CN101907452A - A calibration device and method for sinusoidal mechanism in ultra-high vacuum environment - Google Patents
A calibration device and method for sinusoidal mechanism in ultra-high vacuum environment Download PDFInfo
- Publication number
- CN101907452A CN101907452A CN201010222823.0A CN201010222823A CN101907452A CN 101907452 A CN101907452 A CN 101907452A CN 201010222823 A CN201010222823 A CN 201010222823A CN 101907452 A CN101907452 A CN 101907452A
- Authority
- CN
- China
- Prior art keywords
- prism
- sine
- angle
- sine mechanism
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000005259 measurement Methods 0.000 claims description 18
- 238000006073 displacement reaction Methods 0.000 claims description 15
- 230000001737 promoting effect Effects 0.000 claims 1
- 230000005469 synchrotron radiation Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
Images
Landscapes
- Particle Accelerators (AREA)
Abstract
Description
技术领域technical field
本发明涉及正弦机构标定领域,特别是一种用于超高真空环境下正弦机构标定装置及方法。The invention relates to the field of sinusoidal mechanism calibration, in particular to a sinusoidal mechanism calibration device and method in an ultra-high vacuum environment.
背景技术Background technique
在各类科学工程中,如大型同步辐射光束线系统中,在超高真空环境下正弦机构的标定是实现角度转动部件的关键技术。以往在大气中已标定的正弦机构,工作在超高真空环境下时,由压力等因素所致,造成标定结果发生改变,降低工作质量。由于缺少在超高真空环境下对正弦机构进行实时监测、标定的方法和装置,上述问题并没有得到很好的解决。因此,研制出能在超高真空环境下对正弦机构进行实时监测、标定的方法和装置势在必行。In various scientific projects, such as large-scale synchrotron radiation beamline systems, the calibration of sinusoidal mechanisms in ultra-high vacuum environments is a key technology to realize angular rotation components. The sinusoidal mechanism that has been calibrated in the atmosphere in the past, when working in an ultra-high vacuum environment, is caused by factors such as pressure, which causes changes in the calibration results and reduces the quality of work. Due to the lack of methods and devices for real-time monitoring and calibration of sinusoidal mechanisms in an ultra-high vacuum environment, the above problems have not been well resolved. Therefore, it is imperative to develop a method and device capable of real-time monitoring and calibration of sinusoidal mechanisms in an ultra-high vacuum environment.
发明内容Contents of the invention
针对上述情况,为解决现有技术之缺陷,本发明的目的就在于提供一种用于超高真空环境下正弦机构标定装置及方法,可以有效解决在超真空环境下不能对正弦机构进行实时监测和标定的问题。In view of the above situation, in order to solve the defects of the prior art, the object of the present invention is to provide a device and method for calibrating sinusoidal mechanisms in an ultra-high vacuum environment, which can effectively solve the problem that the sinusoidal mechanism cannot be monitored in real time in an ultra-vacuum environment. and calibration issues.
本发明解决技术问题所采用的技术方案是:一种用于超高真空环境下正弦机构标定装置包括高精度光电自准直仪、自准直仪支架、多面体角棱镜、棱镜架、正弦机构、真空镜箱和支撑平台,高精度光电自准直仪装在自准直仪支架上,其发光孔对准真空镜箱上的观察窗,真空镜箱放置在支撑平台上,正弦机构装在真空镜箱里面,多面体角棱镜通过棱镜架固定在正弦机构的正弦杆的一端,多面体角棱镜的第一棱镜面垂直高精度光电自准直仪轴线,高精度光电自准直仪放置在真空镜箱的外面,所说的多面体角棱镜的第二棱镜面与第一棱镜面之间、第三棱镜面与第二棱镜面之间、第四棱镜面与第三棱镜面之间均相差两度角。The technical solution adopted by the present invention to solve the technical problem is: a sine mechanism calibration device used in an ultra-high vacuum environment includes a high-precision photoelectric autocollimator, an autocollimator bracket, a polyhedral corner prism, a prism frame, a sine mechanism, Vacuum mirror box and support platform, the high-precision photoelectric autocollimator is installed on the autocollimator bracket, and its light-emitting hole is aligned with the observation window on the vacuum mirror box, the vacuum mirror box is placed on the support platform, and the sinusoidal mechanism is installed on the vacuum mirror box. Inside the mirror box, the polyhedral corner prism is fixed on one end of the sine rod of the sine mechanism through the prism frame, the first prism surface of the polyhedron corner prism is perpendicular to the axis of the high-precision photoelectric autocollimator, and the high-precision photoelectric autocollimator is placed in the vacuum mirror box The outside of said polyhedral corner prism is between the second prism face and the first prism face, between the third prism face and the second prism face, and between the fourth prism face and the third prism face.
本发明的用于超高真空环境下正弦机构标定装置的应用方法,具体步骤如下:The application method of the present invention for the calibration device of the sinusoidal mechanism in the ultra-high vacuum environment, the specific steps are as follows:
1)调节转台,使光电自准直仪发出的平行光垂直照射多面体角棱镜第一棱镜面,即高精度光电自准直仪读数为“0”;1) Adjust the turntable so that the parallel light emitted by the photoelectric autocollimator vertically illuminates the first prism surface of the polyhedral corner prism, that is, the reading of the high-precision photoelectric autocollimator is "0";
2)通过精密滑台组件的驱动机构,推动正弦杆转动,带动多面体角棱镜旋转,当平行光垂直照射在角棱镜第二棱镜面时,正弦杆转过角度即为多面体角棱镜所标定的角度α1,同时记录高精度光电自准直仪读数及相应的线性编码器测量的直线位移h1,完成第1个角度的测量;2) Through the driving mechanism of the precision sliding table assembly, the sine rod is driven to rotate, and the polyhedral corner prism is driven to rotate. When the parallel light is vertically irradiated on the second prism surface of the corner prism, the angle through which the sine rod rotates is the angle calibrated by the polyhedron corner prism α 1 , simultaneously record the readings of the high-precision photoelectric autocollimator and the linear displacement h 1 measured by the corresponding linear encoder, and complete the measurement of the first angle;
3)继续转动正弦杆,当高精度光电自准直仪发出的平行光分别垂直照射在多面体角棱镜的第三棱镜面、第四棱镜面时,正弦杆转过α2、α3角,记录各自的自准直仪读数及相应的线性编码器测量的直线位移h2、h3,完成第2、第3个角度的测量;至此,已完成的3个角度的测量,作为一组单向测量;3) Continue to rotate the sine rod. When the parallel light emitted by the high-precision photoelectric autocollimator is vertically irradiated on the third prism surface and the fourth prism surface of the polyhedral corner prism, the sine rod rotates through the α 2 and α 3 angles, and records the respective The readings of the autocollimator and the linear displacement h 2 and h 3 measured by the corresponding linear encoder complete the measurement of the second and third angles; so far, the measurements of the three angles that have been completed are taken as a set of one-way measurements ;
4)重复上述步骤,完成多组测量;4) Repeat the above steps to complete multiple sets of measurements;
5)角度测量完成后,通过转动角度a与直线位移h及正弦机构杆长L之间的关系式:结合实际角度α1、α2、α3及直线位移h1、h2、h3得如下方程组:5) After the angle measurement is completed, through the relationship between the rotation angle a, the linear displacement h and the length L of the sine mechanism rod: Combining the actual angle α 1 , α 2 , α 3 and the linear displacement h 1 , h 2 , h 3 to get the following equations:
其中,h0为初始偏离位移,α0为初始偏离角度;由以上方程组,经数据处理,即求得L、h0、α0,实现正弦机构的标定。Among them, h 0 is the initial deviation displacement, α 0 is the initial deviation angle; from the above equations, after data processing, L, h 0 and α 0 are obtained to realize the calibration of the sinusoidal mechanism.
本发明可实现在超高真空环境下对正弦机构的实时标定,具有操作方便、结构简单、标定精度高以及成本低等优点,可广泛应用于同步辐射光束线工程中。The invention can realize the real-time calibration of the sinusoidal mechanism in an ultra-high vacuum environment, has the advantages of convenient operation, simple structure, high calibration precision and low cost, and can be widely used in synchrotron radiation beamline engineering.
附图说明Description of drawings
图1为本发明的一种用于超高真空环境下正弦机构标定装置的结构主视图。Fig. 1 is a structural front view of a sinusoidal mechanism calibration device used in an ultra-high vacuum environment according to the present invention.
图2为本发明的一种用于超高真空环境下正弦机构标定装置的俯视图。Fig. 2 is a top view of a sinusoidal mechanism calibration device used in an ultra-high vacuum environment according to the present invention.
图3为本发明的一种用于超高真空环境下正弦机构标定装置的多面体角棱镜的结构图。Fig. 3 is a structural diagram of a polyhedral corner prism used in a sinusoidal mechanism calibration device in an ultra-high vacuum environment according to the present invention.
图4为本发明的一种用于超高真空环境下正弦机构标定方法的原理图。FIG. 4 is a schematic diagram of a method for calibrating a sinusoidal mechanism in an ultra-high vacuum environment according to the present invention.
图中,1、第一棱镜面,2、第二棱镜面,3、第三棱镜面,4、第四棱镜面,5、高精度光电自准直仪,6、多面体角棱镜,7、棱镜架,8、正弦杆,9、第一挂钉,10、拉簧,11、第二挂钉,12、正弦机构推杆,13、精密滑台组件,14、线性编码器,15、转台,16、支架,17、支撑平台,18、自准直仪支架,19、真空镜箱,20、观察窗。In the figure, 1, the first prism surface, 2, the second prism surface, 3, the third prism surface, 4, the fourth prism surface, 5, high-precision photoelectric autocollimator, 6, polyhedron corner prism, 7, prism frame , 8, sine rod, 9, the first peg, 10, tension spring, 11, the second peg, 12, sine mechanism push rod, 13, precision sliding table assembly, 14, linear encoder, 15, turntable, 16 , bracket, 17, support platform, 18, autocollimator bracket, 19, vacuum mirror box, 20, observation window.
具体实施方式Detailed ways
以下结合附图对本发明的做详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings.
由图1、2所示,本发明的一种用于超高真空环境下正弦机构标定装置包括包括高精度光电自准直仪5、自准直仪支架18、多面体角棱镜6、棱镜架7、正弦机构、真空镜箱19和支撑平台17,高精度光电自准直仪5装在自准直仪支架18上,其发光孔对准真空镜箱19上的观察窗20,真空镜箱19放置在支撑平台17上,正弦机构装在真空镜箱19里面,多面体角棱镜6通过棱镜架7固定在正弦机构的正弦杆8的一端,多面体角棱镜的第一棱镜面1垂直高精度光电自准直仪5轴线,高精度光电自准直仪5放置在真空镜箱19的外面,所说的多面体角棱镜6的第二棱镜面2与第一棱镜面1之间、第三棱镜面3与第二棱镜面2之间、第四棱镜面4与第三棱镜面3之间均相差两度角。Shown in Fig. 1, 2, a kind of calibration device for sinusoidal mechanism of the present invention comprises high-precision
所说的正弦杆8与正弦机构推杆12相连的一端装有第一挂钉9,正弦机构推杆12与正弦杆8相连的一端装有第二挂钉11,第一挂钉9和第二挂钉11通过拉簧10相连,正弦机构推杆12垂直支架16转轴中心线。The end that said
所说的正弦机构还包括精密滑台组件13,精密滑台组件13位于支撑平台17下面,与正弦机构推杆12的另一端相连,精密滑台组件13内装有线性编码器14。Said sinusoidal mechanism also includes a
由图3、4所示,本发明的一种用于超高真空环境下正弦机构标定方法具体步骤如下:As shown in Figures 3 and 4, the specific steps of a method for calibrating a sinusoidal mechanism in an ultra-high vacuum environment according to the present invention are as follows:
1)调节转台15,使光电自准直仪发出的平行光垂直照射多面体角棱镜6第一棱镜面1,即自准直仪读数为“0”;1) Adjust the
2)通过精密滑台组件13的驱动机构,推动正弦杆8转动,带动多面体角棱镜6旋转,当平行光垂直照射在角棱镜第二棱镜面2时,正弦杆8转过角度即为多面体角棱镜6所标定的角度α1,同时记录高精度光电自准直仪5读数及相应的线性编码器14测量的直线位移h1,完成第1个角度的测量;2) Through the driving mechanism of the
3)继续转动正弦杆8,当高精度光电自准直仪5发出的平行光分别垂直照射在多面体角棱镜6的第三棱镜面3、第四棱镜面4,正弦杆8转过α2、α3角,记录各自的自准直仪5读数及相应的线性编码器14测量的直线位移h2、h3,完成第2、第3个角度的测量;至此,已完成的3个角度的测量,作为一组单向测量;3) Continue to rotate the
4)重复上述步骤,完成多组测量;4) Repeat the above steps to complete multiple sets of measurements;
5)角度测量完成后,通过转动角度a与直线位移h及正弦机构杆长L之间的关系式:结合实际角度α1、α2、α3及直线位移h1、h2、h3得如下方程组:5) After the angle measurement is completed, through the relationship between the rotation angle a, the linear displacement h and the length L of the sine mechanism rod: Combining the actual angle α 1 , α 2 , α 3 and the linear displacement h 1 , h 2 , h 3 to get the following equations:
其中,h0为初始偏离位移,α0为初始偏离角度。由以上方程组,经数据处理,即求得L、h0、α0,实现正弦机构的标定。Among them, h 0 is the initial deviation displacement, and α 0 is the initial deviation angle. From the above equations, after data processing, L, h 0 , α 0 are obtained to realize the calibration of the sinusoidal mechanism.
在使用本装置对正弦机构标定是,本发明的真空镜箱内部为超真空环境。When using the device to calibrate the sinusoidal mechanism, the inside of the vacuum mirror box of the present invention is an ultra-vacuum environment.
本发明可实现在超高真空环境下对正弦机构的实时标定,具有操作方便、结构简单、标定精度高及成本低等优点,可广泛应用于同步辐射光束线工程中。The invention can realize the real-time calibration of the sinusoidal mechanism in an ultra-high vacuum environment, has the advantages of convenient operation, simple structure, high calibration precision and low cost, and can be widely used in synchrotron radiation beamline projects.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010222823.0A CN101907452A (en) | 2010-07-12 | 2010-07-12 | A calibration device and method for sinusoidal mechanism in ultra-high vacuum environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010222823.0A CN101907452A (en) | 2010-07-12 | 2010-07-12 | A calibration device and method for sinusoidal mechanism in ultra-high vacuum environment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101907452A true CN101907452A (en) | 2010-12-08 |
Family
ID=43262977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010222823.0A Pending CN101907452A (en) | 2010-07-12 | 2010-07-12 | A calibration device and method for sinusoidal mechanism in ultra-high vacuum environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101907452A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102798409A (en) * | 2011-05-23 | 2012-11-28 | 长春翔翼科技有限公司 | Calibration device of absolute type shaft angle encoder |
CN104483741A (en) * | 2014-11-20 | 2015-04-01 | 中国工程物理研究院激光聚变研究中心 | Method for accurately setting optical axis of wedge lens |
CN104483757A (en) * | 2014-11-20 | 2015-04-01 | 中国工程物理研究院激光聚变研究中心 | Precise axis fixing method for abaxial non-spherical element |
CN105403977A (en) * | 2014-08-28 | 2016-03-16 | 上海微电子装备有限公司 | Prism centering adjustment mechanism |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004117232A (en) * | 2002-09-27 | 2004-04-15 | Jeol Ltd | Stage position measuring device for scanning electronic microscope |
CN101153819A (en) * | 2006-09-29 | 2008-04-02 | 中国科学院长春光学精密机械与物理研究所 | A Calibration Method for Spectral Tuning Angle of Variable Inclusion Angle Monochromator |
CN201318988Y (en) * | 2008-11-25 | 2009-09-30 | 河南平高电气股份有限公司 | Indexing head calibration device |
-
2010
- 2010-07-12 CN CN201010222823.0A patent/CN101907452A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004117232A (en) * | 2002-09-27 | 2004-04-15 | Jeol Ltd | Stage position measuring device for scanning electronic microscope |
CN101153819A (en) * | 2006-09-29 | 2008-04-02 | 中国科学院长春光学精密机械与物理研究所 | A Calibration Method for Spectral Tuning Angle of Variable Inclusion Angle Monochromator |
CN201318988Y (en) * | 2008-11-25 | 2009-09-30 | 河南平高电气股份有限公司 | Indexing head calibration device |
Non-Patent Citations (1)
Title |
---|
《光学精密工程》 20100131 吴坤等 SX-700单色器光栅正弦机构转角重复精度的模拟分析与测量 45-51页 1-5 第18卷, 第1期 2 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102798409A (en) * | 2011-05-23 | 2012-11-28 | 长春翔翼科技有限公司 | Calibration device of absolute type shaft angle encoder |
CN105403977A (en) * | 2014-08-28 | 2016-03-16 | 上海微电子装备有限公司 | Prism centering adjustment mechanism |
CN104483741A (en) * | 2014-11-20 | 2015-04-01 | 中国工程物理研究院激光聚变研究中心 | Method for accurately setting optical axis of wedge lens |
CN104483757A (en) * | 2014-11-20 | 2015-04-01 | 中国工程物理研究院激光聚变研究中心 | Precise axis fixing method for abaxial non-spherical element |
CN104483741B (en) * | 2014-11-20 | 2017-07-18 | 中国工程物理研究院激光聚变研究中心 | Wedge-shaped lens precision axis fixation method |
CN104483757B (en) * | 2014-11-20 | 2018-01-12 | 中国工程物理研究院激光聚变研究中心 | Off-axis aspheric surface element precision axis fixation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101797702B (en) | Device for measuring position precision of digital control turntable by using laser angle interferometer and measuring method | |
CN103486998B (en) | Autocollimator indication error detection method | |
CN100504301C (en) | Method and device for converting measurement reference of astronomical sensor | |
CN101797701B (en) | On-line non-contact laser stereo scanning detection device for internal screw threads of tubing coupling | |
CN105277129B (en) | A kind of contactless gauge measuring system of laser range sensor dynamic | |
CN106840080B (en) | 3, space plane calibration manipulator and resetting are from checking method and calibration method | |
CN102768028A (en) | Method and device for online in-situ measurement with single joint arm | |
CN107167078A (en) | A kind of multiple degrees of freedom laser displacement sensor system and spiral bevel gear measuring method | |
CN102721393B (en) | On-site self-calibration method for measurement system error of precise rotary table | |
CN101629816A (en) | Complex revolving body contour measuring method and device capable of eliminating part positioning error | |
CN101907452A (en) | A calibration device and method for sinusoidal mechanism in ultra-high vacuum environment | |
CN104677280A (en) | Swing arm type contourgraph rotating shaft space state calibration method | |
CN103630096A (en) | Zero position calibration method for articulated arm type coordinate measuring machine | |
CN103344195B (en) | Swing arm type contourgraph measuring head alignment calibration device with rotary sensor | |
CN103245293B (en) | Adopt the device and method of laser rotary mirror scanning survey annular wheel pattern | |
CN102353539A (en) | Photoelectric measuring machine for precision transmission chain | |
CN203745365U (en) | On-line glass color and reflectivity measurement system | |
CN108469226B (en) | On-site calibration device of plumb line coordinatograph | |
CN201318988Y (en) | Indexing head calibration device | |
JPS608701A (en) | Portable inspecting and measuring device inspecting tooth form and tooth race of gear and inspecting and measuring method | |
CN101655356A (en) | Graduation device for detecting surface shape of aspheric optical element | |
CN105627945A (en) | Device and method of measuring deviation between center of aspheric element and center of outer circle | |
CN205898019U (en) | High measuring device of high accuracy plant trunk | |
CN109959350A (en) | The detection method and device of prism right angle working face verticality | |
CN103278107A (en) | Device and method for measuring appearance of gear by laser scanning raster compensation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20101208 |