CN101924139A - 一种应变沟道场效应晶体管及其制备方法 - Google Patents

一种应变沟道场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN101924139A
CN101924139A CN2010102191791A CN201010219179A CN101924139A CN 101924139 A CN101924139 A CN 101924139A CN 2010102191791 A CN2010102191791 A CN 2010102191791A CN 201010219179 A CN201010219179 A CN 201010219179A CN 101924139 A CN101924139 A CN 101924139A
Authority
CN
China
Prior art keywords
layer
source
effect transistor
substrate
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102191791A
Other languages
English (en)
Other versions
CN101924139B (zh
Inventor
黄如
云全新
安霞
艾玉杰
张兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN2010102191791A priority Critical patent/CN101924139B/zh
Publication of CN101924139A publication Critical patent/CN101924139A/zh
Priority to PCT/CN2011/072064 priority patent/WO2011160477A1/zh
Priority to US13/255,443 priority patent/US8673722B2/en
Application granted granted Critical
Publication of CN101924139B publication Critical patent/CN101924139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7849Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being provided under the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种应变沟道场效应晶体管及其制备方法。该场效应晶体管包括衬底、源漏、栅介质层和栅极,其特征在于,所述源漏与衬底之间有“L”形的复合隔离层,包住源漏靠近沟道一边的部分侧面和源漏底部,该复合隔离层又分为两层,即与衬底直接接触的“L”形绝缘薄层和与源漏直接接触的“L”形高应力层。该结构的场效应晶体管通过高应力层在沟道中引入应力,提高了载流子的迁移率,同时从根本上改善了场效应晶体管的器件结构,提升了器件的短沟效应抑制能力。

Description

一种应变沟道场效应晶体管及其制备方法
技术领域
本发明属于CMOS超大集成电路(ULSI)中的场效应晶体管逻辑器件与电路领域,并可以扩展到存储器件与电路领域,特别涉及一种在沟道中引入应力的场效应晶体管。
背景技术
随着CMOS器件尺寸的不断缩小,器件短沟效应与载流子迁移率退化效应的影响日益突出。硅基CMOS技术发展对器件短沟效应抑制能力和载流子迁移率的提升能力的需求也愈来愈紧迫。
为抑制器件短沟效应,目前采用的方法主要有提高衬底掺杂浓度、增加源/漏轻掺杂区(LDD区)、引入pocket结构等;同时,在绝缘体上硅(SOI)器件中还可以采用超薄体结构。但是,提高衬底掺杂浓度将提高器件阈值电压而降低开态电流,增加LDD区将提高器件寄生电阻,增加Pocket结构同样会导致衬底掺杂水平提高;而采用超薄体结构会导致源/漏串联电阻增加,同时由于界面散射增强以及自加热效应等,将使沟道载流子迁移率和器件过驱动能力大大降低。为解决这些技术矛盾,中国专利公开说明书CN1450653A提出了一种准SOI器件结构,如图1所示,其关键结构是介于源/漏和体区之间的、包围源/漏的“L”形局部绝缘层隔离墙8;利用该隔离墙替代传统的源/漏与体区之间的pn结隔离,可有效提升器件的短沟效应抑制能力。
与此同时,当器件尺寸进入亚100nm以下后,器件短沟效应的恶化,使得通过进一步缩小器件尺寸来获得更好性能的方法变得极为困难。为了缓解器件尺寸缩小带来的压力,采用应变硅技术,在沟道中引入应力,从而提升沟道载流子迁移率和晶体管器件性能,已成为微电子制造工程领域普遍采用且必不可少的一种方法。其基本原理即:通过器件结构、材料以及工艺制程设计,在晶体管沟道区引入应力,改变晶体的晶格结构,从而引起载流子迁移率的改变。在合适的应力下,载流子迁移率可以得到提升。例如,沿沟道方向的张应力可以提高电子迁移率,而沟道方向的压应力可以提高空穴迁移率。
应变技术的关键在于如何在沟道中引入器件所需的应力。目前常用的引入应力的方法主要有:
1、通过Si/SiGe异质结衬底结构,使沟道部分发生应变。如图2a所示,通过采用非硅 衬底,如SiGe衬底,利用衬底10与表面Si沟道层9的晶格差异,给沟道层施加应力。由于SiGe晶格常数比Si晶格大,此时,表面Si沟道层的晶格被底层SiGe晶格拉伸,在Si沟道中引入了拉应力。
2、通过异质结源/漏结构在沟道部分引入应力,即用非硅(Si)材料替代源/漏区的Si材料,利用源/漏与沟道之间的异质结在沟道中诱生应力。如图2b所示,利用大晶格的SiGe做源/漏区12,可以在沟道方向诱生压应力。
3、通过在器件上方覆盖高应力层在沟道衬底中引入应力,即在器件上方覆盖一层高应力薄膜13,通过薄膜自身的形变带动下方的器件发生形变,从而在沟道中引入应力,如图2c所示。
需要注意的是,上述在沟道中引入应力的方法改变了载流子的迁移率,但并没有根本改善器件结构,不能有效提升器件自身的短沟效应抑制能力。
发明内容
本发明的目的是提供一种应变沟道的场效应晶体管,既可以在场效应晶体管沟道中引入器件性能提升所需要的应力,同时可以从结构上保证场效应晶体管器件具有良好的短沟效应抑制能力。
本发明的技术方案如下:
一种应变沟道场效应晶体管,包括衬底、源漏、栅介质层和栅极,其特征在于,所述源漏与衬底之间有“L”形的复合隔离层,包住源漏靠近沟道一边的部分侧面和源漏底部,该复合隔离层又分为两层,即与衬底直接接触的“L”形绝缘薄层和与源漏直接接触的“L”形高应力层。
具体说来,本发明的场效应晶体管在源区与衬底之间,漏区与衬底之间各有一个“L”形复合隔离层;该“L”形复合隔离层包括位于源区/漏区靠近沟道一边的侧面、垂直于沟道方向的部分(“L”形的竖直部分),和位于源区和漏区底部与衬底之间、平行于沟道方向的部分(“L”形的水平部分)。“L”形复合隔离层是两层的层状结构,其中绝缘薄层靠近衬底,位于衬底和高应力层之间;而高应力层靠近源区/漏区,位于绝缘薄层和源区/漏区之间。
该“L”形复合隔离层的顶端至沟道表面的部分为源区/漏区与沟道的连接区,“L”形复合隔离层的末端(“L”形水平部分远离沟道的一端)与有源区的隔离区相连,源漏通过该“L”形的复合隔离层与衬底完全隔离,形成准SOI器件结构。
上述“L”形绝缘薄层的材料优选为二氧化硅,也可以为氮氧化硅等材料,其厚度范围 在0.5~20纳米。
上述“L”形高应力层的材料可以是高应力氮化硅或者高应力类金刚石碳等应力材料,其厚度范围在5~200纳米。
图3示意了本发明场效应晶体管的一种典型结构,其中衬底14可以是硅衬底,也可以为其它半导体衬底材料,如Ge、SiGe、GaAs等;栅介质层17可以是二氧化硅、氧化铝、氧化钇、氧化镧、氧化铪或氧化钛等材料;栅极18可以是多晶硅,也可以是铝、钨、钽等金属材料,或者是氮化钛、氮化钽等金属氮化物材料;栅侧墙19可以是二氧化硅、氮化硅、氮氧化硅等材料。源区15和漏区16分别通过一个“L”形的由绝缘薄层20和高应力层21组成的复合隔离层与衬底14隔离;源区15和漏区16仅通过“L”形复合隔离层的顶端到沟道表面的区域连接沟道。
本发明还提供了上述应变沟道场效应晶体管的一种制备方法,包括以下步骤:
1)在衬底上淀积并刻蚀形成牺牲氧化硅栅,以牺牲氧化硅栅为掩膜刻蚀衬底获得源漏区凹槽;
2)通过低温热氧化或淀积的方式在源漏区凹槽表面形成绝缘薄层,在绝缘薄层上淀积高应力材料形成高应力层;
3)在高应力层上淀积牺牲多晶硅层,并选择腐蚀牺牲多晶硅层至“L”形复合隔离层的设计高度位置;
4)以牺牲多晶硅层为保护层,选择腐蚀高应力层;然后去除牺牲多晶硅层,以高应力层为保护层选择腐蚀绝缘薄层,得到“L”形的由绝缘薄层和高应力层组成的复合隔离层;
5)以露出的沟道区窗口为籽晶层外延获得源漏区,并进行轻掺杂注入,然后淀积氮化硅层做保护进行源漏注入;
6)继续淀积氮化硅层,并以牺牲氧化硅栅为停止层化学机械抛光氮化硅层;
7)去除牺牲氧化硅栅,低温热氧化获得栅介质层,然后淀积多晶硅层,以氮化硅层为停止层化学机械抛光获得多晶硅栅。
上述制备方法中,步骤2)中优选采用低温热氧化的方法形成“L”形的二氧化硅绝缘薄层,其厚度为0.5~20纳米。
步骤2)中所述高应力材料可以是高应力氮化硅或高应力类金刚石碳等,同时高应力材料又分为张应力材料和压应力材料,根据不同器件的应力需求选择不同内应力属性的材料。 高应力层的厚度以5~200纳米为宜。
本发明的应变沟道场效应晶体管主要具有如下特点:
一、“L”形绝缘薄层主要作为“L”形高应力层与沟道区、高应力层与衬底之间的界面缓冲层。
二、通过高应力层材料自身的形变,诱使沟道区衬底发生形变,实现应变沟道。
三、调整高应力层介质材料的内应力属性,可以获得不同性质的沟道应力,分别满足不同器件的应力需求。例如:张应力介质材料可在沟道中引入张应力,用于提升N型场效应晶体管中的电子迁移率;压应力介质材料可在沟道中引入压应力,用于提升P型场效应晶体管中的空穴迁移率。
四、调整高应力层介质材料的内应力大小和高应力层的厚度,可以调整沟道应力的大小。沟道应力将随高应力层介质材料内应力的增加和高应力层厚度的增加而增大。
五、“L”形复合隔离层将源/漏包围,与衬底完全隔离,形成中国专利公开说明书CN1450653A中提出的准SOI结构,可获得良好的短沟效应抑制性能。
下面的模拟实验可初步证实本发明应力引入的效果。
数值模拟工作在Sentaurus TCAD模拟平台上进行。模拟中以N型场效应晶体管为例,通过工艺制程模拟获得的场效应晶体管结构中,其沟长为30nm;“L”形绝缘薄层为二氧化硅,厚度为1纳米;“L”形高应力层的材料为高应力氮化硅,厚度为20纳米,高应力氮化硅内应力约为8GPa。图4(a)和图4(b)给出了由模拟结果获得的晶体管沿沟道方向的应力分布。结果显示,沟道应力达到GPa量级,高应力层将应力有效地施加到沟道部分;同时,沟道应力呈现波峰分布,如图4b所示,即沟道应力峰值在沟道中央区域,有利于最大限度提升沟道区载流子迁移速度。
上述模拟结果表明,本发明提出的应力引入方法是可行而有效的。同时,本发明基于准SOI器件结构的场效应晶体管可以有效抑制器件尺寸缩小带来的短沟效应。因此,与现有的常规应力引入方法相比,本发明既可以保证沟道应力引入的有效性,同时又从根本上改善了场效应晶体管的器件结构,提升了器件短沟效应抑制能力。
附图说明
图1为CN1450653A提出的准SOI器件的结构示意图,图中,1为体衬底,2和3分别为源区和漏区,4为栅氧化层,5为栅电极,6为栅侧墙,7为轻掺杂源漏(LDD)区,8为 “L”形局部绝缘层隔离墙。
图2a~图2c是目前在微电子制造工程领域常采用的三种应力施加方法的示意图,其中:图2a为采用异质结衬底的方法;图2b为采用异质结源/漏的方法;图2c为采用应力覆盖层的方法。
图3为本发明提出的应变沟道场效应晶体管的一种器件结构,其中:14为衬底,15为源区,16为漏区,17为栅介质层,18为栅极,19为栅侧墙,20为绝缘薄层,21为高应力层。
图4a是利用本发明所提出的应力引入方法进行数值模拟获得的场效应晶体管的沟道应力分布图;
图4b是图4a所示数值模拟场效应晶体管在沟道表面沿沟道方向的应力分布曲线。
图5a~5q为本发明实施例中应变沟道场效应晶体管的制备流程图。
具体实施方式
本发明应变沟道场效应晶体管的制备关键在于复合隔离层的引入和自对准工艺设计。下面的实施例通过淀积的方法获得高应力层,同时采用牺牲多晶硅源/漏和牺牲氧化硅栅实现自对准工艺制备。
根据图5a~5q所示的流程制备应变沟道场效应晶体管,包括下述步骤:
1、对硅衬底14进行一次阈值调整注入后,淀积一层牺牲氧化硅层,其厚度由多晶硅栅高度设计要求决定,如图5a所示;
2、利用多晶硅栅掩模版进行氧化硅虚拟栅光刻,得到牺牲氧化硅栅22,并进一步光刻衬底材料,获得源/漏区凹槽,槽深由“L”形复合隔离层的底部位置决定,如图5b所示;
3、低温热氧化硅衬底形成一层二氧化硅做沟道区保护层,即绝缘薄层20,其氧化厚度由绝缘薄层的设计厚度决定,如图5c所示;
4、淀积高应力氮化硅层21,其厚度由高应力层的设计厚度决定,如图5d所示;
5、淀积牺牲多晶硅层23,并以高应力氮化硅层21为停止层,对牺牲多晶硅层23进行化学机械抛光(CMP),如图5e所示;
6、对牺牲多晶硅层23进行选择性腐蚀,腐蚀至复合隔离层的设计高度位置,此时牺牲多晶硅层23表面到沟道区衬底表面的距离为轻掺杂区(LDD区)的厚度,由设计要求决定,如图7f所示;
7、以牺牲多晶硅层23为保护层,选择腐蚀高应力氮化硅层21,如图5g所示;
8、选择腐蚀去除牺牲多晶硅层23,如图5h所示;
9、以高应力氮化硅层21为保护层,选择腐蚀二氧化硅绝缘薄层20,露出沟道区窗口,如图5i所示;
10、以沟道区窗口为籽晶层进行外延生长硅,并以牺牲氧化硅栅22为停止层,对外延层进行化学机械抛光,获得源区15和漏区16,如图5j所示;
11、对源/漏区腐蚀,去除多余源/漏材料,至沟道区衬底表面高度,如图5k所示;
12、进行一次轻掺杂(LDD)注入,如图5l所示;
13、淀积低应力氮化硅层24,其厚度由轻掺杂区(LDD区)的设计长度决定,并对源区15、漏区16进行一次大剂量注入,如图5m所示;
14、继续淀积低应力氮化硅层24,并以牺牲氧化硅栅22为停止层,对低应力氮化硅层24进行化学机械抛光,如图5n所示;
15、选择腐蚀去除牺牲氧化硅栅22,如图5o所示;
16、低温热氧化衬底形成一薄层二氧化硅层,即栅介质层17,其厚度由栅介质层设计厚度决定,如图5p所示;
17、淀积多晶硅层,并以低应力氮化硅层24为停止层进行化学机械抛光,获得多晶硅栅18,如图5q所示。
18、在栅注入之后,进行一次热退火。
上面描述的实施例并非用于限定本发明,任何本领域的技术人员,在不脱离本发明的精神和范围内,可做各种的更动和润饰,因此本发明的保护范围视权利要求范围所界定。

Claims (10)

1.一种场效应晶体管,包括衬底、源漏、栅介质层和栅极,其特征在于,所述源漏与衬底之间有“L”形的复合隔离层,包住源漏靠近沟道一边的部分侧面和源漏底部,该复合隔离层又分为两层,即与衬底直接接触的“L”形绝缘薄层和与源漏直接接触的“L”形高应力层。
2.如权利要求1所述的场效应晶体管,其特征在于,所述“L”形绝缘薄层的材料为二氧化硅或氮氧化硅。
3.如权利要求1所述的场效应晶体管,其特征在于,所述“L”形绝缘薄层的厚度为0.5~20纳米。
4.如权利要求1所述的场效应晶体管,其特征在于,所述“L”形高应力层的材料为高应力氮化硅或者高应力类金刚石碳。
5.如权利要求1所述的场效应晶体管,其特征在于,所述“L”形高应力层的厚度为5~200纳米。
6.一种权利要求1所述场效应晶体管的制备方法,包括如下步骤:
1)在衬底上淀积并刻蚀形成牺牲氧化硅栅,以牺牲氧化硅栅为掩膜刻蚀衬底获得源漏区凹槽;
2)通过低温热氧化或淀积的方式在源漏区凹槽表面形成绝缘薄层,在绝缘薄层上淀积高应力材料形成高应力层;
3)在高应力层上淀积牺牲多晶硅层,并选择腐蚀牺牲多晶硅层至“L”形复合隔离层的设计高度位置;
4)以牺牲多晶硅层为保护层,选择腐蚀高应力层;然后去除牺牲多晶硅层,以高应力层为保护层选择腐蚀绝缘薄层,得到“L”形的由绝缘薄层和高应力层组成的复合隔离层;
5)以露出的沟道区窗口为籽晶层外延获得源漏区,并进行轻掺杂注入,然后淀积氮化硅层做保护进行源漏注入;
6)继续淀积氮化硅层,并以牺牲氧化硅栅为停止层化学机械抛光氮化硅层;
7)去除牺牲氧化硅栅,低温热氧化获得栅介质层,然后淀积多晶硅层,以氮化硅层为停止层化学机械抛光获得多晶硅栅。
7.如权利要求6所述的制备方法,其特征在于,步骤2)通过低温热氧化形成二氧化硅绝缘薄层。
8.如权利要求6所述的制备方法,其特征在于,所述绝缘薄层的厚度为0.5~20纳米。
9.如权利要求6所述的制备方法,其特征在于,步骤2)中所述高应力材料是高应力氮化硅或高应力类金刚石碳。
10.如权利要求6所述的制备方法,其特征在于,所述高应力层的厚度为5~200纳米。
CN2010102191791A 2010-06-25 2010-06-25 一种应变沟道场效应晶体管及其制备方法 Active CN101924139B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010102191791A CN101924139B (zh) 2010-06-25 2010-06-25 一种应变沟道场效应晶体管及其制备方法
PCT/CN2011/072064 WO2011160477A1 (zh) 2010-06-25 2011-03-23 一种应变沟道场效应晶体管及其制备方法
US13/255,443 US8673722B2 (en) 2010-06-25 2011-03-23 Strained channel field effect transistor and the method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102191791A CN101924139B (zh) 2010-06-25 2010-06-25 一种应变沟道场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN101924139A true CN101924139A (zh) 2010-12-22
CN101924139B CN101924139B (zh) 2012-05-30

Family

ID=43338916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102191791A Active CN101924139B (zh) 2010-06-25 2010-06-25 一种应变沟道场效应晶体管及其制备方法

Country Status (3)

Country Link
US (1) US8673722B2 (zh)
CN (1) CN101924139B (zh)
WO (1) WO2011160477A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866859A (zh) * 2010-07-07 2010-10-20 北京大学 一种沟道应力引入方法及采用该方法制备的场效应晶体管
WO2011160477A1 (zh) * 2010-06-25 2011-12-29 北京大学 一种应变沟道场效应晶体管及其制备方法
CN105185712A (zh) * 2014-05-02 2015-12-23 三星电子株式会社 包括鳍式场效应晶体管的集成电路器件及其形成方法
CN105374681A (zh) * 2014-08-28 2016-03-02 中芯国际集成电路制造(上海)有限公司 晶体管及其形成方法
CN109560085A (zh) * 2018-12-10 2019-04-02 武汉华星光电半导体显示技术有限公司 显示面板及显示模组
CN112987371A (zh) * 2021-02-10 2021-06-18 武汉华星光电技术有限公司 显示装置
CN114300542A (zh) * 2021-12-31 2022-04-08 上海镓芯科技有限公司 一种薄膜型垂直结构的场效应功率晶体管

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820320B (zh) * 2011-06-09 2015-03-04 中芯国际集成电路制造(北京)有限公司 半绝缘体上硅半导体器件及其制造方法
CN103811349A (zh) * 2012-11-06 2014-05-21 中国科学院微电子研究所 半导体结构及其制造方法
CN103151269B (zh) * 2013-03-28 2015-08-12 北京大学 制备源漏准soi多栅结构器件的方法
US20150214331A1 (en) 2014-01-30 2015-07-30 Globalfoundries Inc. Replacement metal gate including dielectric gate material
JP6885942B2 (ja) * 2015-11-23 2021-06-16 インテグリス・インコーポレーテッド 窒化ケイ素と比べてp型ドープポリシリコンを選択的にエッチングするための組成物及び方法
US10043903B2 (en) 2015-12-21 2018-08-07 Samsung Electronics Co., Ltd. Semiconductor devices with source/drain stress liner
US9805935B2 (en) 2015-12-31 2017-10-31 International Business Machines Corporation Bottom source/drain silicidation for vertical field-effect transistor (FET)
CN106981427B (zh) * 2017-04-11 2019-09-27 枣庄学院 一种高载流子迁移率mosfet的制造方法
US10141420B1 (en) * 2017-11-22 2018-11-27 International Business Machines Corporation Transistors with dielectric-isolated source and drain regions
CN108550583B (zh) * 2018-05-09 2021-03-23 京东方科技集团股份有限公司 一种显示基板、显示装置及显示基板的制作方法
CN116722031B (zh) * 2023-07-20 2024-05-07 深圳优比康科技有限公司 一种功率场效应管及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202278A1 (en) * 2005-03-09 2006-09-14 Fujitsu Limited Semiconductor integrated circuit and cmos transistor
CN101326621A (zh) * 2005-12-13 2008-12-17 Nxp股份有限公司 在结处具有绝缘层的场效应晶体管结构
CN101578692A (zh) * 2007-02-16 2009-11-11 飞思卡尔半导体公司 多层源极/漏极应力源

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923782B2 (en) * 2004-02-27 2011-04-12 International Business Machines Corporation Hybrid SOI/bulk semiconductor transistors
JP4664760B2 (ja) * 2005-07-12 2011-04-06 株式会社東芝 半導体装置およびその製造方法
US7538387B2 (en) 2006-12-29 2009-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Stack SiGe for short channel improvement
CN101924139B (zh) 2010-06-25 2012-05-30 北京大学 一种应变沟道场效应晶体管及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060202278A1 (en) * 2005-03-09 2006-09-14 Fujitsu Limited Semiconductor integrated circuit and cmos transistor
CN101326621A (zh) * 2005-12-13 2008-12-17 Nxp股份有限公司 在结处具有绝缘层的场效应晶体管结构
CN101578692A (zh) * 2007-02-16 2009-11-11 飞思卡尔半导体公司 多层源极/漏极应力源

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011160477A1 (zh) * 2010-06-25 2011-12-29 北京大学 一种应变沟道场效应晶体管及其制备方法
US8673722B2 (en) 2010-06-25 2014-03-18 Peking University Strained channel field effect transistor and the method for fabricating the same
CN101866859A (zh) * 2010-07-07 2010-10-20 北京大学 一种沟道应力引入方法及采用该方法制备的场效应晶体管
WO2012003725A1 (zh) * 2010-07-07 2012-01-12 北京大学 一种沟道应力引入方法及采用该方法制备的场效应晶体管
US8450155B2 (en) 2010-07-07 2013-05-28 Peking University Method for introducing channel stress and field effect transistor fabricated by the same
CN105185712A (zh) * 2014-05-02 2015-12-23 三星电子株式会社 包括鳍式场效应晶体管的集成电路器件及其形成方法
CN105374681A (zh) * 2014-08-28 2016-03-02 中芯国际集成电路制造(上海)有限公司 晶体管及其形成方法
CN109560085A (zh) * 2018-12-10 2019-04-02 武汉华星光电半导体显示技术有限公司 显示面板及显示模组
CN112987371A (zh) * 2021-02-10 2021-06-18 武汉华星光电技术有限公司 显示装置
CN112987371B (zh) * 2021-02-10 2024-01-05 武汉华星光电技术有限公司 显示装置
CN114300542A (zh) * 2021-12-31 2022-04-08 上海镓芯科技有限公司 一种薄膜型垂直结构的场效应功率晶体管
CN114300542B (zh) * 2021-12-31 2022-09-06 上海镓芯科技有限公司 一种薄膜型垂直结构的场效应功率晶体管

Also Published As

Publication number Publication date
US20130043515A1 (en) 2013-02-21
CN101924139B (zh) 2012-05-30
US8673722B2 (en) 2014-03-18
WO2011160477A1 (zh) 2011-12-29

Similar Documents

Publication Publication Date Title
CN101924139B (zh) 一种应变沟道场效应晶体管及其制备方法
CN101866859B (zh) 一种沟道应力引入方法及采用该方法制备的场效应晶体管
TWI428989B (zh) 多層源極/汲極應力層
CN103109371B (zh) 集成鳍式场效应晶体管(finfet)及其制作方法
CN103515422B (zh) 具有高迁移率和应变沟道的FinFET
CN102214595B (zh) 一种空气为侧墙的围栅硅纳米线晶体管的制备方法
US20110260173A1 (en) Semiconductor structure
CN102214684B (zh) 一种具有悬空源漏的半导体结构及其形成方法
WO2005076795A3 (en) Method for forming a semiconductor device with local semiconductor-on- insulator (soi)
JP2014506726A (ja) ソース/ドレイン・バッファを有する応力付与チャネル型fet
CN102623487A (zh) 半导体器件及其制造方法
US7268362B2 (en) High performance transistors with SiGe strain
CN104253048A (zh) 堆叠纳米线制造方法
CN103700631A (zh) 无结mos fet器件的制备方法
CN106298943B (zh) 一种具有体电场调制的横向双扩散金属氧化物半导体场效应管
CN103280459B (zh) 具有深槽结构的图形化应变nmos器件及其制作方法
CN103295899A (zh) FinFET器件制造方法
US20150001630A1 (en) Structure and methods of fabricating y-shaped dmos finfet
CN109698196B (zh) 功率半导体器件
CN103531592A (zh) 高迁移率低源漏电阻的三栅控制型无结晶体管
KR100886708B1 (ko) Soi 소자 및 그의 제조방법
CN103985635B (zh) 一种mos晶体管的制备方法
CN103367226B (zh) 半导体器件制造方法
CN104538443A (zh) 非单一衬底绝缘层厚度的高性能soi无结晶体管
US20130137235A1 (en) Mos transistor using stress concentration effect for enhancing stress in channel area

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: BEIJING UNIV.

Effective date: 20130523

Owner name: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING

Free format text: FORMER OWNER: BEIJING UNIV.

Effective date: 20130523

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 100871 HAIDIAN, BEIJING TO: 100176 DAXING, BEIJING

TR01 Transfer of patent right

Effective date of registration: 20130523

Address after: 100176 No. 18, Wenchang Avenue, Beijing economic and Technological Development Zone

Patentee after: Semiconductor Manufacturing International (Beijing) Corporation

Patentee after: Peking University

Address before: 100871 Beijing the Summer Palace Road, Haidian District, No. 5

Patentee before: Peking University