CN101923166B - 一种三维复杂目标的合成孔径雷达图像仿真方法 - Google Patents

一种三维复杂目标的合成孔径雷达图像仿真方法 Download PDF

Info

Publication number
CN101923166B
CN101923166B CN2009100871336A CN200910087133A CN101923166B CN 101923166 B CN101923166 B CN 101923166B CN 2009100871336 A CN2009100871336 A CN 2009100871336A CN 200910087133 A CN200910087133 A CN 200910087133A CN 101923166 B CN101923166 B CN 101923166B
Authority
CN
China
Prior art keywords
ray
target
sar
scattering
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100871336A
Other languages
English (en)
Other versions
CN101923166A (zh
Inventor
洪峻
张锐
明峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Original Assignee
Institute of Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS filed Critical Institute of Electronics of CAS
Priority to CN2009100871336A priority Critical patent/CN101923166B/zh
Publication of CN101923166A publication Critical patent/CN101923166A/zh
Application granted granted Critical
Publication of CN101923166B publication Critical patent/CN101923166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明一种三维复杂目标的合成孔径雷达图像仿真方法,涉及合成孔径雷达图像技术,采用了弹射线法原理和SAR仿真成像技术相结合的方法。首先读入三维目标的三角面元模型,利用SBR算法求出全极化的目标散射系数的三维空间分布,然后利用目标模型和SAR几何参数求得背景杂波的散射系数分布以及阴影区,最后将目标和背景散射系数投影到斜平面,利用SAR回波仿真和成像算法得到高分辨全极化的SAR图像。本发明的仿真方法,为获取高分辨率全极化的军事目标SAR图像提供了一种有效的途径,为SAR ATR的研究提供了更为丰富的样本库,对提高SAR ATR研究的技术水平有着重要的意义。

Description

一种三维复杂目标的合成孔径雷达图像仿真方法
技术领域
本发明涉及合成孔径雷达(Synthetic Aperture Radar,SAR)图像技术领域,是一种利用弹射线法(SBR)原理和合成孔径雷达图像仿真来进行三维复杂目标的高分辨率全极化SAR图像的仿真方法。
背景技术
弹射线法(SBR Shooting and Bouncing Ray)由Hao Ling于1989年提出,最初用于腔体的RCS计算。弹射线法通过结合几何光学法(GO)和物理光学法(PO)计算目标的RCS,目标对电磁波的单次反射贡献通过PO积分直接给出,多次反射则通过多次的GO射线跟踪和最后的PO积分给出。由于考虑了多次反射的效应,SBR法能够很好的模拟高频条件下的目标多次反射效应,如二面角,三面角结构。在高频近似的条件下,相比于精确的计算电磁学方法相比,弹射线法具有计算速度高内存消耗少等优点。
随着合成孔径雷达(SAR)分辨率的不断提高,基于合成孔径雷达图像的自动目标识别也得到了迅速的发展。由于SAR目标的电磁散射敏感于目标姿态,所以SAR ATR的研究需要大量的不同姿态下的图像模板。目前国内大多采用美国空军实验室(AFRL)提供的MSTAR实测数据作为研究ATR的数据源,对华公开的MSTAR数据源目标较为单一(三种坦克),分辨率较低(0.3m×0.3m),且为单极化数据(VV极化),很难满足未来的SAR ATR(Automatic Target Recognition)研究的需要。
三维复杂目标的SAR图像仿真是基于模型的SAR目标自动识别(ModelBased SAR ATR)的基础,准确有效的仿真目标的SAR图像不仅是建立SARATR系统的关键技术之一,而且也为理解目标散射特性进而研究SAR ATR方法提供了实验平台。
发明内容
本发明提供了一种三维复杂目标的合成孔径雷达图像仿真方法,基于三维复杂目标模型仿真其高分辨率全极化的SAR图像,解决了ATR研究中实验模板数据不足的问题。
为达到上述目的,本发明的技术解决方案是:
一种三维复杂目标的合成孔径雷达图像仿真方法,其包括如下步骤:
步骤一:读入三维复杂目标的三角面元模型,并从等相位面发射一簇射线来模拟入射的平面电磁波;
步骤二:利用z-buffer算法来完成入射电磁波的一次射线寻迹,对于存在一次弹射的入射线,保留其反射线,对于没有弹射的入射线,将其删除;
步骤三:根据目标面元模型,构建目标的空间八叉树结构,通过空间八叉树算法完成余下的射线寻迹过程,射线寻迹过程中采用并行计算加速;
步骤四:根据求得射线的几何弹射结果,对多次弹射线利用几何光学法跟踪射线的幅度,相位和极化,对于最后一次弹射线利用物理光学法求出散射点的远场散射强度;
步骤五:设置SAR雷达参数,利用目标三维模型求得地面阴影区域和地面杂波散射,将目标的散射系数和杂波的散射系数投影到斜平面;
步骤六:根据SAR参数,利用回波仿真算法对目标的全极化数据进行回波仿真,再进行成像处理,生成目标在不同雷达参数和目标姿态角度下的高分辨率全极化SAR雷达图像。
所述的三维复杂目标的合成孔径雷达图像仿真方法,其所述步骤二中,利用了Z-buffer算法加速了一次射线寻迹,同时完成了目标的消隐。
所述的三维复杂目标的合成孔径雷达图像仿真方法,其所述步骤三中,利用的空间八叉树结构加速了二次以上的射线寻迹,并且通过多核并行计算技术加速计算过程;其中,包括步骤:
(1)构建目标模型的空间八叉树数据结构:
A.取空间中的一长方体盒子,使之恰好包围住全部的三角面元;
B.将盒子依空间八个象限分成八个子盒子,对于每个子盒子判定其中包括的三角面元数目,并记录盒子的父子数据结构;
C.如果盒子中的三角面元数目大于预先的设定值,记录其为父亲节点;如果盒子中的三角面元数目小于预先的设定值,记录其为叶子节点和包含的面元信息;
D.循环执行B,完成返回;
(2)基于空间八叉树结构的射线寻迹:
A.判断射线是否于根结点相交,如果不相交结束;如果相交则执行B;
B.计算各子节点盒子的相交距离,依相交距离由小到大依次执行C;
C.判断各子节点是否为叶子节点,如果不是,递归执行B;如果是,判断是否存在相交三角面元,如果存在相交三角面元则完成本次寻迹,如果不存在相交三角面元则继续寻找。
所述的三维复杂目标的合成孔径雷达图像仿真方法,其所述步骤四中,利用了几何光学法和物理光学法结合的方法求解目标散射系数分布,并且将电磁强度寻迹和射线几何寻迹分离,使得完成一次全极化计算仅需一次射线寻迹过程。
所述的三维复杂目标的合成孔径雷达图像仿真方法,其所述步骤四中,采用了虚拟散射中心方法,定位出多次散射波的虚拟等效散射点,运算公式如下:
P virtual = ( P 1 + P N ) / 2 - r ^ ( Delay ) / 2
Delay = Σ i = 1 N - 1 | | P i - P i + 1 | |
其中,Pi为第i次弹射点的坐标,N为弹射次数,Delay是多次弹射引起的距离延时,为入射波的单位法向量;
多次散射的等效散射中心在Pvirtual处,而单次散射的散射中心在P1处,虚拟散射中心方法将电磁波在目标内部的多次弹射等效为目标散射中心的向后迟延,有利于后续的SAR回波仿真和成像算法的实施。
所述的三维复杂目标的合成孔径雷达图像仿真方法,其所述步骤五中,根据目标模型求取地面阴影,并将等效的虚拟散射中心和实际散射中心等效看待,均投影到SAR成像斜平面后,仿真回波并成像。
通过上述方法来实现的目标SAR图像仿真具有以下几点优势:
(1)利用了计算机仿真得到SAR数据,成本低廉;
(2)引入了SBR算法计算散射系数分布,能准确反应多次反射效应;
(3)利用了z-buffer算法和空间八叉树算法加速了射线寻迹过程,使得计算效率大为提高;
(4)能够快速准确的仿真出军事目标在不同姿态,不同SAR参数条件下的高分辨率,全极化SAR图像。
本发明解决了实验研究ATR数据源不足的问题,具有以下几点显著的优点:1.计算速度快;2.分辨率高;3.全极化的SAR图像数据仿真;4.计算精度高,能够准确的反映多次反射效应。
附图说明
图1是本发明的三维复杂目标的合成孔径雷达图像仿真方法流程图;
图2是本发明仿真方法读入M1A1坦克目标的三角面元模型示意图;
图3是本发明仿真方法的射线于三角面元弹射示意图;
图4是本发明仿真方法的空间八叉树数据结构示意图;
图5是本发明仿真方法的单次散射和多次散射示意图;
图6是本发明仿真方法的求取阴影区和斜平面投影示意图;
图7是本发明仿真方法的M1A1坦克高分辨率全极化仿真结果图。
具体实施方式
本发明的一种三维复杂目标的合成孔径雷达图像仿真方法,包括以下六个具体步骤:
步骤一:读入三维复杂目标的三角面元模型,并从等相位面发射一簇射线来模拟入射的平面电磁波,如入射参考点为pref,入射方向向量为
Figure G2009100871336D00041
入射参变量为t,则每条入射线r1可表示为:
r 1 = p ref + s ^ * t - - - ( 1 )
步骤二:利用z-buffer算法来完成入射电磁波的一次射线寻迹,对于存在一次弹射的入射线,保留其反射线,对于没有弹射的入射线,将其删除。其中z-buffer算法同时完成了目标消隐和射线寻迹,节约了计算量。
步骤三:根据目标面元模型,构建目标的空间八叉树结构,通过空间八叉树算法完成余下的射线寻迹过程,射线寻迹过程中采用并行计算加速。
步骤四:根据射线的几何弹射结果,对多次弹射线利用几何光学法(GO)跟踪射线的幅度,相位和极化,对于最后一次弹射线利用物理光学法(PO)求出散射点的远场散射强度。
步骤五:设置SAR雷达参数,利用目标三维模型求得地面阴影区域和地面杂波散射,将目标的散射系数和杂波的散射系数投影到斜平面。
步骤六:根据SAR参数,利用回波仿真算法对目标的全极化数据进行回波仿真,再进行成像处理,生成目标在不同雷达参数和目标姿态角度下的高分辨率全极化SAR雷达图像。
下面结合附图,对M1A1型主战坦克的仿真实例进一步说明本发明的具体实施方式。
本发明方法的整体实施流程如图1所示,其中包括了电磁计算模块和SAR图像仿真模块。具体流程分为六个步骤,其中前四个步骤是电磁仿真计算部分,后两个步骤是SAR图像仿真部分,下面结合算例具体说明。
第一步:读取目标的三角面元模型(如图2所示),目标是由空间中的NT个三角面元构成,其中第i个面元可由其三个顶点{Tai,Tbi,Tci}表示,则一个复杂目标可表示为:
{Tai,Tbi,Tci},i=1,2,3...NT    (2)
结合SAR成像参数,确定入射电磁波的等相位面和入射法矢量,在等相位面上等间距的发射一系列入射线模拟电磁波的入射,每条入射线由入射点和法矢量表示,如(1)式。
第二步:利用z-buffer算法来完成入射电磁波的一次射线寻迹,对于存在一次弹射的入射线,保留其反射线,对于没有弹射的入射线,将其删除。设入射线有NR条,目标由NT个三角面元组成,则完成全部的射线寻迹需要判断NR*NT次射线与三角形的相交运算,这是十分费时的。考虑到首次入射线的特殊性,即所有入射线的入射点等间隔的分布在等相位面上且其入射法向量相同,采用z-buffer算法可以大为节省计算量。以等相位面为XY平面,入射电磁波法向为Z平面,目标的坐标投影到新构建的坐标系中;比较Z坐标大小,保留Z坐标较小的三角面元实现目标的遮挡消隐;对于保留的三角面元,通过其XY坐标值索引对应的入射线完成射线寻迹,这样变盲目搜索为坐标索引的方式避免了NR*NT次比较运算。
第三步:利用空间八叉树算法完成二次以上的射线寻迹,即以第二步的一次反射线结果为入射线,继续射线寻迹步骤。考虑到经过了三维复杂目标的一次弹射后各条射线的参考点法矢量均不尽相同,二次以上的射线寻迹采用空间八叉树和并行计算的方法进行加速计算。由于每条射线的几何寻迹过程是完全独立的,所以该算法首先具有内在的并行性。其次为了避免NR*NT次的射线和三角形相交比较,引用了空间八叉树算法加速,理想情况下可将算法复杂度降低至NR*log8(NT)量级,下面简要叙述空间八叉树加速算法步骤:
(1)构建目标模型的空间八叉树数据结构:
A.取空间中的一长方体盒子,使之恰好包围住全部的三角面元;
B.将盒子依空间八个象限分成八个子盒子,对于每个子盒子判定其中包括的三角面元数目,并记录盒子的父子数据结构;
C.如果盒子中的三角面元数目大于预先的设定值,记录其为父亲节点;如果盒子中的三角面元数目小于预先的设定值,记录其为叶子节点和包含的面元信息;
D.循环执行B,完成返回。
(2)基于空间八叉树结构的射线寻迹:
A.判断射线是否于根结点相交,如果不相交结束;如果相交则执行B;
B.计算各子节点盒子的相交距离,依相交距离由小到大依次执行C;
C.判断各子节点是否为叶子节点,如果不是,递归执行B;如果是,判断是否存在相交三角面元,如果存在相交三角面元则完成本次寻迹,如果不存在相交三角面元则继续寻找。
假设空间存在10个三角面元,设定叶子盒子节点包含的三角面元个数不超过2个,则生成的空间八叉树数据结果由图4所示。
第四步:根据射线的几何弹射结果,对多次弹射线利用几何光学法(GO)跟踪射线的幅度,相位和极化,对于最后一次弹射线利用物理光学法(PO)求出散射点的远场散射强度。
为了避免不必要的运算,对于全极化的SAR图像仿真采取了一次射线追踪,两次电磁强度跟踪和四次最终远场散射相结合的计算方式,最大限度的避免了计算冗余。当射线跟踪结束后,根据几何光学法(GO)电场强度满足以下的迭代关系:
E → ( r i + 1 - ) = ( DF ) i ( Γ = ) i E → ( r i - ) e - j ( phase ) - - - ( 3 )
其中
Figure G2009100871336D00072
分别为第i+1和第i次弹射线的电场强度,(DF)i
Figure G2009100871336D00074
分别为第i次弹射的扩散系数和并矢反射系数,phase为距离相位项,j为单位虚数。若第i次弹射线的两个主曲率半径为ρ1,2 i,第i次弹射线的弹射距离为s,则(DF)i可由下式计算:
( DF ) i = ρ 1 i ρ 2 i ( ρ 1 i + s ) ( ρ 2 i + s ) - - - ( 4 )
在平面波入射假设下,初始化入射线的主曲率半径为 ρ 1,2 0 = ∞ , 如果入射点处目标的曲率半径为ρ1,2 t,入射角为θ1,入射线和目标两个主方向
Figure G2009100871336D00077
Figure G2009100871336D00078
的夹角分别为
Figure G2009100871336D00079
(图3),则弹射线的主曲率半径满足以下迭代关系:
1 ρ 1,2 i + 1 = 1 ρ 1,2 i + 1 ρ ′ cos θ 1 ± 1 ( ρ ′ ) 2 cos 2 θ 1 - 4 ρ 1 t ρ 2 t - - - ( 5 )
记弹射线在弹射点前后的电场分量分别为
Figure G2009100871336D000713
Figure G2009100871336D000714
入射电场
Figure G2009100871336D000715
分解为垂直入射分量和水平入射分量,则有:
E → ( 1 - ) = ( E → i · φ ^ c i ) φ ^ c i + ( E → i · θ ^ c i ) θ ^ c i - - - ( 7 )
E → ( 1 + ) = Γ ( E → i · φ ^ c i ) φ ^ c r + Γ ‾ ( E → i · θ ^ c i ) θ ^ c r - - - ( 8 )
其中
Figure G2009100871336D000718
Figure G2009100871336D000719
分别为局部坐标系中的TE和TM电磁波分量的单位法向量,对于理想导体而言,Γ=-1,Γ=1。
若最后一个弹射点处的磁感强度为
Figure G2009100871336D000720
根据物理光学近似,表面感应电流为 J → = 2 n ^ × H → i , 其中
Figure G2009100871336D000722
为表面单位法矢量,则远场散射的电场强度为:
Es=-jkZNt    (9)
其中Z为波阻抗真空条件下为120π,k为波数,Nt为:
N t = e - jkr 4 πr ∫ J ( r ′ ) e jk r ′ ( r - r ′ ) dS ′ | t - - - ( 10 )
t表示取传播方向的切向,r,r′分别为场点和源点位置矢量,dS′为积分面元,J(r′)为r′处的表明感应电流。通过分别计算每条射线对后向散射强度的贡献,可得出散射系数的三维分布:
γ ps / pi ( r ′ ) = E ps s E pi i - - - ( 11 )
式中pi,ps分别表示入射和散射场的极化取向,γps/pi(r′)为r′处的散射系数,Eps s和Epi i分别为入射和最终散射的电场强度。需要指出的是,在计算PO远场积分前要考察最后弹射点是否可以被入射方向可视,不可见的弹射线必须忽略。
对于单次散射情况,散射中心在P1处,即在目标的物理表面上;对于多次散射情况,采用了虚拟散射中心VSP(Virtual Scattering Point)方法,定位出多次散射波的虚拟等效散射点,其中Pi为第i次弹射点的坐标,N为弹射次数,Delay是多次弹射引起的距离延时,为入射波的单位法向量:
P virtual = ( P 1 + P N ) / 2 - r ^ ( Delay ) / 2 - - - ( 12 )
Delay = Σ i = 1 N - 1 | | P i - P i + 1 | | - - - ( 13 )
多次散射的等效散射中心在上述定义的Pvirtual处,而单次散射的散射中心在P1处,如图5所示。VSP方法将电磁波在目标内部的多次弹射等效为目标散射中心的向后迟延,有利于后续的SAR回波仿真和成像算法的实施。
第五步:设置SAR雷达参数,利用目标三维模型求得地面阴影区域和地面杂波散射,其中照明区域的杂波散射系数的幅度服从瑞利分布,相位服从均匀分布(参见图6)。然后将目标的散射系数和杂波的散射系数投影到斜平面,需要指出的是,对于第四步得到的虚拟散射点的结果,在SAR图像仿真过程中将和实际散射中心RSP(Real Scattering Point)同等看待。
第六步:根据SAR参数,利用回波仿真算法对目标的全极化数据进行回波仿真,再进行成像处理,生成目标在不同雷达参数和目标姿态角度下的高分辨率全极化SAR雷达图像。图7显示了利用本发明的方法仿真得到的0.1m*0.1m分辨率,M1A1主战坦克的高分辨率全极化的SAR图像,其中,左上VV;右上VH;左下HV;右下HH。

Claims (3)

1.一种三维复杂目标的合成孔径雷达图像仿真方法,其特征在于,包括如下步骤:
步骤一:读入三维复杂目标的三角面元模型,并从等相位面发射一簇射线来模拟入射的平面电磁波;
步骤二:利用z-buffer算法来完成入射电磁波的一次射线寻迹,对于存在一次弹射的入射线,保留其反射线,对于没有弹射的入射线,将其删除;
步骤三:根据目标面元模型,构建目标的空间八叉树结构,通过空间八叉树算法完成余下的射线寻迹过程,射线寻迹过程中采用并行计算加速;
步骤四:根据求得射线的几何弹射结果,对多次弹射线利用几何光学法跟踪射线的幅度,相位和极化,对于最后一次弹射线利用物理光学法求出散射点的远场散射强度;
步骤五:设置SAR雷达参数,利用目标三维模型求得地面阴影区域和地面杂波散射,将目标的散射系数和杂波的散射系数投影到斜平面;
步骤六:根据SAR参数,利用回波仿真算法对目标的全极化数据进行回波仿真,再进行成像处理,生成目标在不同雷达参数和目标姿态角度下的高分辨率全极化SAR雷达图像;
其中,所述步骤三中,利用的空间八叉树结构加速了二次以上的射线寻迹,并且通过多核并行计算技术加速计算过程;其中,包括步骤:
(1)构建目标模型的空间八叉树数据结构:
A.取空间中的一长方体盒子,使之恰好包围住全部的三角面元;
B.将盒子依空间八个象限分成八个子盒子,对于每个子盒子判定其中包括的三角面元数目,并记录盒子的父子数据结构;
C.如果盒子中的三角面元数目大于预先的设定值,记录其为父亲节点;如果盒子中的三角面元数目小于预先的设定值,记录其为叶子节点和包含的面元信息;
D.循环执行B,完成返回;
(2)基于空间八叉树结构的射线寻迹:
A.判断射线是否于根结点相交,如果不相交结束;如果相交则执行B;
B.计算各子节点盒子的相交距离,依相交距离由小到大依次执行C;
C.判断各子节点是否为叶子节点,如果不是,递归执行B;如果是,判断是否存在相交三角面元,如果存在相交三角面元则完成本次寻迹,如果不存在相交三角面元则继续寻找;
所述步骤四中,利用了几何光学法和物理光学法结合的方法求解目标散射系数分布,并且将电磁强度寻迹和射线几何寻迹分离,使得完成一次全极化计算仅需一次射线寻迹过程;
所述步骤四中,采用了虚拟散射中心方法,定位出多次散射波的虚拟等效散射点,运算公式如下:
P virtual = ( P 1 + P N ) / 2 - r ^ ( Delay ) / 2
Delay = Σ i = 1 N - 1 | | P i - P i + 1 | |
其中,Pi为第i次弹射点的坐标,N为弹射次数,Delay是多次弹射引起的距离延时,
Figure FSB00000800987900023
为入射波的单位法向量;
多次散射的等效散射中心在Pvirtual处,而单次散射的散射中心在P1处,虚拟散射中心方法将电磁波在目标内部的多次弹射等效为目标散射中心的向后迟延,有利于后续的SAR回波仿真和成像算法的实施。
2.根据权利要求1所述的三维复杂目标的合成孔径雷达图像仿真方法,其特征在于,所述步骤二中,利用了Z-buffer算法加速了一次射线寻迹,同时完成了目标的消隐。
3.根据权利要求1所述的三维复杂目标的合成孔径雷达图像仿真方法,其特征在于,所述步骤五中,根据目标模型求取地面阴影,并将等效的虚拟散射中心和实际散射中心等效看待,均投影到SAR成像斜平面后,仿真回波并成像。
CN2009100871336A 2009-06-10 2009-06-10 一种三维复杂目标的合成孔径雷达图像仿真方法 Active CN101923166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100871336A CN101923166B (zh) 2009-06-10 2009-06-10 一种三维复杂目标的合成孔径雷达图像仿真方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100871336A CN101923166B (zh) 2009-06-10 2009-06-10 一种三维复杂目标的合成孔径雷达图像仿真方法

Publications (2)

Publication Number Publication Date
CN101923166A CN101923166A (zh) 2010-12-22
CN101923166B true CN101923166B (zh) 2012-11-14

Family

ID=43338205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100871336A Active CN101923166B (zh) 2009-06-10 2009-06-10 一种三维复杂目标的合成孔径雷达图像仿真方法

Country Status (1)

Country Link
CN (1) CN101923166B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176017A (zh) * 2011-01-28 2011-09-07 复旦大学 电大复杂体目标与粗糙面背景复合电磁散射数值仿真方法
CN102129523B (zh) * 2011-03-23 2013-04-24 南京理工大学 基于mda和mlssm的分析复杂目标电磁散射的方法
CN102854504B (zh) * 2011-06-30 2014-08-13 中国科学院电子学研究所 基于回波模拟算子的稀疏合成孔径雷达成像方法
CN103713284A (zh) * 2012-09-28 2014-04-09 中国航天科工集团第二研究院二O七所 一种基于sbr与po技术的强散射中心计算方法
CN104008217A (zh) * 2013-02-25 2014-08-27 北京市劳动保护科学研究所 面向大尺度复杂目标模型的电磁波阴影处理方法
CN103632036B (zh) * 2013-11-06 2017-01-04 北京环境特性研究所 目标的电磁热点分布图构建方法和系统
CN104865559A (zh) * 2014-02-12 2015-08-26 贾鑫 合成孔径雷达协同弹射式干扰方法及系统
CN103913733B (zh) * 2014-04-14 2016-06-15 中国科学院电子学研究所 极地冰川厚度探测方法
CN105844705B (zh) * 2016-03-29 2018-11-09 联想(北京)有限公司 一种三维虚拟对象模型生成方法及电子设备
CN105842698B (zh) * 2016-05-18 2018-07-20 西安电子科技大学 一种高分辨sar图像的快速仿真方法
CN106291549B (zh) * 2016-07-27 2019-02-15 中国科学院电子学研究所 一种金属多边形的合成孔径雷达图像仿真方法及其应用
CN106680812B (zh) * 2016-10-27 2019-04-09 西安空间无线电技术研究所 一种基于解析面元的微波关联成像仿真方法
CN107015224A (zh) * 2017-03-16 2017-08-04 河海大学 一种基于高频近似技术的三维目标sar成像仿真方法
CN107392996B (zh) * 2017-07-11 2020-08-14 中国科学院电子学研究所苏州研究院 一种基于虚拟现实技术的sar目标特性表征与显示方法
CN107272000B (zh) * 2017-07-20 2020-08-07 中国科学院电子学研究所 滑动散射中心方位向相位误差的计算方法
CN109901167B (zh) * 2019-03-28 2021-02-23 中国人民解放军战略支援部队航天工程大学 一种用于部件标记的isar成像仿真方法
CN111830500A (zh) * 2020-04-30 2020-10-27 南京理工大学 基于改进的sbr快速成像技术的海面舰船目标的雷达图像仿真方法
CN112799063B (zh) * 2020-12-25 2023-11-14 北京环境特性研究所 基于弹跳射线法的双站散射中心建模方法
CN114332440B (zh) * 2022-03-08 2022-05-17 南京雷电信息技术有限公司 采用stl格式3D模型反演生成目标SAR图像的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
冯越等.电离层对星载SAR矩形包络线性调频信号的影响.《遥感学报》.2004,第8卷(第5期),385-388. *
李幸等.一种基于最小二乘法的星载ScanSAR 滚动角迭代估计算法.《电子与信息学报》.2008,第30卷(第9期),2099-2102. *
李超等.雷达信号多路径影响分析软件设计.《电子测量技术》.2006,第29卷(第6期),32-35. *
段俊峰等.一种基于分布目标的PolSAR 法拉第旋转角和通道不平衡参量的估计方法.《电子与信息学报》.2008,第30卷(第9期),2069-2072. *
王一丁等.SAR辐射定标中的地物杂波抑制方法.《遥感学报》.2005,第9卷(第5期),544-549. *

Also Published As

Publication number Publication date
CN101923166A (zh) 2010-12-22

Similar Documents

Publication Publication Date Title
CN101923166B (zh) 一种三维复杂目标的合成孔径雷达图像仿真方法
CN103530469B (zh) 一种角反射器雷达截面积的计算方法
CN105842698B (zh) 一种高分辨sar图像的快速仿真方法
CN104865562A (zh) 基于混合模型的雷达非合作目标的识别方法
CN106680812B (zh) 一种基于解析面元的微波关联成像仿真方法
EP2887092A1 (en) Computing radar cross section
CN103593510B (zh) 基于互易性原理的粗糙面与目标复合电磁散射仿真方法
CN104459643A (zh) 一种舰船尾迹雷达回波仿真方法及系统
CN106872978A (zh) 一种复杂场景的电磁建模仿真方法
CN104050716A (zh) 一种海上多目标sar图像可视化建模方法
CN103439698B (zh) 获取雷达散射面积的方法
CN104318021A (zh) 用多种高频电磁散射对大型舰船目标进行电磁仿真的方法
CN110705058B (zh) 一种针对超电大尺寸规模目标的近场电磁散射仿真方法
CN105486180A (zh) 基于波束分解和局部照射的激光引信近场回波功率计算
Fan et al. OpenGL-based hybrid GO/PO computation for RCS of electrically large complex objects
CN103885040A (zh) 一种基于cpu-gpu异构计算的圆迹合成孔径雷达回波生成方法
CN103163509B (zh) 一种基于电磁散射的高频近似法的模拟合成孔径雷达
Zherdev et al. Object recognition using real and modelled SAR images
CN102880773A (zh) 一种非均匀媒质可视求迹散射分析方法
CN108562899B (zh) 高分辨极化sar目标图像快速仿真方法
CN104346488A (zh) 电大复杂外形金属目标混合建模及电磁散射快速仿真方法
CN110083904A (zh) 基于gpu加速的量子雷达散射截面计算方法
CN107356924B (zh) 针对凹腔类结构的sar图像仿真方法
Zhang et al. A Hybrid Parametric Scattering Model for an Object on a Dielectric Rough Surface
CN105095573A (zh) 一种射线追踪仿真方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant