠阶段,以及从深睡期转换到REM睡眠阶段时良好的指示符。
图12A-12D是说明在清醒状态和各种睡眠阶段过程中人类受试者脑内感觉到的生物信号随时间推移的波形的概念图。在图12A-12D中生物信号的振幅以微伏(μV)测量的。在图12A-12D显示的实施例中,生物信号是在诊断有帕金森氏病的人类受试者的底丘脑核中测量到的局部场电位。
图12A说明在受试者清醒状态过程中受试者脑内感觉到的生物信号的波形。图12B说明受试者阶段1睡眠阶段过程中的生物信号的波形。图12C说明受试者的阶段2和深睡期过程中生物信号的波形。图12D说明受试者的REM睡眠阶段过程中的生物信号的波形。
图12A-12D提示,与受试者的阶段2和深睡阶段相比,清醒状态、阶段1睡眠阶段和REM睡眠阶段过程中生物信号在β频带的约20Hz至约25Hz的频率范围内具有更多的活动。再一次,这提示为了在清醒状态、阶段1睡眠阶段和REM睡眠阶段过程中向患者12递送治疗,或与阶段2和深睡阶段相比,最小地检测清醒状态、阶段1睡眠阶段和REM睡眠阶段,生物信号的β带可用于确定患者何时处于清醒状态、阶段1睡眠阶段和REM睡眠阶段。
图13是说明实施例电路的逻辑图,该电路可用于由基于患者12的脑13内的局部场电位(LFP)产生的生物信号测定患者12的睡眠阶段。模块114可被整合到IMD 16的睡眠阶段检测模块59(图2)中或另一个装置的处理器中,诸如程序器14的处理器70(图5)。导线20的电极22或另一组电极检测到的局部场电位(LFP)可被传送给模块114并提供给光谱分析子模块115,子模块115提取局部场电位信号的频率组成,诸如通过执行快速傅里叶变换算法。尽管图13未显示,但是在一些实施例中,局部场电位信号可在被发送给光谱分析子模块115之前被提供给放大器。在其它的实施例中,带通滤波器可被用于给予选择的频带的频率。
通过光谱分析子模块115后,局部场电位生物信号可通过能量测定模块116,这可测定选择的频带中的局部场电位信号的功率,这可以是,例如β带(例如约10Hz至约30Hz)。功率测定子模块116输出的局部场电位信号的提取的功率水平随同阈值可被发送给比较器117,阈值可由处理器50提供。如上面显示的那样,阈值对特定的睡眠阶段或睡眠阶段的组可以是特异的。比较器117可比较阈值与功率测定子模块116测定的功率,例如测定是否测定的功率大于或等于,在某些情况下,小于或等于阈值。
来自比较器117的信号可以指示患者12的睡眠阶段或睡眠阶段的组。睡眠阶段逻辑学118可基于来自比较器117的信号确定患者的睡眠阶段并产生指示患者12可处于测定的睡眠阶段内的睡眠阶段指征。处理器50然后采取与睡眠阶段指征相关的行动,诸如通过参考检查表(例如图4中的表60)。检查表可详细说明行动,诸如选择治疗程序、激活或灭活给患者12的治疗递送或修改治疗程序。根据选择的或修改的治疗程序,处理器50可控制刺激发生器54(图2)向患者12递送治疗。
在一些实施例中,睡眠阶段逻辑学118可包括持续时间逻辑学,持续时间逻辑学测定是否选择的频带内的生物信号的功率水平或两个或更多个选择的频带内的功率水平之比大于(或小于和,在某些情况下等于)为预设的时间量而储存的阈值。如果睡眠阶段逻辑学118测定功率水平或功率水平之比大于或等于为预设的时间量而储存的阈值,睡眠阶段逻辑学118可确定患者12处于与阈值相关的睡眠阶段。在其它的实施例中,睡眠阶段逻辑学118可包括持续时间逻辑学,持续时间逻辑学测定是否选择的频带内的生物信号的功率水平或两个或更多个选择的频带内的功率水平之比小于或等于为预设的时间量而储存的阈值。
在一些实施例中,不同的通道可用于监测不同的频带内的功率并比较不同的频带中的功率与各自的阈值。在带通滤波器被用于提取相关的频带组分的实施例中,每个通道可具有各自的带通滤波器,并且,在某些情况下,全波整流器。每个通道的带通滤波器可容许不同范围的频率。每个通道可包括各自的放大器和带通滤波器或者共同的放大器可在光谱分析子模块115之前放大LFP信号。局部场电位信号(或其它的生物信号)的带通滤过之后,滤过的信号在被递送给睡眠阶段逻辑学模块118之前可被类似地平行处理。当一些睡眠阶段在不同的频带较易与另一个睡眠阶段区分时,多个通道是有用的。
图14是说明基于来自患者12的脑13的生物信号的频带特性控制治疗递送的另一个实施例技术的流程图。IMD 16的处理器50可接收生物信号(82),例如,来自传感模块55(图2),它可处于与IMD 16相同或不同的外壳中。睡眠阶段检测模块59可测定至少第一和第二频带(120)内的功率水平之比。这个比可以是,例如通过用第二频带内的生物信号的第二功率水平除以第一频带内的生物信号的第一功率水平而测定的值。选择用于测定比率的频带可以是,例如已被例如被临床医生或其它的人测定的频带,以揭示患者12的不同的睡眠阶段或至少揭示睡眠阶段的组之间的差异。在一些实施例中,睡眠阶段的组可包括第一组,其中在第一组的睡眠阶段过程中治疗递送是预期的,和第二组,其中在第二组的睡眠阶段过程中治疗递送不是预期的或最小的。
一般而言,由于比率的更稳健的性质,基于生物信号的两个频带内的功率水平之比测定患者12的睡眠阶段是有用的,比率考虑两个频带中的活动。在某些情况下,单一频带内的功率水平可以是相对小的(例如在微伏的等级),它很难以相对的准确度和精确度来测量。包括功率水平之比的频率特性的测定可有助于产生更多指示频带内的活动的值,而不论相对小的功率值。例如,包括功率水平之比的频率特性的测定可有助于使一个频带中的功率变化与另一个频带中的功率变化相关联,这会更多地揭示患者12的睡眠阶段。此外,依赖选择的频带,不同的的功率之比可用于区分睡眠阶段的不同亚组。
在图14显示的实施例中,睡眠阶段检测模块59比较选择的频带内的功率之比与阈值(122)。如果比率小于阈值,处理器50可继续监测生物信号(82)而无需控制治疗递送。例如,如果第一和第二选择的频带内的功率水平之比小于阈值,刺激发生器54(图2)可不向患者递送任何治疗。
如果睡眠阶段检测模块59测定到第一和第二选择的频带内的功率水平之比大于或等于阈值(122),睡眠阶段检测模块59可确定患者12可能处于与阈值(124)相关的睡眠阶段。再一次,睡眠阶段或睡眠阶段组可与检查表中的阈值或储存在IMD 16的存储器52或另一个装置的存储器内的数据结构相关。在一些实施例中,基于比较,特别地如果阈值与多于一个睡眠阶段相关,睡眠阶段检测模块59可测定一组睡眠阶段。基于测定的睡眠阶段(88),处理器50可控制IMD 16的刺激发生器54(图2),诸如通过选择与睡眠阶段相关的治疗程序。
在其它的实施例中,处理器50可不直接地测定睡眠阶段,但是可通过基于功率水平之比和阈值的比较选择治疗程序,并基于选择的治疗程序(88)控制治疗递送而间接地测定睡眠阶段。如先前表明的那样,在一些实施例中,处理器50可不测定与阈值相关的特定的睡眠阶段,但是可基于阈值仅仅测定治疗程序或治疗程序的修改。以这种方式,处理器50可有效地测定睡眠阶段,无需测定已被检测的睡眠阶段的具体名称。
在图14显示的技术的其它的实施例中,为了确定是否患者12处于特定的睡眠阶段,睡眠阶段检测模块59可测定是否第一和第二频带内的功率水平之比小于或等于阈值。因此,在某些情况下,如果第一和第二选择的频带内的功率水平之比大于阈值,刺激发生器54(图2)可不向患者12递送任何治疗。
图15A-15C是将清醒状态和睡眠状态的不同睡眠阶段与阈值和治疗程序相关联的示例表。图15A-15C中显示的表内的表或数据可被储存在IMD 16的存储器52(例如在治疗程序表60内)或另一个装置的存储器内,诸如程序器14。如图15A-15C所示,在某些情况下,共同的治疗程序可与患者12的一个或更多个睡眠阶段和/或清醒状态相关。为了测定是否患者12总体上处于睡眠阶段组,而不是测定患者12的特定的睡眠阶段,处理器50可接收患者12的脑13内产生的生物信号并测定生物信号的频率特性。一旦测定到患者12处于睡眠阶段组,基于患者总体上处于集合的许多睡眠阶段中的一个中的测定,处理器50可控制IMD 16以向患者12递送治疗。例如,处理器50可选择与组相关的治疗程序并依据选择的治疗程序控制IMD 16向患者12递送治疗。
图15A说明为了选择用于IMD 16控制给患者12的治疗递送的治疗程序,可被用于比较患者12的生物信号的σ带和β带之间的功率之比与共同阈值(图15A中的阈值C)的表。如先前表明的那样,患者12的脑组织内产生的生物信号的β带内的活动可揭示患者12的不同睡眠阶段。β带的不同亚组内的功率水平之比也有益于测定患者12的睡眠阶段。例如,σ带内的能力之比,σ带可指相对低的β带,和高β带可用于区分不同的睡眠阶段或睡眠阶段的组。在一些实施例中,σ带可以是约12Hz至约16Hz的范围,尽管其它的频率范围也为σ带考虑。在一些实施例中,高β带可以是在约16Hz至约30Hz的范围,尽管其它的频率范围也为高β带考虑。
基于图15A的表中显示的数据,患者清醒状态和两个睡眠阶段(阶段1和REM)被集合在一起并与第一治疗程序(程序C)相关联,两个睡眠阶段(阶段2和深睡期)被集合在一起并与第二治疗程序(程序C)相关联。一旦检测到σ带和高β带内的功率水平之比大于阈值——阈值C的生物信号,处理器50可根据程序C定义的参数值控制刺激发生器54产生并向患者12递送治疗。通过基于选择的频带内的功率水平之比的比较选择程序C,处理器50可确定患者12处于清醒状态或阶段1或REM睡眠阶段的至少一个中。
另一方面,一旦检测到σ带和β带内的功率水平之比小于阈值——阈值C的生物信号,处理器50可根据程序D定义的参数值控制刺激发生器54产生并向患者12递送治疗。通过基于选择的频带内的功率水平之比的比较选择程序D,处理器50可确定患者12处于包括阶段2和深睡期阶段的睡眠阶段组中。
正如图8显示的实施例表中,当处理器50参考图15A显示的表来确定患者的睡眠阶段时,处理器50可根据相同的治疗程序控制刺激发生器54产生并向患者12递送治疗,而不管是否患者12是清醒状态(即不在睡眠状态)或处于阶段1或REM睡眠阶段。如图15A所示,如小于阈值C的值表明的那样,σ带功率和高β带功率相对低的比率的存在可以是从阶段2睡眠向REM睡眠转换的标志。
图15B说明为了选择用于IMD 16控制给患者12的治疗递送的治疗程序,可用于比较患者12的生物信号的β带和α带的功率之比与两个阈值(图15β中的阈值D和阈值E)的表。在一些实施例中,α带可处于约5Hz至约10Hz的范围内,尽管其它的频率范围也为α带考虑。在一些实施例中,β带可处于约10Hz至约30Hz的范围内,尽管其它的频率范围也为β带考虑。此外,生物信号的β带和α带之间的功率之比可包括β带的子集和α带的子集之间的功率之比。
如15B说明的,β带和α带之间的功率之比可用于区分患者12的清醒状态和患者12的阶段2、深睡期和REM睡眠阶段。此外,β带功率和α带功率之比可用于区分患者12的阶段1睡眠阶段和患者12的阶段2、深睡期和REM睡眠阶段。此外,β带功率和α带功率之比可用于区分患者12的REM睡眠阶段和患者12的清醒状态、阶段1和深睡期阶段。
基于图15B的表显示的数据,患者清醒状态和阶段1睡眠阶段被集合在一起并与第一治疗程序(程序E)相关联,两个睡眠阶段(阶段2和深睡期)被集合在一起并与第二治疗程序(程序F)相关联,另一个睡眠阶段(REM)与第三治疗程序(程序G)相关联。一旦检测到β和α带内的功率水平之比大于第一阈值——阈值D,但小于第二阈值——阈值E的生物信号,处理器50可根据程序E定义的参数值控制刺激发生器54以向患者12递送治疗。通过基于第一和第二阈值的功率水平之比的比较选择程序E,处理器50可确定患者12处于包括清醒状态或阶段1睡眠阶段的至少一个的睡眠阶段组中。
如果睡眠阶段检测模块59测定到生物信号在β和α带内的功率水平之比小于第一阈值——阈值D的,这样该比率小于与清醒状态和阶段1睡眠阶段相关的阈值,处理器50可根据程序F定义的参数值控制刺激发生器54以产生并向患者12递送治疗。通过基于生物信号的选择的频带内的功率水平之比与第一阈值——阈值D的比较选择程序F,处理器50可确定患者12处于睡眠状态的阶段2或深睡期阶段的至少一个中。
如果睡眠阶段检测模块59测定到生物信号在β和α带内的功率水平之比大于第二阈值——阈值E,这样该比率大于与清醒状态和阶段1睡眠阶段相关的阈值,处理器50可根据程序G定义的参数值控制刺激发生器54以向患者12递送治疗。通过基于生物信号的选择的频带内的功率水平之比与第二阈值——阈值E的比较选择程序G,处理器50可确定患者12处于睡眠状态的REM睡眠阶段内。
当睡眠阶段检测模块59参考图15B显示的表来确定患者的睡眠阶段时,处理器50可根据相同的治疗程序控制刺激发生器54并向患者12递送治疗,而不管是否患者12是清醒状态或处于阶段1。如图15B所示,如大于阈值E的值表明的那样,相对高的β带功率和α带功率之比的存在可以是从阶段2睡眠向REM睡眠转换的标志。此外,睡眠阶段检测模块59可使用两个阈值——阈值D和阈值E来区分清醒状态和阶段1睡眠阶段和REM阶段。如果不同的治疗参数值在阶段1阶段对REM阶段期间或清醒状态对REM阶段期间提供有效的治疗来改善患者的睡眠质量,这是有益的。
图15C说明另一个实施例表,为了比较患者12的生物信号的θ带和α带之间的功率之比与共同的阈值(图15C中的阈值F),睡眠阶段检测模块59可参考该表,以便选择用于IMD 16控制给患者12的治疗递送的治疗程序。在一些实施例中,α带可处于约8Hz至约14Hz的范围内,尽管其它的频率范围也为α带考虑。在一些实施例中,θ带可处于约4Hz至约8Hz的范围内,而在其它的实施例中,θ带可在约5Hz至约10Hz的范围内。其它的频率范围也为θ带考虑。此外,生物信号的θ带和α带之间的功率之比可包括θ带的子集和α带的子集之间的功率之比。
如图15C说明的,θ带和α带之间的功率之比可用于区分包括患者12的清醒状态和阶段1和REM睡眠阶段的第一睡眠阶段组(A组),与包括患者12的阶段2和深睡期阶段的第二睡眠阶段组(B组)。基于图15C的表中显示的数据,患者清醒状态、阶段1睡眠阶段和REM睡眠阶段被分在一起并与第一治疗程序(程序H)相关联,两个睡眠阶段(阶段2和深睡期)被分在一起并与第二治疗程序(程序I)相关联。一旦检测到θ和α带内的功率水平之比小于第一阈值——阈值F的生物信号,处理器50可根据程序H定义的参数值控制刺激发生器54以产生并向患者12递送电刺激。通过基于选择的频带内的生物信号的功率水平之比与阈值——阈值F的比较选择程序H,处理器50可确定患者12处于清醒状态或阶段1或REM睡眠阶段的至少一个中。
如果处理器50测定到生物信号在θ和α带内的功率水平之比大于阈值——阈值F的,处理器50可根据程序I定义的参数值控制刺激发生器54以产生并向患者12递送电刺激。通过基于选择的频带内的生物信号的功率水平之比与第一阈值——阈值F的比较选择程序I,处理器50可确定患者12处于睡眠状态的阶段2或深睡期阶段的至少一个中。
当处理器50参考图15C显示的表确定患者的睡眠阶段时,处理器50可根据相同的治疗程序向患者12递送治疗,而不管是否患者12是清醒状态或处于阶段1或REM睡眠阶段。如图15C所示,如小于阈值F的值表明的那样,相对低的θ带功率和α带功率的比率的存在可以是从阶段2睡眠向REM睡眠阶段转换的标志。
图16是说明人类受试者的脑内测量的生物信号的相对低的频带(例如θ或α带)和较高的频带(例如β带)的功率水平之比随着时间推移的变化的曲线图。在图16显示的实施例中,比率是在约2Hz至约8Hz范围的频带的功率水平与约16Hz至约30Hz范围的频带的功率水平之间。用来产生图16的曲线图所示的数据的生物信号可以是在诊断有帕金森氏病的人类受试者的底丘脑核中测量到的局部场电位。
如图16所说明的,相对低的频带和较高的频带内的能量之比在患者12的清醒状态和阶段1和REM睡眠阶段过程中都是相对低的。该比率在睡眠状态的阶段2和深睡阶段过程中增加。图16显示的曲线图提示约2Hz至约8Hz范围的频带的功率水平与约16Hz至约30Hz范围的频带的功率水平之比可用于区分患者的清醒状态和阶段2和深睡期阶段,以及区分睡眠状态的阶段1和REM睡眠阶段及阶段2和深睡期阶段。基于与图16显示的数据相似的数据,用于确定是否患者12总体上处于包括清醒状态和阶段1和REM睡眠阶段的第一组状态中的阈值可被选择。例如,基于图16显示的曲线图,用于比较对抗的功率水平之比的阈值可以是约30。
在这样的实施例中——其中与清醒状态和阶段1和REM睡眠阶段相比,在阶段2和深睡期阶段过程中,处理器50根据不同的治疗程序控制给患者12的治疗递送,阈值可基于生物信号的相对低的频带(例如θ或α带)和较高的频带(例如β带)的比值一半功率点被选择。在图16中,最大功率水平似乎出现在阶段2或深睡期阶段过程中。图16的曲线图中的生物信号在清醒状态和阶段1和REM睡眠阶段过程中降低到一半功率点或更低。因此,一半功率点可以是当患者12从阶段1睡眠阶段转换到阶段2睡眠阶段,以及从深睡期阶段转换到REM睡眠阶段时的相对好的指示符。
图17是说明实施例电路模块的逻辑图,该电路模块可由基于患者12的脑13内的局部场电位(LFP)产生的生物信号确定患者12的睡眠阶段。模块125可被集成到IMD 16的睡眠阶段检测模块59(图2)中或另一个装置中,诸如程序器14。导线20的电极22或另一组电极感测到的局部场电位(LFP)可被传送给模块125并提供给光谱分析子模块115,子模块115提取局部场电位信号的频率组分,诸如通过执行快速傅里叶变换算法。尽管图17未显示,但是在一些实施例中,局部场电位信号可在被发送给光谱分析子模块115之前被提供给放大器。
通过光谱分析子模块115后,局部场电位生物信号可通过可测定第一频带中的局部场电位信号的功率的第一功率测定子模块126,和可测定第二频带中的局部场电位信号的功率的第二功率测定子模块127。在其它的实施例中,带通滤波器可被用于提取想要的局部场电位信号的频带组分。
在一些实施例中,第一频带可以是β带(例如约10Hz至约30Hz)或β带的子集,第二频带可以是α带(例如约8Hz至约12Hz)或α带的子集。在另一个实施例中,第一频带可以是σ带(例如约12Hz至约16Hz)或σ带的子集,第二频带可以是高β带(例如约16Hz至约30Hz)或高β带的子集。在另一个实施例中,第一频带可以是θ带(例如约4Hz至约8Hz)或θ带的子集,第二频带可以是α带(例如约8Hz至约12Hz)或α带的子集。考虑用于测定比率的其它的频带组合。
提取的功率测定子模块126、127输出的局部场电位信号的功率水平可被发送给比率计算器128,它可测定第一功率测定子模块126测定的第一功率水平与第二功率测定子模块127测定的第二功率水平之间的比率的值。比率计算器128测定的值连同处理器50提供的阈值一起被发送给比较器129。如上面表明的那样,阈值可以是对特定的睡眠阶段或睡眠阶段的组特异的。比较器129可比较阈值与比率计算器128测定的比值,例如测定是否阈值大于或等于,在某些情况下,小于或等于阈值。
来自比较器129的信号可指示患者12的睡眠阶段或睡眠阶段的组。睡眠阶段逻辑学130可基于来自比较器129的信号确定患者的睡眠阶段并产生指示患者12可处于测定的睡眠阶段内的睡眠阶段指征。处理器50然后采取与睡眠阶段指征相关的行动,诸如通过参考检查表(例如图4中的表60)。检查表可详细说明行动,诸如选择治疗程序、激活或灭活给患者12的治疗递送或修改治疗程序。
在一些实施例中,睡眠阶段逻辑学130可包括持续时间逻辑学,持续时间逻辑学测定是否选择的频带内的生物信号的功率水平或两个或更多个选择的频带内的功率水平之比大于(或,在某些情况下小于,并且,在某些情况下等于)为预设的时间量而储存的阈值。如果睡眠阶段逻辑学130测定到功率水平或功率水平之比大于或等于为预设的时间量而储存的阈值,睡眠阶段逻辑学130可确定患者12处于与阈值相关的睡眠阶段。在其它的实施例中,睡眠阶段逻辑学130可包括持续时间逻辑学,持续时间逻辑学测定是否选择的频带内的生物信号的功率水平或两个或更多个选择的频带内的功率水平之比小于或等于为预设的时间量而储存的阈值。
图18是说明基于测定的患者睡眠阶段控制给患者12的治疗递送的另一个实施例技术的流程图。处理器50可接收患者12的脑13内检测的生物信号(82),睡眠阶段检测模块59可测定生物信号的选择的频带内的功率水平(131)。睡眠阶段检测模块59可测定选择的频带内的功率水平随着时间推移的模式并将该模式与模板进行比较。模板可被储存在IMD 16的存储器52内。睡眠阶段检测模块59可测定是否选择的频带内的生物信号的功率水平的模式随着时间推移模板相匹配(132)。
在一些实施例中,睡眠阶段检测模块59可用滑动窗取样波形,其中该波形可用滑动窗通过绘制选择的频率内的生物信号的功率水平随着时间被限定,并比较波形与储存的模板波形。例如,睡眠阶段检测模块59可通过沿着生物信号的波形的数字化的图有规律间期地,诸如约一毫秒至约十毫秒之间的间期,移动窗口进行相关分析,来限定生物信号的样本。样本窗可沿着绘图滑动直至模板和选择的频带内功率水平随着时间推移限定的波形之间的相关性被检测到。通过有规律间期地移动窗口,许多样本周期可被限定。
相关性可被检测,例如,通过匹配许多模板波形与生物信号的选择的频带内的功率水平随着时间推移的绘图的波形之间的多个点或通过应用取样窗中的样本和存储在模板波形中的相应的一组样本之间的任何合适的数学的相关算法。在一些实施例中,用于测定是否该模式匹配模板(132)的模板匹配算法可不需要一百个百分比(100%)的相关匹配,但是宁可只匹配模式的一些百分比。例如,如果选择的频带内的生物信号的功率水平随着时间的模式展现出与模板匹配约75%或更多的模式,睡眠阶段检测模块59利用的算法可确定模式和模板之间是基本匹配的。
如果选择的频带内的生物信号的功率水平的绘图随着时间的模式基本上与模板匹配(132),睡眠阶段检测模块59可确定患者12的睡眠阶段(134)并基于确定的睡眠阶段控制给患者12的治疗递送(88)。睡眠阶段检测模块59可通过参考储存在存储器52内的数据结构确定睡眠阶段(134)。例如,该数据结构可将模板与一个或更多个睡觉阶段相关联,一旦检查到功率水平随着时间的模式与模板之间的匹配,处理器50可确定患者12处于一个或更多个睡觉阶段。
如果选择的频带内的生物信号的功率水平的绘图随着时间的模式不是基本上与模式模板匹配(132),处理器50可继续监测生物信号(82)来检测与该生物信号相关的一个或更多个睡觉阶段。在某些情况下,处理器50可连续地或基本上同时地比较选择的频带内的生物信号的功率水平的绘图随着时间的模式与另一个模板,该模板可与另一个睡眠阶段或另一组睡眠阶段相关。
图19是说明将生物信号的一个或更多个频率特性与睡眠阶段相关联的实施例技术的流程图。为了基于在患者12的脑13内检查到的生物信号,测定一个或更多个睡眠阶段,图19显示的技术可被用于测定阈值或上面描述的模板。因此,在一些实施例中,基于检测到的睡眠阶段,图19显示的技术在IMD 16控制技术执行之前出现的程序设计期间或试验阶段过程中可被执行(例如图6、7、14和18中显示的技术)。在一些实施例中,与睡眠阶段相关的并后来被用于测定患者12的睡眠阶段的生物信号的一个或更多个频率特性可能对患者12是特异的。例如,可进行睡眠研究,在该过程中临床医生可监测患者的睡眠状态过程中患者12的脑13内产生的生物信号并测定当患者12是睡着时的一个或更多个频率特性。在其它的实施例中,与睡眠阶段相关的并后来被用于测定患者12的睡眠阶段的生物信号的一个或更多个频率特性可起源于来自两个或更多的患者的数据,这可包括,例如,具有相似的神经性障碍或至少相似的睡眠障碍症状的患者。图19主要参考程序器的处理器70(图5)被描述的,在其它的实施例中,另一个装置(例如IMD 16或另一个计算装置),单独或与程序器14组合可执行图19显示的技术。
处理器70可接收来自IMD 16或不同的传感模块(135)的生物信号,其中该生物信号指示患者12的脑13内的活动。处理器70可测定患者12的睡眠阶段(136)。在一个实施例中,处理器70可接收来自临床医生指示患者12的睡眠阶段的输入,或处理器70可基于患者12的生理参数而不是脑信号测定睡眠阶段,这在下面参考图20和21被描述。
为了测定睡眠阶段的频率特性(138),处理器70可选择生物信号(137)的一个或更多个频带。如果处理器70测定到包括两个频带的比的频率特性,处理器70可选择生物信号的两个频带(137)。依赖患者或睡眠阶段,可用于区分两个或更多个不同的患者睡眠阶段或要不然基于来自脑13的生物信号测定患者的睡眠阶段的频带可不同。
在一些实施例中,处理器70可基于来自临床医生的输入选择一个或更多个频带。在其它的实施例中,处理器70可参考储存在程序器14的存储器72内的信息来测定一个或更多个频带来选择。该信息可提示,例如,一个或更多个频带有益于为确定测定的睡眠阶段而测定频带特性。该信息可基于先前的对患者12或具有与患者12相似的睡眠障碍或运动障碍症状的一组两个或更多个患者的研究。临床医生或处理器70可选择这样的频带,其被认为区分患者当前的睡眠阶段(在框136中测定的)与一个或更多个其它的睡眠阶段。
处理器70可使用任何合适的技术测定生物信号(138)的频率特性。在一个实施例中,临床医生可通过程序器14的用户界面76提供输入,该界面指示处理器70应从生物信号提取的频率特性的类型。临床医生或处理器70在睡眠阶段或睡眠阶段的部分过程中可自动地选择生物信号的峰值、中间的、平均的或最低的功率水平。基于临床医生的输入或可指示何时患者12转换到当前检测到的睡眠阶段之后的下一个睡眠阶段的其它的生理参数,睡眠阶段的持续时间可被测定。峰值、中间的或平均的功率水平然后作为用于检测睡眠阶段的阈值被储存。
作为另一个实施例,临床医生或处理器70在睡眠阶段或睡眠阶段的至少部分过程中可自动地选择选择的频带中生物信号的功率水平之比的峰值、中间的、平均的或最低值作为频率特性。峰值、中间的、平均的或最低值然后可作为检测睡眠阶段的阈值被储存。作为另一个实施例,临床医生或处理器70在睡眠阶段或睡眠阶段的至少部分过程中可自动地选择选择的频带中的生物信号的功率水平的模式作为频率特性。生物信号的功率水平随时间的模式或选择的时间段过程中生物信号的振幅波形可作为检测睡眠阶段的模板被储存。如果生物信号的振幅波形被储存,IMD 16的处理器50随后分析生物信号波形的频带组成以确定指示患者12处于睡眠阶段的功率水平的模式。
测定了生物信号的频率特性之后,处理器70可将特性与程序器14的存储器72中的睡眠阶段相关联。在一些实施例中,处理器70可通过各自的遥测模块74、56向IMD 16传送频率特性和相关的睡眠阶段信息。在一些实施例中,临床医生在用频率特性信息为IMD 16编程之前可检查并修改信息。
图20是说明基于不同变量的睡眠阶段的至少两个测定证实患者12处于特定的睡眠阶段的实施例技术的流程图。在一些实施例中,如图20所示,在测定到睡眠阶段检测模块59基于来自患者12的脑13内的生物信号的频率特性的睡眠阶段的测定基本上与基于患者的另一个生理参数的睡眠阶段的测定相匹配之后,处理器50可确定睡眠阶段。基于两个不同的信号的独立地确认患者的睡眠阶段有助于检测睡眠阶段检测模块59或传感模块55的潜在的失效模式。
处理器50可接收生物信号(82)并基于生物信号的频率特性确定睡眠阶段,例如使用关于图6、7、14和18描述的技术。如先前描述的那样,在其它的实施例中,睡眠阶段检测模块59可测定生物信号的频率特性和/或睡眠阶段测定。
处理器50还可接收生理信号(140)。生理信号可作为患者12的生理参数的函数而变化,生理参数指示睡眠阶段,诸如活动水平、姿势、心率、呼吸率、呼吸量、血压、血氧饱和度、血中的氧分压、脑脊液中的氧分压、肌活动、体核温度、动脉血流和皮电反应。处理器50可基于生理信号测定睡眠阶段(142)。处理器50可使用任何合适的技术,基于生理信号检测患者12的睡眠阶段。作为各种实施例,处理器50可将生理信号的电压或电流振幅与阈值进行比较,使时域或频域中的生理信号的振幅波形与模板信号或其组合相关联。基于对患者12或一个或更多个患者进行的睡眠研究,阈值或模板可被确定,这种情况下阈值和模板对患者12不是特异的。
在一个实施例中,一段时期的生理信号的瞬间的或平均的振幅可与振幅阈值相比较,这可与一个或更多个睡眠阶段相关。作为另一个实施例,生理信号随着时间或在生理信号随着时间推移的振幅的模式中的拐点或其它临界点之间定时的振幅斜率可与趋势信息相比较。不同的趋势可与一个或更多个睡眠阶段相关。生理信号的振幅波形中的拐点或其它临界点与模板之间的相互关系可指示与模板相关的睡眠阶段的出现。
作为另一个实施例,处理器50可通过用滑动窗取样生理信号产生的波形并比较该波形与储存的指示一个或更多个不同睡眠阶段的模板波形完成与模板的时间相关作用。如果一个以上的睡眠阶段可被不同的模板检测到,处理器50可为许多睡眠阶段以任何期望的顺序或基本上同时地比较生理信号的波形与模板波形。例如,处理器50可比较生理信号与指示第一睡眠阶段的模板波形,接下来是指示第二睡眠阶段的模板波形,等等。
在一个实施例中,处理器50可通过沿着生理信号的振幅波形的数字化的绘图具有规律间期地,诸如约一毫秒至约十毫秒之间的间期,移动窗口进行相关性分析以限定生理信号的样本。样本窗可沿着绘图滑动直至储存在存储器52内的模板波形和被窗口限定的生理信号的样本的波形之间的相互关系被检测到。通过有规律间期地移动窗口,许多样本周期可被限定。相互关系可被检测到,例如,通过匹配模板波形与生理信号随时间的绘图的波形之间的多个点,或通过应用取样窗中的样本和存储在模板波形中的相应的一组样本之间的任何合适的数学相关算法。
基于生理信号(142)和生物信号的频率特性(86),进行睡眠阶段的分开的和独立的测定之后,处理器50可确定是否睡眠阶段的测定是一致的(144)。如果两个睡眠阶段测定指示患者12处于相同的睡眠阶段或相同的睡眠阶段组,睡眠阶段的测定可能是一致的。例如,如果处理器50测定到生物信号的频率特性指示患者12处于第一睡眠阶段,生理信号指示患者12处于第二睡眠阶段,但是第一和第二睡眠阶段都与共同的睡眠阶段组相关(例如,共同的睡眠阶段组与相同的治疗程序相关),处理器50可确定睡眠阶段的测定是一致的。
如果睡眠阶段的测定是一致的(144),处理器50可基于测定的睡眠阶段控制治疗递送(146)。如果睡眠阶段的测定不是一致的(146),处理器50可确定睡眠阶段模块59或提供生理信号的传感模块失效,并且睡眠阶段测定的一个是错误的。响应检测到该睡眠阶段,处理器50可不控制给患者12的治疗递送。相应地,如果IMD 16根据治疗程序正在向患者12递送治疗,IMD 16可继续根据该治疗程序向患者12递送治疗。作为另一个实施例,如果IMD 16没有向患者12递送治疗,IMD 16可保持不激活的状态。处理器50然后可继续监测生物信号(82)和生理信号(140)直到基于各自的一个生理信号与生物信号的睡眠阶段的测定相匹配。
如先前表明的那样,在一些实施例中,IMD 16的处理器50或另一个装置的处理器可在测定患者处于的睡眠状态的特定睡眠阶段之前测定是否患者12处于睡眠状态。睡眠状态,并且,在一些实施例中,患者12的睡眠阶段可基于患者12的生理参数而不是脑13内的生物信号被测定。图21是可被用于产生指示患者12的一个或更多个生理参数的生理信号的不同传感模块的实施例的概念上性图解。代替与IMD 16偶联的或植入到患者12内与IMD 16分开的传感器或除与IMD 16偶联的或植入到患者12内与IMD 16分开的传感器外,图21显示的传感模块可被使用。传感模块的一个例子是运动传感器150,它包括产生指示患者运动的信号的传感器,诸如2轴或3轴加速度计或压电晶体。运动传感器150通过腰带151与患者12的躯干连结,并可向IMD 16、程序器14或另一个装置传送信号。
用运动传感器150产生的信号的进行的患者运动的检测可被用于确定是否患者12处于睡眠状态,例如通过检测指示患者处于清醒状态的相对高水平的运动,或检测指示患者12处于睡眠状态的相对低水平的运动。作为例子,基于来自运动传感器110的信号,阈值比较、峰值水平检测或阈值交叉可被用于确定是否患者12处于清醒状态或睡眠阶段。
IMD 16的处理器50可监测来自运动传感器150的输出。运动传感器150产生的信号可通过无线的信号被发送给IMD 16的处理器50。处理器50或另一个处理器可使用任何合适的技术,诸如用来自运动传感器150或另一个传感器的输出,测定患者的姿势或活动水平,该另一个传感器产生指示心率、呼吸率、呼吸量、体核温度、血压、血氧饱和度、血中的氧分压、脑脊液中的氧分压、肌活动、动脉血流、EMG、EEG、ECG或皮电反应的信号。处理器50可将3轴加速度计或多个单轴加速度计(或三轴和单轴加速度计的组合)产生的信号与患者的姿势,诸如坐、躺着、直立着等相关联,并可将生理参数值与患者的活动水平相关联。例如,为了测定患者的姿势,处理器50可处理来自与位于患者的躯干或头部的垂直定向传感器(例如加速度计)偶联的位于髋关节、股或膝关节弯曲部分的加速度计的输出。测定的姿势水平还可指示是否患者12处于睡眠状态或清醒状态。例如,当患者12被测定为处于躺着的姿势,处理器50可确定患者12正在睡觉。作为另一个实施例,如果处理器50测定患者12正在站立或坐着,处理器50可确定患者12处于清醒状态。
共同转让的名称为“收集活动信息以评价治疗”的美国专利申请公开2005/0209644和名称为“治疗调节”的美国专利申请系列号11/799,035描述了测定患者的活动水平或姿势的合适的技术。如美国专利申请公开2005/0209644中描述的那样,处理器可基于来自传感器的信号,诸如加速度计、粘合的压电晶体、水银开关或陀螺,通过在样本期间取样信号并测定许多活动计数来测定活动水平。例如,处理器50可比较加速度及或压电晶体产生的信号的样本与储存在存储器52内的一个或更多个振幅阈值。处理器50可鉴别每个阈值交叉作为活动计数。如果处理器50比较样本与带有变化的振幅的多个阈值,处理器50可鉴别较高振幅阈值的交叉作为多个活动计数。
运动传感器可在任何合适的部位并通过任何合适的技术被连结到患者12,超过两个的运动传感器可被用于测定患者的清醒状态或睡眠状态,并且,在某些情况下,患者睡眠状态内的睡眠阶段。例如,如图21所示,加速度计152可通过带子154被连结到患者12的腿。任选地,运动传感器可通过任何合适的技术与患者12相连,诸如通过腕带。在其它的实施例中,运动传感器可被整合到IMD 16内。
在一些实施例中,感觉患者12除脑13内的生物信号外的生理参数的传感模块可包括被ECG腰带156携带的ECG电极。ECG腰带156结合许多感应患者12的心脏的电活动的电极。在图21显示的实施例中,ECG腰带156被患者12戴上。处理器50可基于ECG腰带156提供的信号检测患者的心率和,在一些实施例中,ECG形态学。感觉患者12的心率的合适的ECG腰带是″M″和″F″心率监测仪型号,其在商业上可从芬兰的Polar Electro OY of Kempele买到。在一些实施例中,代替ECG腰带156,患者12例如通过有粘性胶布,在患者12胸上的各种部位戴上许多ECG电极(图21未显示),这是本领域已知的。从这种电极阵列感觉的信号得来的ECG信号可使心率和ECG形态学监测,这是本领域已知的。除了ECG腰带156或代替ECG腰带156,IMD 16可感觉患者的心率,例如使用IMD 16外壳上的电极、导线20的电极22、偶联到其它导线的电极或其任何组合。
在其它的实施例中,治疗系统(例如图1的DBS系统10)可包括输出信号——其作为患者呼吸的函数而变化——的呼吸带158,其也可被患者12戴上以监测活动来确定是否患者12处于睡眠状态,并且,在某些情况下,确定患者12的睡眠阶段。例如,在REM睡眠阶段,患者的呼吸率相对于与患者12的阶段2或深睡期阶段相关的基线呼吸率可增加。呼吸带158可以是体积描记术带,当变化的功能是伴随呼吸的患者12的胸围或腹围时,呼吸带158的信号输出可变化。合适的呼吸带的例子是TSD201 Respiratory Effort Transducer(呼吸努力转换器),其在商业上可从加利福尼亚的Biopac Systems,Inc.of Goleta买到。可选地,呼吸带158可整合或被许多电极替代,这些电极通过患者12的胸部指挥电信号,并基于该信号指导电路去感觉胸部的阻抗,阻抗作为患者12呼吸的函数而变化。呼吸带可,例如,被用于产生阻抗心动图(ICG),它检测胸腔中的血流的性质。在一些实施例中,ECG和呼吸带156、158,分别地,可以是患者12戴的共同的带。
在一些实施例中,治疗系统还可包括一个或更多个电极(图21未显示),电极可以是表面电极或肌内电极,它们被放置以监测患者12的肌肉活动(例如EMG)。处理器50可测定患者12的四肢内的肌肉活动,诸如手臂或腿。患者的四肢内的肌肉运动可指示是否患者处于运动状态(相对高的肌肉活动)或睡眠状态(相对少的肌肉活动持续长时期)。上面描述的传感模块150、152、156、158或EMG电极的类型的每一个可单独或互相组合使用,以及除了其它的传感装置。此外,在一些实施例中,传感模块可向IMD 16、程序器14或另一个装置传送信号,接收装置内的处理器可测定是否患者是或睡着的,并且,在一些实施例中,可测定患者12的睡眠状态的睡眠阶段。
虽然向患者12的脑13递送电刺激的DBS系统10在本公开中被主要地提到,但是在其它的实施例中,IMD 16可向患者12的其它组织位点递送电刺激,诸如提供特殊的肌肉或肌群的功能电刺激。此外,在其它的实施例中,向患者12递送治疗剂的治疗系统还可基于是否患者12处于清醒状态或睡眠状态的检测或基于睡眠状态的睡眠阶段的检测来控制治疗递送。医疗器械可向患者12的脑13内的组织位点或患者的其它组织位点内递送一种或更多种治疗剂。
图22是说明带有药物泵162的示例医疗器械160的部件的原理框图。医疗器械160可在治疗系统中被使用,在该系统中基于测定的患者12的睡眠阶段,治疗递送可被控制。医疗器械160可被植入到患者12或被其外部携带。如图22所示,医疗器械160可包括药物泵162、传感模块163、处理器164、存储器166、遥测模块168、电源170和睡眠阶段检测模块172。处理器164、存储器166、遥测模块168、电源170、传感模块163和睡眠阶段检测模块172可基本上分别与IMD 16的处理器50、存储器52、遥测模块56、电源58、传感模块55和睡眠阶段检测模块59相似(图2)。
处理器164控制药物泵162来将特定量的药剂用导管174递送到患者12的预期的组织位点,导管至少部分被植入到患者12内。在一些实施例中,医疗器械160可包括除了递送药物治疗还产生电刺激的刺激发生器。处理器164可在储存在存储器166中的指令的帮助下控制医疗器械160的操作。
医疗器械160被配置以向患者12的组织位点递送药物(即药剂)或另一种流体。正如与IMD 16的睡眠阶段检测模块59一样,睡眠阶段检测模块172(单独的或与处理器164一起)可被配置以基于脑13内产生的生物信号的频率特性测定患者12的睡眠阶段。传感模块163可通过导线176的电极监测来自患者12的脑13内的生物信号。睡眠阶段检测模块172可基于来自传感模块163的生物信号确定测定的睡眠阶段,处理器164可控制药物泵162以递送与测定的患者阶段相关的治疗。例如,处理器164可基于测定的睡眠阶段从存储器52中选择治疗程序,诸如通过选择储存的程序或修改储存的程度,其中该程序包括不同的液体递送参数值,并根据选择的治疗程序控制药物泵162以向患者12递送药剂或另一种流体。流体递送参数值可包括,例如,剂量(例如推注或一组推注)大小、推注递送的频率、推注中的治疗剂的浓度、递送给患者的治疗剂的类型(如果医疗器械被配置为递送一种以上类型的药剂)、封锁间期等等。
在图22显示的实施例中,睡眠阶段检测模块172是处理器164的一部分。在其它的实施例中,睡眠阶段检测模块172和处理器164可以是分开的部件,并且,在某些情况下,睡眠阶段检测模块172可包括分开的处理器。此外,传感模块163可处于与IMD 160分开的外壳中。
在IMD 16(图2)和医疗器械160(图22)的实施例中,各自的睡眠阶段检测模块59、172可被分别布置在与IMD 16、医疗器械160分开的外壳中。在这样的实施例中,睡眠阶段检测模块可与IMD 16或医疗器械160无线地通讯,因此消除了将睡眠阶段检测模块与IMD 16或医疗器械160连结的导线或其它的长部件的需要。
这里描述的频带,诸如θ、α、β和σ带的频率范围仅仅是例子。在其它的实施例中,频带可被其它的频率范围限定。
一般而言,不同的治疗系统可需要用于基于测定的睡眠阶段控制给患者12的治疗递送的不同的算法。例如,如果患者具有特发性震颤,处理器50或另一个控制器可在睡眠阶段过程中自动地切断给患者的治疗递送。在其它的实施例中,诸如具有帕金森氏病的患者,当患者是清醒或处于阶段1或REM睡眠阶段中的一个时,处理器50或另一个控制器可自动地激活治疗,当患者处于阶段2或深睡期阶段中,处理器50或另一个控制器可自动地灭活治疗或减少强度。其它的控制算法被考虑并对患者或患者的状态可能是特异的。此外,其它的睡眠阶段或睡眠阶段组被考虑并可基于患者、患者的状态或其它的因素被选择。
可被用于基于EEG信号(生物信号的一个例子)检测患者睡眠阶段的逻辑图的一个实施例在Miesel等的共同转让的2006年10月31日提出的名称为“神经障碍的睡眠质量的测定”的美国专利申请系列号2007/0123758的图4中被描述。
在一些实施例中,用于测定是否患者12处于清醒状态或睡眠状态及测定患者的睡眠阶段的装置、系统和方法在Wei等的共同转让的与本公开相同的日期提交的名称为“治疗程序选择”的美国专利申请系列号_________(律师案卷编号1023-727US01/P0029791.01)和Stone等的2008年1月25日提交的名称为“治疗程序选择”的美国临时专利申请61/023,522中描述的治疗系统中是有用的。
在Wei等的美国专利申请系列号____(律师案卷编号1023-727US01/P0029791.01)和Stone等的美国临时专利申请61/023,522中描述的一些实施例中,患者的治疗程序可基于是否患者处于运动、睡眠或说话状态中被选择。许多患者的状况,诸如帕金森氏病或其它的神经障碍,包括受损的运动、睡眠或说话状态或运动、睡眠或说话状态至少两个的损伤的组合。不同的治疗参数值可为患者的运动、睡眠或说话状态提供有效的治疗。运动状态可包括患者正要运动、试图开始运动或已开始运动的状态。说话状态可包括患者正要说话、试图说话或已开始说话的状态。睡眠状态可包括患者正要睡觉、试图睡觉或已开始睡觉的状态。这里描述的技术例如基于睡眠状态过程中患者的睡眠阶段,可用于控制睡眠状态过程中的治疗递送。
描述的发明的各种实施方式可使用一个或更多个处理器被实现,该处理器可被一个或更多个微处理器、ASIC、FPGA或其它等同的集成的或分散的逻辑电路,单独或以任何组合方式实现。在某些情况下,归因于这里描述的一个或更多个处理器的功能可体现为软件、固件、硬件或其任何组合。处理器还可利用几个不同类型的储存方法来保存用于设备操作和数据储存的计算机可读的指令。这些存储器和储存介质类型可包括硬盘、RAM、ROM、EEPROM或闪速存储器,例如CompactFlash、SmartMedia或Secure Digital(SD)。每个存储选项可依赖实施例被选择。
本公开还考虑计算机可读的包含指令的介质以使处理器执行这里描述的任何功能。计算机可读的介质可采取任何易失性的、非易失性的、磁性的、光学的、电的介质的形式,诸如RAM、ROM、NVRAM、EEPROM、闪速存储器或任何其它的数字化介质。程序器,诸如临床医生程序器22或患者程序器24,还可含有更便携的可移动的存储器类型以使数据传送或脱机数据分析能够容易进行。

Claims (14)

1.系统,其包含:
接收指示患者脑内活动的生物信号的装置;
测定所述生物信号的频率特性的装置;
比较所述生物信号的频率特性与至少一个阈值或模板的装置;和
基于所述生物信号的频率特性与所述至少一个阈值或模板之间的所述比较测定患者的睡眠阶段的装置,其中所述的睡眠阶段发生在所述患者的睡眠状态过程中,该睡眠状态包含许多睡眠阶段。
2.权利要求1所述的系统,其中所述生物信号包含所述患者脑内的局部场电位。
3.权利要求2所述的系统,其中所述局部场电位包含至少一个脑电图(EEG)或脑皮层电图(ECoG)。
4.权利要求1至3中任一项所述的系统,其中所述频率特性包含一个或更多个频带内的生物信号的功率水平。
6.权利要求1至3中任一项所述的系统,其中所述频率特性包含生物信号的两个或更多个频带内的功率水平之比。
7.权利要求6所述的系统,其中所述频率特性包含生物信号的β频带和α频带、生物信号的σ频带和高β频带或生物信号的θ频带和αβ频带至少之一的功率水平之比。
8.权利要求1至3中任一项所述的系统,其中所述频率特性包含一个或更多个频带内的所述生物信号的功率水平随着时间的趋势。
9.根据权利要求1至8中任一项所述的系统,其中所述基于所述频率特性测定睡眠阶段的装置包含测定是否患者处于与所述频率特性相关的许多睡眠阶段的其中一个中的装置。
10.权利要求1至9中任一项所述的系统,进一步包含基于所述测定的睡眠阶段在所述睡眠阶段过程中控制递送给患者的治疗的装置。
11.权利要求1至10中任一项所述的系统,进一步包含测定是否所述患者处于所述睡眠状态的装置。
12.权利要求1至10中任一项所述的系统,其中所述睡眠阶段包含第一睡眠阶段,所述频率特性包含第一频率特性,该系统进一步包含:
测定所述生物信号的第二频率特性的装置;
基于所述生物信号的所述第二频率特性测定所述患者的第二睡眠阶段的装置;和
基于所述测定的第二睡眠阶段控制在所述第二睡眠阶段过程中递送给所述患者的治疗的装置。
13.权利要求1至10中任一项所述的系统,进一步包含:
基于所述生物信号的所述频率特性确定第一睡眠阶段测定的装置;
接收指示所述患者的生理参数的生理信号,其中所述生理信号与所述生物信号不同;和
基于所述生理信号确定第二睡眠阶段测定的装置,
其中所述测定所述患者的所述睡眠阶段的装置进一步包含基于第一和第二睡眠阶段的测定确定所述睡眠阶段的装置。
14.权利要求1至13中任一项所述的系统,其中所述测定所述患者的所述睡眠阶段的装置进一步包含基于所述生物信号的所述频率特性测定是否所述患者处于清醒状态、第一睡眠阶段或第二睡眠阶段的至少一个中,所述系统进一步包含如果患者处于所述清醒状态或所述第一睡眠阶段就激活递送给所述患者的治疗的装置,和如果所述患者处于所述第二睡眠阶段就灭活或降低递送给所述患者的治疗强度的装置。
15.权利要求14所述的系统,其中所述第一睡眠阶段包含阶段1或快速眼动睡眠阶段至少之一,所述第二睡眠阶段包含深睡期或阶段2睡眠阶段至少之一。
CN2008801256111A 2008-01-25 2008-09-25 睡眠阶段的检测 Pending CN101925377A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US2352208P 2008-01-25 2008-01-25
US61/023,522 2008-01-25
US4916608P 2008-04-30 2008-04-30
US61/049,166 2008-04-30
PCT/US2008/077720 WO2009094050A1 (en) 2008-01-25 2008-09-25 Sleep stage detection

Publications (1)

Publication Number Publication Date
CN101925377A true CN101925377A (zh) 2010-12-22

Family

ID=40481698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801256111A Pending CN101925377A (zh) 2008-01-25 2008-09-25 睡眠阶段的检测

Country Status (4)

Country Link
US (3) US9072870B2 (zh)
EP (1) EP2249908B1 (zh)
CN (1) CN101925377A (zh)
WO (1) WO2009094050A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103518204A (zh) * 2011-04-20 2014-01-15 索尼公司 信息处理设备、信息处理方法及程序
CN103845793A (zh) * 2012-12-07 2014-06-11 苏州景昱医疗器械有限公司 植入式神经刺激器、系统及其多组刺激参数组合方法
CN104055518A (zh) * 2014-07-08 2014-09-24 广州柏颐信息科技有限公司 一种跌倒检测腕表及跌倒检测方法
CN104968388A (zh) * 2013-01-29 2015-10-07 皇家飞利浦有限公司 基于脑电波的闭环感官刺激来诱导睡眠
CN105105714A (zh) * 2015-08-26 2015-12-02 吴建平 一种睡眠分期方法及系统
CN105142515A (zh) * 2013-04-05 2015-12-09 赫尔比公司 测定有利于唤醒的人类睡眠阶段的方法
CN105142504A (zh) * 2013-04-10 2015-12-09 皇家飞利浦有限公司 用于基于心脏活动来增强睡眠慢波活动的系统和方法
CN105496363A (zh) * 2015-12-15 2016-04-20 浙江神灯生物科技有限公司 基于检测睡眠脑电信号对睡眠阶段进行分类的方法
CN105617504A (zh) * 2014-11-07 2016-06-01 英业达科技有限公司 助眠系统及其助眠方法
CN105942974A (zh) * 2016-04-14 2016-09-21 禅客科技(上海)有限公司 一种基于低频脑电的睡眠分析方法及系统
CN106037672A (zh) * 2016-07-12 2016-10-26 东莞市嵘丰医疗器械有限公司 一种睡眠障碍康复系统
CN106691443A (zh) * 2017-01-11 2017-05-24 中国科学技术大学 基于脑电的穿戴式司机防疲劳智能监测预警系统
CN106999698A (zh) * 2014-12-11 2017-08-01 皇家飞利浦有限公司 用于调节慢波检测准则的系统和方法
WO2018018775A1 (zh) * 2016-07-26 2018-02-01 纽沃凯生物科技(深圳)有限公司 睡眠深度监测方法和睡眠深度监测仪
CN107864282A (zh) * 2017-11-03 2018-03-30 泾县吉祥纸业有限公司 一种移动终端闹钟应用的功能唤醒方法
CN108136152A (zh) * 2016-05-12 2018-06-08 深圳市赛亿科技开发有限公司 一种助眠系统
CN108815674A (zh) * 2018-03-30 2018-11-16 广东欧珀移动通信有限公司 调节睡眠方法及相关产品
CN109475295A (zh) * 2016-06-29 2019-03-15 皇家飞利浦有限公司 用于健康设备和可穿戴/可植入设备的方法和设备
CN109789307A (zh) * 2016-09-27 2019-05-21 美敦力公司 使用体内平衡窗口的自适应脑深部刺激
CN110234279A (zh) * 2016-12-28 2019-09-13 皇家飞利浦有限公司 表征睡眠呼吸障碍的方法
CN111528839A (zh) * 2020-05-29 2020-08-14 北京京东方健康科技有限公司 睡眠检测方法和装置、助眠设备和方法
CN111655150A (zh) * 2018-01-30 2020-09-11 京瓷株式会社 电子设备、推定系统、控制方法以及控制程序
CN113396599A (zh) * 2019-01-31 2021-09-14 美敦力公司 在植入式装置与一个或多个外部装置之间建立安全通信链路
CN115634370A (zh) * 2022-12-05 2023-01-24 深圳市心流科技有限公司 一种体征检测装置的功能控制方法及终端设备

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264789A1 (en) * 2007-09-26 2009-10-22 Medtronic, Inc. Therapy program selection
US8380314B2 (en) 2007-09-26 2013-02-19 Medtronic, Inc. Patient directed therapy control
US8121694B2 (en) 2007-10-16 2012-02-21 Medtronic, Inc. Therapy control based on a patient movement state
JP5794782B2 (ja) * 2007-11-27 2015-10-14 プロテウス デジタル ヘルス, インコーポレイテッド 通信チャネルを採用するトランスボディ通信システム
EP2249908B1 (en) 2008-01-25 2014-01-01 Medtronic, Inc. Sleep stage detection
US9662502B2 (en) * 2008-10-14 2017-05-30 Great Lakes Neurotechnologies Inc. Method and system for tuning of movement disorder therapy devices
US11363982B1 (en) * 2008-10-14 2022-06-21 Great Lakes Neurotechnologies Inc. Method and system for quantifying movement disorder symptoms
US10966652B1 (en) * 2008-10-14 2021-04-06 Great Lakes Neurotechnologies Inc. Method and system for quantifying movement disorder systems
US9393418B2 (en) * 2011-06-03 2016-07-19 Great Lakes Neuro Technologies Inc. Movement disorder therapy system, devices and methods of tuning
US8428733B2 (en) 2008-10-16 2013-04-23 Medtronic, Inc. Stimulation electrode selection
US9770204B2 (en) * 2009-11-11 2017-09-26 Medtronic, Inc. Deep brain stimulation for sleep and movement disorders
US8579812B2 (en) * 2009-12-15 2013-11-12 Brainscope Company, Inc. System and methods for management of disease over time
US8538513B2 (en) * 2009-12-16 2013-09-17 Medtronic, Inc. Stimulation electrode selection
US8532757B2 (en) * 2009-12-16 2013-09-10 Medtronic, Inc. Stimulation electrode selection
US8280501B2 (en) * 2010-04-16 2012-10-02 Dyna Dx Corporation Systems and methods for quantitatively characterizing slow wave activities and states in sleep
US9814885B2 (en) 2010-04-27 2017-11-14 Medtronic, Inc. Stimulation electrode selection
CN102343123A (zh) * 2010-07-29 2012-02-08 鼎迈医疗科技(苏州)有限公司 反馈式神经电刺激系统及其反馈控制方法
US9211411B2 (en) 2010-08-26 2015-12-15 Medtronic, Inc. Therapy for rapid eye movement behavior disorder (RBD)
ES2712062T3 (es) * 2010-08-30 2019-05-09 Ridder Dirk De Diseño novedoso para la estimulación en el tratamiento de los trastornos neurológicos
US8821397B2 (en) 2010-09-28 2014-09-02 Masimo Corporation Depth of consciousness monitor including oximeter
US9420960B2 (en) 2010-10-21 2016-08-23 Medtronic, Inc. Stereo data representation of biomedical signals along a lead
CN102641554A (zh) * 2011-02-22 2012-08-22 苏州景昱医疗器械有限公司 具有体外睡眠检测装置的反馈式神经电刺激系统及方法
US8406890B2 (en) 2011-04-14 2013-03-26 Medtronic, Inc. Implantable medical devices storing graphics processing data
CN103501855B (zh) 2011-04-20 2015-12-23 美敦力公司 基于生物电共振响应来确定电治疗的参数
US9173609B2 (en) 2011-04-20 2015-11-03 Medtronic, Inc. Brain condition monitoring based on co-activation of neural networks
EP2699310B1 (en) 2011-04-20 2018-09-19 Medtronic, Inc. Apparatus for assessing neural activation
US8892207B2 (en) 2011-04-20 2014-11-18 Medtronic, Inc. Electrical therapy for facilitating inter-area brain synchronization
CN102179001A (zh) * 2011-04-25 2011-09-14 暨南大学 一种基于脑电图生物反馈的睡眠治疗装置及其控制方法
US8812098B2 (en) 2011-04-28 2014-08-19 Medtronic, Inc. Seizure probability metrics
US9878161B2 (en) 2011-04-29 2018-01-30 Medtronic, Inc. Entrainment of bioelectrical brain signals
WO2013028960A1 (en) 2011-08-25 2013-02-28 Insomnisolv, Llc System and method for the treatment of insomnia
WO2013061185A1 (en) * 2011-10-25 2013-05-02 Koninklijke Philips Electronics N.V. Sleep stage classification device with background oscillation emitter.
JP5613922B2 (ja) * 2012-02-23 2014-10-29 株式会社タニタ 血圧測定装置および血圧測定方法
JP5862400B2 (ja) * 2012-03-26 2016-02-16 オムロンヘルスケア株式会社 睡眠状態管理装置、睡眠状態管理方法、及び睡眠状態管理プログラム
JP5874489B2 (ja) * 2012-03-27 2016-03-02 富士通株式会社 睡眠状態判定装置及び睡眠状態判定方法
US11786735B1 (en) * 2012-09-10 2023-10-17 Great Lakes Neurotechnologies Inc. Movement disorder therapy system, devices and methods of remotely tuning
US9289603B1 (en) * 2012-09-10 2016-03-22 Great Lakes Neuro Technologies Inc. Movement disorder therapy system, devices and methods, and methods of remotely tuning
US20140200624A1 (en) * 2013-01-16 2014-07-17 Harinder Jaseja System and method of treating intractable epilepsy by stimulation
DE102013002430B4 (de) * 2013-02-10 2015-04-02 tado GmbH Verfahren zum Ein-und Ausschalten eines Nachtmodus einer Heizungs-und/oder Klimaanlage
US9215075B1 (en) 2013-03-15 2015-12-15 Poltorak Technologies Llc System and method for secure relayed communications from an implantable medical device
US9764110B2 (en) 2013-03-22 2017-09-19 Mind Rocket, Inc. Binaural sleep inducing system
JP6445539B2 (ja) * 2013-05-31 2018-12-26 ナイキ イノベイト シーブイ 動的サンプリング
WO2015047032A1 (ko) * 2013-09-30 2015-04-02 삼성전자 주식회사 생체 신호에 기초하여 컨텐츠를 처리하는 방법, 및 그에 따른 디바이스
JP2016537160A (ja) 2013-10-18 2016-12-01 ナドストップ,エルエルシー 覚醒機構を提供するシステムおよび方法
BR112016015857B1 (pt) * 2014-01-08 2022-05-31 Laszlo Osvath Sistema para analisar o sono em um sujeito, uso do sistema, e método para analisar o sono em um sujeito
EP2905006B8 (fr) * 2014-02-11 2017-06-07 Sorin CRM SAS Dispositif de discrimination des stades de sommeil d'un patient.
EP2904969B1 (fr) * 2014-02-11 2022-01-05 Sorin CRM SAS Dispositif de traitement du syndrome d'apnée du sommeil chez un patient par stimulation kinesthésique
US9999772B2 (en) * 2014-04-03 2018-06-19 Pacesetter, Inc. Systems and method for deep brain stimulation therapy
US9821162B2 (en) 2014-04-25 2017-11-21 Medtronic, Inc. Deep brain stimulation for sleep disorders
CN104008769A (zh) * 2014-06-19 2014-08-27 河海大学常州校区 随着使用者入睡而停止播放的mp3播放器及其控制方法
JP6824873B2 (ja) * 2014-07-07 2021-02-03 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 睡眠紡錘波に基づいて睡眠中の感覚刺激の強度を調整するためのシステム及び方法
US20160192218A1 (en) * 2014-07-14 2016-06-30 Under Armour, Inc. Techniques for classifying sleep sessions
US20170274174A1 (en) * 2014-08-22 2017-09-28 The General Hospital Corporation System and method for administering, monitoring and controlling biomimetic sleep
US10154815B2 (en) 2014-10-07 2018-12-18 Masimo Corporation Modular physiological sensors
KR102354351B1 (ko) * 2014-12-04 2022-01-21 삼성전자주식회사 수면 상태를 결정하는 전자 장치 및 그 제어 방법
CN107205652B (zh) * 2014-12-05 2021-06-29 新加坡科技研究局 具有特征生成和自动映射的睡眠分析系统
EP3031491B1 (fr) * 2014-12-08 2019-01-30 Sorin CRM SAS Système de traitement d'un trouble respiratoire par stimulation kinesthésique, avec sélection des stratégies de stimulation
EP3031492B1 (fr) * 2014-12-08 2017-10-25 Sorin CRM SAS Système de traitement d'un trouble respiratoire par stimulation kinesthésique, avec contrôle de stabilisation de la stimulation
EP3031437B1 (fr) * 2014-12-08 2017-09-13 Sorin CRM SAS Dispositif d'optimisation d'un traitement du syndrome d'apnée du sommeil par stimulation kinesthésique
US20170347948A1 (en) * 2014-12-30 2017-12-07 Nitto Denko Corporation Device and Method for Sleep Monitoring
WO2016157641A1 (ja) * 2015-03-27 2016-10-06 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
US10702208B2 (en) * 2015-03-31 2020-07-07 Cerenion Oy Apparatus and method for electroencephalographic examination
TW201635977A (zh) * 2015-04-13 2016-10-16 程深 腦波反饋控制腦神經誘發電位的系統及進行催眠之方法
US10080898B2 (en) 2015-05-29 2018-09-25 Medtronic, Inc. Simultaneous physiological sensing and stimulation with saturation detection
US10434308B2 (en) 2015-05-29 2019-10-08 Medtronic, Inc. Impedance matching and electrode conditioning in patient interface systems
JP2017064390A (ja) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 電気刺激システム、電気刺激方法、コンピュータプログラム
EP3445444A1 (en) 2016-04-19 2019-02-27 Inspire Medical Systems, Inc. Accelerometer-based sensing for sleep disordered breathing (sdb) care
US10952666B2 (en) * 2016-06-24 2021-03-23 Fresenius Medical Care Holdings, Inc. System and method for managing nocturnal treatment
US10610688B2 (en) 2016-09-27 2020-04-07 Boston Scientific Neuromodulation Corporation Systems and methods for closed-loop pain management
EP3932298A1 (en) 2016-09-27 2022-01-05 Boston Scientific Neuromodulation Corporation System for pain management using objective pain measure
US10786676B2 (en) * 2016-10-21 2020-09-29 Regents Of The University Of Minnesota Deep brain stimulation system and method with multi-modal, multi-symptom neuromodulation
US10667747B2 (en) 2016-10-25 2020-06-02 Boston Scientific Neuromodulation Corporation Method and apparatus for pain control using baroreflex sensitivity during posture change
US10631776B2 (en) 2017-01-11 2020-04-28 Boston Scientific Neuromodulation Corporation Pain management based on respiration-mediated heart rates
WO2018132535A1 (en) 2017-01-11 2018-07-19 Boston Scientific Neuromodulation Corporation Pain management based on emotional expression measurements
US10631777B2 (en) 2017-01-11 2020-04-28 Boston Scientific Neuromodulation Corporation Pain management based on functional measurements
US10675469B2 (en) 2017-01-11 2020-06-09 Boston Scientific Neuromodulation Corporation Pain management based on brain activity monitoring
US10960210B2 (en) 2017-02-10 2021-03-30 Boston Scientific Neuromodulation Corporation Method and apparatus for pain management with sleep detection
US11406323B2 (en) 2017-07-10 2022-08-09 Koninklijke Philips N.V. Method and system for monitoring sleep quality
EP3936185A1 (en) 2017-07-18 2022-01-12 Boston Scientific Neuromodulation Corporation Sensor-based pain management systems and methods
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
EP3534780A4 (en) * 2017-10-29 2020-08-12 Xiaoping Li METHOD AND DEVICE FOR DETECTING BRAIN SLEEP MODE
US11305113B2 (en) * 2017-11-11 2022-04-19 Neurostim Solutions LLC Nocturia reduction system
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
CN111511429B (zh) * 2017-12-20 2023-11-07 皇家飞利浦有限公司 用于与呼吸辅助设备一起使用的控制单元
CN107961430A (zh) * 2017-12-21 2018-04-27 速眠创新科技(深圳)有限公司 睡眠诱导装置
EP3731749A4 (en) 2017-12-31 2022-07-27 Neuroenhancement Lab, LLC NEURO-ACTIVATION SYSTEM AND METHOD FOR ENHANCING EMOTIONAL RESPONSE
US11647962B2 (en) 2018-01-08 2023-05-16 Mayo Foundation For Medical Education And Research System and method for classifying and modulating brain behavioral states
FI20185051A1 (en) * 2018-01-19 2019-07-20 Night Train Oy Method, device and system for detecting sleep phases in a person
US10922996B2 (en) * 2018-02-12 2021-02-16 Hypnocore Ltd. Systems and methods for generating a presentation of an energy level based on sleep and daily activity
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
CA3112564A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
EP3868288A4 (en) * 2018-10-15 2022-06-22 Mitsubishi Tanabe Pharma Corporation ELECTROENCEPHALOGRAM ANALYSIS APPARATUS, ELECTROENCEPHALOGRAM ANALYSIS SYSTEM AND ELECTROENCEPHALOGRAM ANALYSIS PROGRAM
CN109363669A (zh) * 2018-10-30 2019-02-22 深圳和而泰数据资源与云技术有限公司 眼罩和计算机可读存储介质
JP2022519297A (ja) * 2019-02-05 2022-03-22 インスパイア・メディカル・システムズ・インコーポレイテッド 睡眠呼吸障害(sdb)ケアのための移植アクセス切開部および感知
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
JP2022542581A (ja) 2019-07-25 2022-10-05 インスパイア・メディカル・システムズ・インコーポレイテッド 検知された姿勢情報に基づいて植込み型医療デバイスを操作するためのシステムおよび方法
EP4025120A4 (en) * 2019-09-05 2023-08-30 Emory University SYSTEMS AND METHODS FOR DETECTING SLEEP ACTIVITY
US10964195B1 (en) * 2020-01-05 2021-03-30 Lina Huang Method and system of alerting patient with sleep disorder
JP2022165904A (ja) * 2021-03-12 2022-11-01 ニューロダーム リミテッド パーキンソン病患者における神経学的疾患を治療するためのシステムおよび方法
CN113951826B (zh) * 2021-10-25 2023-09-05 思澜科技(成都)有限公司 一种用于评估睡眠状况的方法、系统及设备
US11670410B1 (en) * 2022-04-13 2023-06-06 Green Sky Creations LLC Systems and methods to automatically administer a psychoactive substance to an airway of a user based on a detected event or condition

Family Cites Families (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR501511A (fr) 1919-02-08 1920-04-16 Edwin Howard Armstrong Méthode de réception d'oscillations de haute fréquence
US3130373A (en) 1959-04-27 1964-04-21 Beckman Instruments Inc Potential difference negative feedback amplifier
GB1249395A (en) 1968-03-11 1971-10-13 Bofors Ab Low frequency signal amplifier
US3603997A (en) 1969-05-07 1971-09-07 Texas Instruments Inc Electronic resolved sweep signal generator
US3780725A (en) 1971-03-04 1973-12-25 Smith Kline Instr Fetal heartbeat monitoring system with plural transducers in one plane and at different angles thereto
US4013068A (en) * 1974-10-15 1977-03-22 Settle Wayne L Electroencephalographic activated control system
US4138649A (en) * 1977-03-25 1979-02-06 Emerson Electric Co. Amplifier system
JPS6017170B2 (ja) 1977-08-23 1985-05-01 株式会社日本自動車部品総合研究所 チヨツパ増幅器の復調回路
US4177819A (en) 1978-03-30 1979-12-11 Kofsky Harvey I Muscle stimulating apparatus
JPS6340902Y2 (zh) 1979-07-10 1988-10-26
US4279258A (en) * 1980-03-26 1981-07-21 Roy John E Rapid automatic electroencephalographic evaluation
US4612934A (en) 1981-06-30 1986-09-23 Borkan William N Non-invasive multiprogrammable tissue stimulator
US4610259A (en) * 1983-08-31 1986-09-09 Cns, Inc. EEG signal analysis system
US4579125A (en) * 1984-01-23 1986-04-01 Cns, Inc. Real-time EEG spectral analyzer
US4640290A (en) 1985-04-25 1987-02-03 Westinghouse Electric Corp. Shielded, self-preparing electrode suitable for electroencephalographic mapping
US4632120A (en) 1985-04-25 1986-12-30 Westinghouse Electric Corp. Subkeratinous electroencephalographic probe
US5024221A (en) 1985-05-17 1991-06-18 Siemens-Pacesetter, Inc. Programmable band-pass amplifier for use with implantable medical device
US4733667A (en) 1986-08-11 1988-03-29 Cardiac Pacemakers, Inc. Closed loop control of cardiac stimulator utilizing rate of change of impedance
US4776345A (en) * 1987-09-04 1988-10-11 Cns, Inc. Interactive determination of sleep stages
GB8818703D0 (en) 1988-08-05 1988-09-07 Gen Electric Co Plc Delta sigma modulator arrangements
US4933642A (en) 1989-02-17 1990-06-12 Linear Technology Corporation CMOS chopper-stabilized operational amplifier using two differential amplifier pairs as input stages
US4979230A (en) 1989-12-04 1990-12-18 General Instrument Corporation Up-conversion homodyne receiver for cable television converter with frequency offset to avoid adjacent channel interference
US5061593A (en) 1989-12-12 1991-10-29 Eastman Kodak Company Coated carrier particles for electrographic developers
FR2657443B1 (fr) 1990-01-24 1992-05-15 Blanchet Gerard Procede et appareil de traitement de signal electro-encephalographique.
US5179947A (en) 1991-01-15 1993-01-19 Cardiac Pacemakers, Inc. Acceleration-sensitive cardiac pacemaker and method of operation
US5477481A (en) 1991-02-15 1995-12-19 Crystal Semiconductor Corporation Switched-capacitor integrator with chopper stabilization performed at the sampling rate
US5105167A (en) 1991-03-28 1992-04-14 Honeywell Inc. Harmonic injection amplifier
US5113143A (en) 1991-04-08 1992-05-12 University Of Maryland Chopper amplifier for measuring low DC current
US5215086A (en) * 1991-05-03 1993-06-01 Cyberonics, Inc. Therapeutic treatment of migraine symptoms by stimulation
US5335657A (en) * 1991-05-03 1994-08-09 Cyberonics, Inc. Therapeutic treatment of sleep disorder by nerve stimulation
US5299569A (en) * 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5205285A (en) 1991-06-14 1993-04-27 Cyberonics, Inc. Voice suppression of vagal stimulation
US5293879A (en) 1991-09-23 1994-03-15 Vitatron Medical, B.V. System an method for detecting tremors such as those which result from parkinson's disease
US5458117A (en) * 1991-10-25 1995-10-17 Aspect Medical Systems, Inc. Cerebral biopotential analysis system and method
US5282840A (en) 1992-03-26 1994-02-01 Medtronic, Inc. Multiple frequency impedance measurement system
US5206602A (en) 1992-04-30 1993-04-27 Hewlett-Packard Company Biomedical amplifier circuit
US5334222A (en) 1992-11-03 1994-08-02 Cardiac Pacemakers, Inc. Cardiac stimulating apparatus and method for heart failure therapy
DE4238829A1 (de) * 1992-11-17 1994-05-19 Dr Fischer Ag Einrichtung zur Beeinflussung von elektrischen und magnetischen Feldern niedriger Frequenz
US5311876A (en) 1992-11-18 1994-05-17 The Johns Hopkins University Automatic detection of seizures using electroencephalographic signals
US5840040A (en) * 1992-12-18 1998-11-24 The Regents Of The University Of California Encephalolexianalyzer
FR2702902B1 (fr) * 1993-03-15 1995-04-21 Alcatel Radiotelephone Récepteur numérique à fréquence intermédiaire et procédé de filtrage en bande de base mis en Óoeuvre dans ce récepteur.
JP3002078B2 (ja) 1993-10-27 2000-01-24 松下電器産業株式会社 歪み量測定回路
DE4417228A1 (de) 1994-05-17 1995-11-23 Michael Dr Altwein Dehnungsmeßstreifen-Meßanordnung, Verwendung derselben und Modulationsverstärker für derartige Meßanordnungen
JP3310498B2 (ja) * 1994-09-02 2002-08-05 独立行政法人産業技術総合研究所 生体情報解析装置および生体情報解析方法
US5489759A (en) 1994-12-23 1996-02-06 Genesis Systems Group Method and device for aligning a tool held by a robot
US5591217A (en) * 1995-01-04 1997-01-07 Plexus, Inc. Implantable stimulator with replenishable, high value capacitive power source and method therefor
US5755230A (en) 1995-09-18 1998-05-26 Cleveland Medical Devices Inc. Wireless EEG system for effective auditory evoked response
US20020169485A1 (en) * 1995-10-16 2002-11-14 Neuropace, Inc. Differential neurostimulation therapy driven by physiological context
DE19538925C2 (de) * 1995-10-19 2000-07-27 Wieland Friedmund Vorrichtung zur Auswertung eines Narkose- oder Intensiv-EEG
US5683432A (en) 1996-01-11 1997-11-04 Medtronic, Inc. Adaptive, performance-optimizing communication system for communicating with an implanted medical device
US5995868A (en) 1996-01-23 1999-11-30 University Of Kansas System for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject
US6066163A (en) 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system
US6463328B1 (en) * 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
US5697091A (en) 1996-02-07 1997-12-09 Ford Motor Company Distortion-free chopper-based signal mixer
US5663680A (en) 1996-04-04 1997-09-02 Nordeng; Arnold E. Chopper stabilized amplifier having an additional differential amplifier stage for improved noise reduction
US6094598A (en) * 1996-04-25 2000-07-25 Medtronics, Inc. Method of treating movement disorders by brain stimulation and drug infusion
US5716377A (en) * 1996-04-25 1998-02-10 Medtronic, Inc. Method of treating movement disorders by brain stimulation
US5782884A (en) 1996-11-05 1998-07-21 Sulzer Intermedics Inc. Rate responsive cardiac pacemaker with peak impedance detection for rate control
DE19649991A1 (de) * 1996-11-21 1998-06-04 Axon Gmbh Schmalkalden Verfahren zur Ermittlung von Schlaf- und Wachprofilen
US6064257A (en) 1997-03-03 2000-05-16 National Semiconductor Corporation Chopper-stabilized operational amplifier
US6016449A (en) * 1997-10-27 2000-01-18 Neuropace, Inc. System for treatment of neurological disorders
RU2144310C1 (ru) * 1997-10-27 2000-01-20 Ковров Геннадий Васильевич Способ диагностики нарушений ночного сна и их выраженности
US6459936B2 (en) 1997-10-27 2002-10-01 Neuropace, Inc. Methods for responsively treating neurological disorders
SE9800126D0 (sv) 1998-01-20 1998-01-20 Pacesetter Ab Implantable medical device
US6651670B2 (en) 1998-02-13 2003-11-25 Ventrica, Inc. Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication
US6667760B1 (en) 1998-02-20 2003-12-23 Samsung Electronics Co., Ltd. Receiver for digital television signals having carriers near upper frequency boundaries of TV broadcasting channels
US6076015A (en) 1998-02-27 2000-06-13 Cardiac Pacemakers, Inc. Rate adaptive cardiac rhythm management device using transthoracic impedance
US6122545A (en) 1998-04-28 2000-09-19 Medtronic, Inc. Multiple channel sequential cardiac pacing method
US6018682A (en) * 1998-04-30 2000-01-25 Medtronic, Inc. Implantable seizure warning system
US5928272A (en) 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity
US6024700A (en) * 1998-07-16 2000-02-15 Nemirovski; Guerman G. System and method for detecting a thought and generating a control instruction in response thereto
US6483355B1 (en) * 1998-07-24 2002-11-19 Gct Semiconductor, Inc. Single chip CMOS transmitter/receiver and method of using same
US6157857A (en) * 1998-07-24 2000-12-05 Dimpfel; Wilfried Apparatus for determining sleep staging
US7231254B2 (en) * 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US6366813B1 (en) 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
AU5900299A (en) 1998-08-24 2000-03-14 Emory University Method and apparatus for predicting the onset of seizures based on features derived from signals indicative of brain activity
US6625436B1 (en) 1998-10-09 2003-09-23 Nec Corporation Radio receivers
JP2002530916A (ja) 1998-11-12 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 増幅器により発生するdcオフセット及びノイズを減少させる手段を有する回路
US6287263B1 (en) 1999-02-08 2001-09-11 Cardiac Pacemakers, Inc. System for processing bursted amplitude modulated signals using an impedance sensor
US6130578A (en) 1999-04-20 2000-10-10 Analog Devices, Inc. Chopper-stabilized amplifier with digital frequency modulated clocking and method
US6214016B1 (en) 1999-04-29 2001-04-10 Medtronic, Inc. Medical instrument positioning device internal to a catheter or lead and method of use
US6923784B2 (en) 1999-04-30 2005-08-02 Medtronic, Inc. Therapeutic treatment of disorders based on timing information
US6356784B1 (en) 1999-04-30 2002-03-12 Medtronic, Inc. Method of treating movement disorders by electrical stimulation and/or drug infusion of the pendunulopontine nucleus
US6353762B1 (en) 1999-04-30 2002-03-05 Medtronic, Inc. Techniques for selective activation of neurons in the brain, spinal cord parenchyma or peripheral nerve
US6315740B1 (en) * 1999-05-17 2001-11-13 Balbir Singh Seizure and movement monitoring apparatus
US6312378B1 (en) * 1999-06-03 2001-11-06 Cardiac Intelligence Corporation System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US6360123B1 (en) 1999-08-24 2002-03-19 Impulse Dynamics N.V. Apparatus and method for determining a mechanical property of an organ or body cavity by impedance determination
FR2805998B1 (fr) 2000-03-07 2002-10-18 Ela Medical Sa Dispositif medical implantable actif, notamment stimulateur cardiaque, defibrillateur et/ou cardioverteur du type multisite comportant des moyens de mesure d'impedance intracardiaque
FR2806311B1 (fr) 2000-03-14 2002-10-18 Ela Medical Sa Dispositif medical implantable actif, notamment stimulateur cardiaque, defibrillateur et/ou cardioverteur et/ou dispositif multisite comportant des moyens de mesure de bioimpedance transseptale
KR100321532B1 (ko) * 2000-04-18 2002-01-23 배병훈 맥파를 이용한 손목 시계형 자명종
US6605038B1 (en) * 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
DE10031522B9 (de) 2000-06-28 2007-07-12 Infineon Technologies Ag Frequenzkompensierte Verstärkeranordnung und Verfahren zum Betrieb einer frequenzkompensierten Verstärkeranordnung
US6926309B1 (en) 2000-06-28 2005-08-09 Eastman Kodak Company Modification of receiver surface to reject stamp cancellation information
DE10032530C2 (de) 2000-07-05 2002-10-24 Infineon Technologies Ag Verstärkerschaltung mit Offsetkompensation
US7305268B2 (en) * 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US6468234B1 (en) * 2000-07-14 2002-10-22 The Board Of Trustees Of The Leland Stanford Junior University SleepSmart
US6522914B1 (en) 2000-07-14 2003-02-18 Cardiac Pacemakers, Inc. Method and apparatuses for monitoring hemodynamic activities using an intracardiac impedance-derived parameter
US6456881B1 (en) 2000-08-02 2002-09-24 Pacesetter, Inc. System and method of identifying fusion for dual-chamber automatic capture stimulation device
US6456159B1 (en) 2000-09-08 2002-09-24 Analog Devices, Inc. CMOS operational amplifier
US6678548B1 (en) 2000-10-20 2004-01-13 The Trustees Of The University Of Pennsylvania Unified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device
US6950707B2 (en) * 2000-11-21 2005-09-27 Advanced Bionics Corporation Systems and methods for treatment of obesity and eating disorders by electrical brain stimulation and/or drug infusion
US6594524B2 (en) 2000-12-12 2003-07-15 The Trustees Of The University Of Pennsylvania Adaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control
IT1318370B1 (it) 2000-12-21 2003-08-25 Tonino Bombardini Metodo e dispositivo per la diagnosi e la terapia dello scompensocardiaco cronico.
AU2002242192A1 (en) * 2001-02-13 2002-08-28 Jordan Neuroscience, Inc. Automated realtime interpretation of brain waves
US6597953B2 (en) * 2001-02-20 2003-07-22 Neuropace, Inc. Furcated sensing and stimulation lead
KR100396924B1 (ko) * 2001-02-27 2003-09-03 한국전자통신연구원 생체신호를 이용한 전자기기 제어 장치 및 그 방법
AUPR343401A0 (en) * 2001-02-28 2001-03-29 Nguyen, Hung Modelling and design for early warning systems using physiological responses
US6839594B2 (en) 2001-04-26 2005-01-04 Biocontrol Medical Ltd Actuation and control of limbs through motor nerve stimulation
US6671555B2 (en) 2001-04-27 2003-12-30 Medtronic, Inc. Closed loop neuromodulation for suppression of epileptic activity
US7206635B2 (en) * 2001-06-07 2007-04-17 Medtronic, Inc. Method and apparatus for modifying delivery of a therapy in response to onset of sleep
US6810285B2 (en) 2001-06-28 2004-10-26 Neuropace, Inc. Seizure sensing and detection using an implantable device
US6754535B2 (en) 2001-07-09 2004-06-22 St. Jude Medical Ab Method and apparatus for verifying evoked response in the atrium
US6617838B1 (en) 2001-09-11 2003-09-09 Analog Devices, Inc. Current measurement circuit
GB0121993D0 (en) * 2001-09-12 2001-10-31 Koninkl Philips Electronics Nv Improvements in or relating to superheterodyne recievers
US7209788B2 (en) 2001-10-29 2007-04-24 Duke University Closed loop brain machine interface
US6944497B2 (en) * 2001-10-31 2005-09-13 Medtronic, Inc. System and method of treating stuttering by neuromodulation
US20030105409A1 (en) 2001-11-14 2003-06-05 Donoghue John Philip Neurological signal decoding
US6829510B2 (en) * 2001-12-18 2004-12-07 Ness Neuromuscular Electrical Stimulation Systems Ltd. Surface neuroprosthetic device having an internal cushion interface system
EP1480721A4 (en) * 2002-02-04 2007-09-12 Great Lakes Biosciences Llc TREATMENT OF NEUROLOGICAL ILLNESSES WITH ELECTRICAL STIMULATION
US20030146786A1 (en) 2002-02-04 2003-08-07 Kush Gulati ADC having chopper offset cancellation
US7110820B2 (en) 2002-02-05 2006-09-19 Tcheng Thomas K Responsive electrical stimulation for movement disorders
US7043305B2 (en) * 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
SE0200921D0 (sv) 2002-03-25 2002-03-25 St Jude Medical A heart monitoring device, a system including such a device and a manner of using the system
US7151961B1 (en) * 2002-05-24 2006-12-19 Advanced Bionics Corporation Treatment of movement disorders by brain stimulation
US7299088B1 (en) * 2002-06-02 2007-11-20 Nitish V Thakor Apparatus and methods for brain rhythm analysis
WO2003101532A2 (en) 2002-06-04 2003-12-11 Cyberkinetics, Inc. Optically-connected implants and related systems and methods of use
US6954524B2 (en) 2002-06-07 2005-10-11 Sbc Properties, L.P. System and method for implementing and accessing call forwarding services
US6914539B2 (en) 2002-10-07 2005-07-05 General Electric Company System and method for a low rate, in-band broadcast communication for medical telemetry
EP1558334B1 (en) * 2002-10-15 2015-03-18 Medtronic, Inc. Configuring and testing treatment therapy parameters for a medical device system
WO2004034879A2 (en) * 2002-10-15 2004-04-29 Medtronic Inc. Screening techniques for management of a nervous system disorder
US7212851B2 (en) 2002-10-24 2007-05-01 Brown University Research Foundation Microstructured arrays for cortex interaction and related methods of manufacture and use
US7236830B2 (en) * 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
EP1426078A1 (en) * 2002-12-04 2004-06-09 Terumo Kabushiki Kaisha Heart treatment equipment for preventing fatal arrhythmia
EP1579571B1 (en) 2002-12-18 2009-04-01 Nxp B.V. Phase corrected miller compensation of chopper and nested chopper amplifiers
AU2003900324A0 (en) * 2003-01-20 2003-02-06 Swinburne University Of Technology Method of monitoring brain function
US6842486B2 (en) 2003-01-21 2005-01-11 Cirrus Logic, Inc. Signal processing system with baseband noise modulation and noise fold back reduction
US7254500B2 (en) 2003-03-31 2007-08-07 The Salk Institute For Biological Studies Monitoring and representing complex signals
CN2683027Y (zh) 2003-03-31 2005-03-09 四川大学华西医院 组合式皮质电极装置
DE10318071A1 (de) 2003-04-17 2004-11-25 Forschungszentrum Jülich GmbH Vorrichtung zur Desynchronisation von neuronaler Hirnaktivität
US7266412B2 (en) * 2003-04-22 2007-09-04 Medtronic, Inc. Generation of multiple neurostimulation therapy programs
US7177609B1 (en) * 2003-05-16 2007-02-13 National Semiconductor Corporation Chopper-direct-conversion (CDC) radio architecture
US6993380B1 (en) * 2003-06-04 2006-01-31 Cleveland Medical Devices, Inc. Quantitative sleep analysis method and system
US20040249302A1 (en) 2003-06-09 2004-12-09 Cyberkinetics, Inc. Methods and systems for processing of brain signals
US7171258B2 (en) 2003-06-25 2007-01-30 Cardiac Pacemakers, Inc. Method and apparatus for trending a physiological cardiac parameter
WO2005028029A2 (en) * 2003-08-18 2005-03-31 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US8192376B2 (en) * 2003-08-18 2012-06-05 Cardiac Pacemakers, Inc. Sleep state classification
US7668591B2 (en) * 2003-09-18 2010-02-23 Cardiac Pacemakers, Inc. Automatic activation of medical processes
US20050107838A1 (en) * 2003-09-18 2005-05-19 Lovett Eric G. Subcutaneous cardiac rhythm management with disordered breathing detection and treatment
US7757690B2 (en) * 2003-09-18 2010-07-20 Cardiac Pacemakers, Inc. System and method for moderating a therapy delivered during sleep using physiologic data acquired during non-sleep
US7010347B2 (en) 2004-02-14 2006-03-07 Pacesetter, Inc. Optimization of impedance signals for closed loop programming of cardiac resynchronization therapy devices
US7582062B2 (en) 2003-09-12 2009-09-01 Medical Research Council Methods of neural centre location and electrode placement in the central nervous system
US20050143589A1 (en) 2003-11-09 2005-06-30 Donoghue John P. Calibration systems and methods for neural interface devices
US20060161219A1 (en) 2003-11-20 2006-07-20 Advanced Neuromodulation Systems, Inc. Electrical stimulation system and method for stimulating multiple locations of target nerve tissue in the brain to treat multiple conditions in the body
US20050113744A1 (en) 2003-11-21 2005-05-26 Cyberkinetics, Inc. Agent delivery systems and related methods under control of biological electrical signals
US7041049B1 (en) * 2003-11-21 2006-05-09 First Principles, Inc. Sleep guidance system and related methods
GB2408643A (en) 2003-11-27 2005-06-01 Zarlink Semiconductor Ltd Double conversion tuner with tuneable bandpass filters
US7120486B2 (en) 2003-12-12 2006-10-10 Washington University Brain computer interface
US20080015659A1 (en) 2003-12-24 2008-01-17 Yi Zhang Neurostimulation systems and methods for cardiac conditions
US7098823B2 (en) 2004-01-15 2006-08-29 Analog Devices, Inc. Reduced chop rate analog to digital converter system and method
US20050197588A1 (en) * 2004-03-04 2005-09-08 Scott Freeberg Sleep disordered breathing alert system
US20050203366A1 (en) 2004-03-12 2005-09-15 Donoghue John P. Neurological event monitoring and therapy systems and related methods
US20050209512A1 (en) 2004-03-16 2005-09-22 Heruth Kenneth T Detecting sleep
US8725244B2 (en) * 2004-03-16 2014-05-13 Medtronic, Inc. Determination of sleep quality for neurological disorders
WO2005089646A1 (en) 2004-03-16 2005-09-29 Medtronic, Inc. Sensitivity analysis for selecting therapy parameter sets
US7491181B2 (en) * 2004-03-16 2009-02-17 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US7395113B2 (en) * 2004-03-16 2008-07-01 Medtronic, Inc. Collecting activity information to evaluate therapy
WO2005092185A2 (en) 2004-03-22 2005-10-06 California Institute Of Technology Cognitive control signals for neural prosthetics
US20050246003A1 (en) 2004-04-28 2005-11-03 Advanced Neuromodulation Systems, Inc. Stimulation lead having pairs of stimulating electrodes spaced at different distances for providing electrical stimulation to different nerve tissues
US20060258930A1 (en) * 2004-05-18 2006-11-16 Jianping Wu Device for use in sleep stage determination using frontal electrodes
US8244340B2 (en) * 2006-12-22 2012-08-14 Natus Medical Incorporated Method, system and device for sleep stage determination using frontal electrodes
GB0413945D0 (en) 2004-06-22 2004-07-28 Zarlink Semiconductor Ltd Tuner arrangement for broadband reception
WO2006015002A1 (en) 2004-07-29 2006-02-09 Cyberkinetics Neurotechnology Systems, Inc. Biological interface system with clinician confirmation of parameter changes
US20060058627A1 (en) 2004-08-13 2006-03-16 Flaherty J C Biological interface systems with wireless connection and related methods
FR2874331B1 (fr) 2004-08-18 2006-10-27 Ela Medical Sa Dispositif medical implantable actif comprenant des moyens du volume intracardiaque
US7193545B2 (en) 2004-09-17 2007-03-20 Analog Devices, Inc. Differential front-end continuous-time sigma-delta ADC using chopper stabilization
US7205920B2 (en) 2004-09-17 2007-04-17 Analog Devices, Inc. Continuous-time-sigma-delta DAC using chopper stabalization
WO2006041738A2 (en) 2004-10-04 2006-04-20 Cyberkinetics Neurotechnology Systems, Inc. Biological interface system
US7565200B2 (en) 2004-11-12 2009-07-21 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
CN2754557Y (zh) 2004-12-13 2006-02-01 谭坤 颅内深部电极
US7819812B2 (en) 2004-12-15 2010-10-26 Neuropace, Inc. Modulation and analysis of cerebral perfusion in epilepsy and other neurological disorders
US8041419B2 (en) 2004-12-17 2011-10-18 Medtronic, Inc. System and method for monitoring or treating nervous system disorders
US7184487B2 (en) * 2004-12-21 2007-02-27 Motorola, Inc. Receiver with chopper stabilization and method thereof
US20070032738A1 (en) 2005-01-06 2007-02-08 Flaherty J C Adaptive patient training routine for biological interface system
WO2006074029A2 (en) 2005-01-06 2006-07-13 Cyberkinetics Neurotechnology Systems, Inc. Neurally controlled and multi-device patient ambulation systems and related methods
US20060167564A1 (en) 2005-01-10 2006-07-27 Flaherty J C Limb and digit movement system
US20060173493A1 (en) * 2005-01-28 2006-08-03 Cyberonics, Inc. Multi-phasic signal for stimulation by an implantable device
US7454245B2 (en) * 2005-01-28 2008-11-18 Cyberonics, Inc. Trained and adaptive response in a neurostimulator
US7805191B2 (en) 2005-01-31 2010-09-28 Physio-Control, Inc. CPR time indicator for a defibrillator data management system
US8088057B2 (en) * 2005-02-01 2012-01-03 James David Honeycutt Apparatus and methods to improve sleep, reduce pain and promote natural healing
DE602005005940T2 (de) 2005-02-09 2009-04-02 Raul Chirife Ischämiedetektor
US7447543B2 (en) 2005-02-15 2008-11-04 Regents Of The University Of Minnesota Pathology assessment with impedance measurements using convergent bioelectric lead fields
WO2006094072A2 (en) 2005-03-01 2006-09-08 Functional Neuroscience Inc. Method of treating cognitive disorders using neuromodulation
JP2006279377A (ja) 2005-03-29 2006-10-12 Handotai Rikougaku Kenkyu Center:Kk チョッパ増幅回路
US7239927B2 (en) 2005-03-31 2007-07-03 Medtronic, Inc. Implantable medical device including self-bootstrapped therapy pulse output circuit switches
JP4582642B2 (ja) * 2005-04-01 2010-11-17 株式会社タニタ 睡眠段階判定装置
WO2006110206A1 (en) 2005-04-11 2006-10-19 Medtronic, Inc. Shifting between electrode combinations in electrical stimulation device
US7519431B2 (en) * 2005-04-11 2009-04-14 Medtronic, Inc. Shifting between electrode combinations in electrical stimulation device
WO2006121455A1 (en) * 2005-05-10 2006-11-16 The Salk Institute For Biological Studies Dynamic signal processing
JP2008541826A (ja) 2005-05-26 2008-11-27 イッサム リサーチ ディベロプメント カンパニー オブ ザ ヘブリュー ユニバーシティ オブ エルサレム 生体器官の生理学条件および感情状態を決定する方法およびシステム
GB2427091A (en) 2005-06-08 2006-12-13 Zarlink Semiconductor Ltd Baseband quadrature frequency down-converter receiver having quadrature up-converter stage
US7899519B2 (en) * 2005-06-28 2011-03-01 Cardiac Pacemakers, Inc. Evaluating a patient condition using autonomic balance information in implatable cardiac devices
US7376463B2 (en) 2005-06-29 2008-05-20 Cardiac Pacemakers, Inc. Therapy control based on the rate of change of intracardiac impedance
US7783343B2 (en) * 2005-07-07 2010-08-24 The General Electric Company Monitoring of the cerebral state of a subject
US7904144B2 (en) * 2005-08-02 2011-03-08 Brainscope Company, Inc. Method for assessing brain function and portable automatic brain function assessment apparatus
US8831735B2 (en) * 2005-08-31 2014-09-09 Michael Sasha John Methods and systems for semi-automatic adjustment of medical monitoring and treatment
US7403758B2 (en) 2005-10-04 2008-07-22 Freescale Semicondutor, Inc. Linearized and balanced mixer apparatus and signal mixing method
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US7684867B2 (en) * 2005-11-01 2010-03-23 Boston Scientific Neuromodulation Corporation Treatment of aphasia by electrical stimulation and/or drug infusion
CN2882531Y (zh) 2005-11-04 2007-03-28 北京华科恒生医疗科技有限公司 一种颅内皮层电极
EP1793497B1 (en) 2005-12-02 2011-04-27 STMicroelectronics Srl Device and method for reading a capacitive sensor, in particular of a micro-electromechanical type
US7671672B2 (en) 2005-12-22 2010-03-02 Sirf Technology, Inc. Baseband noise reduction
US8725243B2 (en) * 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8209018B2 (en) * 2006-03-10 2012-06-26 Medtronic, Inc. Probabilistic neurological disorder treatment
US8744587B2 (en) 2006-03-24 2014-06-03 Medtronic, Inc. Collecting gait information for evaluation and control of therapy
US20070249953A1 (en) 2006-04-21 2007-10-25 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US8103341B2 (en) * 2006-08-25 2012-01-24 Cardiac Pacemakers, Inc. System for abating neural stimulation side effects
US9162051B2 (en) * 2006-09-21 2015-10-20 Neuropace, Inc. Treatment of language, behavior and social disorders
JP2008154681A (ja) 2006-12-21 2008-07-10 Toyota Motor Corp 睡眠深度判定装置及び睡眠深度判定方法
US20080167565A1 (en) * 2007-01-09 2008-07-10 Timo Laitio Method and Arrangement for Obtaining Diagnostic Information of a Patient
US7391257B1 (en) 2007-01-31 2008-06-24 Medtronic, Inc. Chopper-stabilized instrumentation amplifier for impedance measurement
US8265769B2 (en) 2007-01-31 2012-09-11 Medtronic, Inc. Chopper-stabilized instrumentation amplifier for wireless telemetry
US9615744B2 (en) 2007-01-31 2017-04-11 Medtronic, Inc. Chopper-stabilized instrumentation amplifier for impedance measurement
US7385443B1 (en) 2007-01-31 2008-06-10 Medtronic, Inc. Chopper-stabilized instrumentation amplifier
US7894890B2 (en) * 2007-02-09 2011-02-22 Neuropace, Inc. Devices and methods for monitoring physiological information relating to sleep with an implantable device
US8862221B2 (en) 2007-02-21 2014-10-14 St. Jude Medical Ab Monitoring mechanical heart properties
ATE512693T1 (de) 2007-02-28 2011-07-15 St Jude Medical Herzstimulator mit einem impedanzmesskreis zum nachweis einer ischämie
GB2447640B (en) 2007-03-14 2012-03-14 Axon Sleep Res Lab Inc Systems and methods for sleep monitoring
US20080243005A1 (en) * 2007-03-30 2008-10-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational user-health testing
US7769464B2 (en) * 2007-04-30 2010-08-03 Medtronic, Inc. Therapy adjustment
US8594779B2 (en) 2007-04-30 2013-11-26 Medtronic, Inc. Seizure prediction
US20090018617A1 (en) 2007-04-30 2009-01-15 Medtronic, Inc. Parameter-directed shifting of electrical stimulation electrode combinations
US8781595B2 (en) 2007-04-30 2014-07-15 Medtronic, Inc. Chopper mixer telemetry circuit
US9788750B2 (en) 2007-04-30 2017-10-17 Medtronic, Inc. Seizure prediction
US20090131995A1 (en) * 2007-06-14 2009-05-21 Northstar Neuroscience, Inc. Microdevice-based electrode assemblies and associated neural stimulation systems, devices, and methods
CN100496392C (zh) 2007-06-15 2009-06-10 西安电子科技大学 失眠的神经反馈治疗装置
US10076655B2 (en) 2007-09-21 2018-09-18 Koninklijke Philips N.V. Vestibular stimulation system
US8380314B2 (en) 2007-09-26 2013-02-19 Medtronic, Inc. Patient directed therapy control
US7714757B2 (en) 2007-09-26 2010-05-11 Medtronic, Inc. Chopper-stabilized analog-to-digital converter
EP2207590A1 (en) 2007-09-26 2010-07-21 Medtronic, INC. Therapy program selection
US20090264789A1 (en) * 2007-09-26 2009-10-22 Medtronic, Inc. Therapy program selection
EP2200692B1 (en) 2007-09-26 2016-11-09 Medtronic, Inc. Frequency selective monitoring of physiological signals
US8121694B2 (en) 2007-10-16 2012-02-21 Medtronic, Inc. Therapy control based on a patient movement state
US9248280B2 (en) * 2007-11-02 2016-02-02 Boston Scientific Neuromodulation Corporation Closed-loop feedback for steering stimulation energy within tissue
US20090118786A1 (en) * 2007-11-02 2009-05-07 Advanced Bionics Corporation Automated fitting system for deep brain stimulation
EP2249908B1 (en) 2008-01-25 2014-01-01 Medtronic, Inc. Sleep stage detection
WO2009126179A1 (en) * 2008-04-09 2009-10-15 Lotus Magnus, Llc. Brain stimulation systems and methods
US8478402B2 (en) 2008-10-31 2013-07-02 Medtronic, Inc. Determining intercardiac impedance
US20100113964A1 (en) 2008-10-31 2010-05-06 Wahlstrand John D Determining intercardiac impedance
US9770204B2 (en) * 2009-11-11 2017-09-26 Medtronic, Inc. Deep brain stimulation for sleep and movement disorders
US9211411B2 (en) * 2010-08-26 2015-12-15 Medtronic, Inc. Therapy for rapid eye movement behavior disorder (RBD)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103518204B (zh) * 2011-04-20 2016-06-08 索尼公司 信息处理设备、信息处理方法及程序
CN103518204A (zh) * 2011-04-20 2014-01-15 索尼公司 信息处理设备、信息处理方法及程序
CN103845793A (zh) * 2012-12-07 2014-06-11 苏州景昱医疗器械有限公司 植入式神经刺激器、系统及其多组刺激参数组合方法
CN104968388B (zh) * 2013-01-29 2019-04-02 皇家飞利浦有限公司 基于脑电波的闭环感官刺激来诱导睡眠
CN104968388A (zh) * 2013-01-29 2015-10-07 皇家飞利浦有限公司 基于脑电波的闭环感官刺激来诱导睡眠
CN105142515B (zh) * 2013-04-05 2017-09-05 赫尔比公司 测定有利于唤醒的人类睡眠阶段的方法
CN105142515A (zh) * 2013-04-05 2015-12-09 赫尔比公司 测定有利于唤醒的人类睡眠阶段的方法
CN105142504A (zh) * 2013-04-10 2015-12-09 皇家飞利浦有限公司 用于基于心脏活动来增强睡眠慢波活动的系统和方法
CN104055518A (zh) * 2014-07-08 2014-09-24 广州柏颐信息科技有限公司 一种跌倒检测腕表及跌倒检测方法
CN105617504A (zh) * 2014-11-07 2016-06-01 英业达科技有限公司 助眠系统及其助眠方法
CN106999698A (zh) * 2014-12-11 2017-08-01 皇家飞利浦有限公司 用于调节慢波检测准则的系统和方法
CN106999698B (zh) * 2014-12-11 2020-08-25 皇家飞利浦有限公司 用于调节慢波检测准则的系统和方法
WO2017032315A1 (zh) * 2015-08-26 2017-03-02 吴建平 一种睡眠分期方法及系统
CN105105714B (zh) * 2015-08-26 2019-02-19 吴建平 一种睡眠分期方法及系统
CN105105714A (zh) * 2015-08-26 2015-12-02 吴建平 一种睡眠分期方法及系统
CN105496363A (zh) * 2015-12-15 2016-04-20 浙江神灯生物科技有限公司 基于检测睡眠脑电信号对睡眠阶段进行分类的方法
CN105942974A (zh) * 2016-04-14 2016-09-21 禅客科技(上海)有限公司 一种基于低频脑电的睡眠分析方法及系统
CN108136152A (zh) * 2016-05-12 2018-06-08 深圳市赛亿科技开发有限公司 一种助眠系统
CN109475295A (zh) * 2016-06-29 2019-03-15 皇家飞利浦有限公司 用于健康设备和可穿戴/可植入设备的方法和设备
CN106037672A (zh) * 2016-07-12 2016-10-26 东莞市嵘丰医疗器械有限公司 一种睡眠障碍康复系统
WO2018018775A1 (zh) * 2016-07-26 2018-02-01 纽沃凯生物科技(深圳)有限公司 睡眠深度监测方法和睡眠深度监测仪
CN109789307A (zh) * 2016-09-27 2019-05-21 美敦力公司 使用体内平衡窗口的自适应脑深部刺激
CN109789307B (zh) * 2016-09-27 2023-08-01 美敦力公司 使用体内平衡窗口的自适应脑深部刺激
US11666750B2 (en) 2016-09-27 2023-06-06 Medtronic, Inc. Adaptive deep brain stimulation using homeostatic window
CN110234279B (zh) * 2016-12-28 2022-09-20 皇家飞利浦有限公司 表征睡眠呼吸障碍的方法
CN110234279A (zh) * 2016-12-28 2019-09-13 皇家飞利浦有限公司 表征睡眠呼吸障碍的方法
CN106691443A (zh) * 2017-01-11 2017-05-24 中国科学技术大学 基于脑电的穿戴式司机防疲劳智能监测预警系统
CN107864282A (zh) * 2017-11-03 2018-03-30 泾县吉祥纸业有限公司 一种移动终端闹钟应用的功能唤醒方法
CN111655150A (zh) * 2018-01-30 2020-09-11 京瓷株式会社 电子设备、推定系统、控制方法以及控制程序
CN108815674A (zh) * 2018-03-30 2018-11-16 广东欧珀移动通信有限公司 调节睡眠方法及相关产品
CN113396599A (zh) * 2019-01-31 2021-09-14 美敦力公司 在植入式装置与一个或多个外部装置之间建立安全通信链路
CN111528839B (zh) * 2020-05-29 2023-06-23 北京京东方健康科技有限公司 睡眠检测方法和装置、助眠设备和方法
CN111528839A (zh) * 2020-05-29 2020-08-14 北京京东方健康科技有限公司 睡眠检测方法和装置、助眠设备和方法
CN115634370A (zh) * 2022-12-05 2023-01-24 深圳市心流科技有限公司 一种体征检测装置的功能控制方法及终端设备

Also Published As

Publication number Publication date
EP2249908A1 (en) 2010-11-17
US20090192556A1 (en) 2009-07-30
US20170311878A1 (en) 2017-11-02
US10165977B2 (en) 2019-01-01
EP2249908B1 (en) 2014-01-01
US20150265207A1 (en) 2015-09-24
WO2009094050A1 (en) 2009-07-30
US9072870B2 (en) 2015-07-07
US9706957B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
CN101925377A (zh) 睡眠阶段的检测
US11484715B2 (en) Dorsal spinal column characterization with evoked potentials
US9770204B2 (en) Deep brain stimulation for sleep and movement disorders
EP1755734B1 (en) Collecting posture and activity information to evaluate therapy
CN102088905B (zh) 获取基线患者信息
EP1732442B1 (en) Collecting activity and sleep quality information via a medical device
CN105451649A (zh) 基于生物电脑部信号的一个或多个频谱特性的患者状态确定
US20100280336A1 (en) Anxiety disorder monitoring
US20120053508A1 (en) Therapy for rapid eye movement behavior disorder (rbd)
WO2010005828A2 (en) Dwell time adjustments for posture state-responsive therapy
WO2015164143A1 (en) Deep brain stimulation for sleep disorders
US20230191126A1 (en) Parameter variation in neural stimulation
CN114728163A (zh) 用于高频神经刺激的ecap感测
US20230364426A1 (en) Neuromodulation therapy optimization using sleep and activity derived measures
US20240131340A1 (en) Systems and methods for adjusting a neuromodulation therapy based on physiological inputs
WO2023015159A2 (en) Parameter variations in neural stimulation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20101222