CN101815855B - 车辆驱动单元的控制装置 - Google Patents

车辆驱动单元的控制装置 Download PDF

Info

Publication number
CN101815855B
CN101815855B CN200880110226XA CN200880110226A CN101815855B CN 101815855 B CN101815855 B CN 101815855B CN 200880110226X A CN200880110226X A CN 200880110226XA CN 200880110226 A CN200880110226 A CN 200880110226A CN 101815855 B CN101815855 B CN 101815855B
Authority
CN
China
Prior art keywords
torque
actuator
future
combustion engine
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880110226XA
Other languages
English (en)
Other versions
CN101815855A (zh
Inventor
副岛慎一
加古纯一
大塚郁
田中宏幸
河井圭助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101815855A publication Critical patent/CN101815855A/zh
Application granted granted Critical
Publication of CN101815855B publication Critical patent/CN101815855B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/22Control of the engine output torque by keeping a torque reserve, i.e. with temporarily reduced drive train or engine efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • F02D41/307Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes to avoid torque shocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/046Energy or power necessary for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

本发明涉及车辆驱动单元的控制装置,能够使主致动器和副致动器准确地协动,同时尽可能地抑制副致动器的介入并能够实现预期的转矩。作为发动机的转矩调整的预约相关的预约信息,取得发动机输出的转矩的将来目标值和将来目标值的实现定时Te。接着,在使主致动器(节气门)动作进行了转矩调整的情况下,根据当前的内燃机运行状态计算实现将来目标值所需要的所需时间。然后,在比实现定时Te提前了所需时间的定时Tt,朝向实现将来目标值而开始主致动器的动作。与之并行,在从主致动器的动作开始Tt到实现定时Te为止的期间,使副致动器(点火装置)动作,使得抵消主致动器的动作相伴而生的转矩变化。

Description

车辆驱动单元的控制装置
技术领域
本发明涉及一种以内燃机为动力装置的车辆驱动单元的控制装置,更加详细而言,涉及具有相互独立能够调整内燃机的转矩的主致动器和副致动器。
背景技术
作为机动车等的车辆驱动单元的动力装置使用内燃机。如果是火花点火式的内燃机,则作为用于调整其转矩的致动器具有节气门和点火装置。采用节气门通过吸入空气量能够调整转矩,点火装置通过点火正时能够调整转矩。
各致动器分别有利有弊。例如,以节气门和点火装置为例,以节气门为基准时的点火装置的利处在于转矩对于动作的响应性优异。但是,就点火装置而言,也有对于燃料经济性和/或排气性能或爆震性能等的影响较大这样的弊端。因此,为了既较高地维持燃料经济性等的车辆驱动单元所要求的基本性能又实现预期的转矩,必需使各致动器配合各自的特性而适当动作。
以往,作为使特性不同的两个致动器协动而进行转矩调整的技术,已知例如日本特开平6-207571号公报所公开的技术。在此所公开的技术中,通过使节气门和点火装置协动,使内燃机的转矩追随变速动作时的目标转矩的急速增大。更加详细而言,在变速动作时,在增大目标转矩之前打开节气门,先于目标转矩值的增大而使吸入空气量增大。另外,在打开节气门的同时使点火正时延迟,从而抵消与吸入空气量的增大相伴的转矩变化。接着,从增大目标转矩的时刻开始,使吸入空气量进一步增大,并且使延迟了的点火正时返回。
发明内容
但是,日本特开平6-207571号公报所记载的技术,在兼顾目标转矩的实现性能和燃料经济性方面仍有改善的余地,其原因如下说明。
日本特开平6-207571号公报所记载的技术,通过在使吸入空气量增大的同时延迟点火正时,防止转矩在目标转矩增大之前增大。但是,点火正时的延迟导致了燃料经济性的恶化。因此,优选,尽可能缩短先于目标转矩的增大而使吸入空气量增大的超前时间、即由吸入空气量的增大而产生的转矩变化被点火正时抵消的时间。
关于这一点,在日本特开平6-207571号公报中,关于上述的超前时间如何决定未作任何记载,还有也没有相关的暗示。因此,由于实际上设定的超前时间而无用地过长延迟点火正时,可能会使燃料经济性恶化。相反,因为超前时间过短,也可能会由于吸入空气量的不足而无法实现目标转矩。
根据与日本特开平6-207571号公报所记载的技术相关的上述课题,能够发现以内燃机为动力装置的车辆驱动单元一般相通的如下课题。
在车辆驱动单元中存在多个能够用于内燃机的转矩调整的致动器。节气门和/或点火装置不过是其中的一个例子,此外通过燃料喷射装置(空燃比调整装置)、气门升程量可变装置、EGR装置或可变压缩比装置等也能够进行转矩调整。在关注这些多个致动器中的两个时,可将对于燃料经济性等的车辆驱动单元的性能的影响较小的一方视为主致动器,可将对它们的影响虽大但转矩对于动作的响应性优异的一方视为副致动器。在日本特开平6-207571号公报所记载的技术中,节气门是主致动器而点火装置是副致动器。
在为了实现预期的转矩而使主致动器和副致动器协动的情况下,可采用的各致动器的动作模式有多种。但是,在也考虑对车辆驱动单元的性能的影响的情况下,优选的动作模式限于一种。那就是尽可能地抑制副致动器的介入的动作模式,如果能够使主致动器和副致动器以这样的动作模式准确地协动,就能够既维持车辆驱动单元的高性能又实现预期的转矩。
本发明,是为解决上述那样的课题而完成的,其目的在于提供一种车辆驱动单元的控制装置,其能够使主致动器和副致动器准确地协动、同时尽可能地抑制副致动器的介入而能够实现预期的转矩。
第一发明,为了达成上述的目的,是一种车辆驱动单元的控制装置,所述车辆驱动单元以内燃机为动力装置,其特征在于,包括:
车辆控制机构,通过调整所述内燃机输出的转矩来进行与车辆的驱动状态相关的控制;
主致动器,用于所述内燃机的转矩调整;
副致动器,是独立于所述主致动器而用于所述内燃机的转矩调整的致动器,与所述主致动器相比转矩对于动作的响应性高;
预约信息获取机构,从所述车辆控制机构受理对所述内燃机的转矩调整的预约,至少获取所述内燃机输出的转矩的将来目标值和所述将来目标值的实现定时作为预约信息;
所需时间计算机构,在使所述主致动器动作而进行了所述内燃机的转矩调整时,根据当前的内燃机运行状态计算实现所述将来目标值所需的所需时间;
主致动器控制机构,在比所述实现定时提前所述所需时间的定时,为了所述将来目标值的实现而开始所述主致动器的动作;和
副致动器控制机构,在从所述主致动器的动作开始起到所述实现定时为止的期间,使所述副致动器动作,使得抵消伴随所述主致动器的动作而产生的转矩变化。
第二发明,在第一发明中,所述的车辆驱动单元的控制装置,其特征在于,
由所述预约信息获取机构获取的预约信息中包括转矩的调整开始定时和直到达到所述将来目标值为止的转矩的时间变化率,
所述主致动器控制机构,在所述时间变化率是能够由所述主致动器实现的时间变化率时,从所述调整开始定时起开始所述主致动器的动作。
第三发明,在第一或第二发明中,所述的车辆驱动单元的控制装置,其特征在于,
包括判定直到所述实现定时为止的富余时间相对于所述所需时间是否足够的判定机构,
所述主致动器控制机构,在所述富余时间相对于所述所需时间不足时,迅速开始所述主致动器的动作,
所述副致动器控制机构,以所述富余时间相对于所述所需时间足够为条件使所述副致动器动作。
第四发明,在第一至第三发明中的任一中,所述的车辆驱动单元的控制装置,其特征在于,
所述内燃机是火花点火式的内燃机,
所述主致动器是调整所述内燃机的吸入空气量的致动器,
所述副致动器是调整所述内燃机的点火正时的致动器。
第五发明,在第四发明中,所述的车辆驱动单元的控制装置,其特征在于,
从所述车辆控制机构对于所述内燃机所预约的转矩调整是转矩的增加调整。
第六发明,为了达成上述的目的,是一种车辆驱动单元的控制装置,所述车辆驱动单元以内燃机为动力装置,其特征在于,包括:
转矩消耗要素,消耗所述内燃机输出的转矩;
主致动器,用于所述内燃机的转矩调整;
副致动器,是独立于所述主致动器而用于所述内燃机的转矩调整的致动器,与所述主致动器相比转矩对于动作的响应性高;
将来目标值设定机构,受理来自所述转矩消耗要素的转矩消耗量的变更许可的要求,根据变更后的推定转矩消耗量设定所述内燃机输出的转矩的将来目标值;
所需时间计算机构,在使所述主致动器动作而进行了所述内燃机的转矩调整时,根据当前的内燃机运行状态计算实现所述将来目标值所需的所需时间;
主致动器控制机构,为了所述将来目标值的实现而开始所述主致动器的动作;
许可机构,基于所述所需时间设定待机时间,在从所述主致动器的动作开始起经过了所述待机时间的定时,对于所述转矩消耗要素许可转矩消耗量的变更;和
副致动器控制机构,在从所述主致动器的动作开始起到对于所述转矩消耗要素给予转矩消耗量的变更许可为止的期间,使所述副致动器动作,使得抵消伴随所述主致动器的动作而产生的转矩变化。
第七发明,在第六发明中,所述的车辆驱动单元的控制装置,其特征在于,
包括延迟时间计算机构,所述延迟时间计算机构计算从对于所述转矩消耗要素许可转矩消耗量的变更起到实际完成变更为止的延迟时间,
将从所述所需时间中减去所述延迟时间而得到的时间设定为所述待机时间。
第八发明,在第六或第七发明中,所述的车辆驱动单元的控制装置,其特征在于,
所述内燃机是火花点火式的内燃机,
所述主致动器是调整所述内燃机的吸入空气量的致动器,
所述副致动器是调整所述内燃机的点火正时的致动器。
第九发明,在第八发明中,所述的车辆驱动单元的控制装置,其特征在于,
由所述转矩消耗要素所要求的转矩消耗量的变更许可,是转矩消耗量的增量许可。
采用第一发明,在受理内燃机的转矩调整的预约时,根据当前的内燃机运行状态计算实现该预约信息中包括的转矩的将来目标值所需要的所需时间(使主致动器动作而进行了内燃机的转矩调整的情况下的所需时间)。而且,在比预约的实现定时提前所需时间的定时,为了预约的将来目标值的实现而开始主致动器的动作。通过这样提前使主致动器动作,从而能够在按预约的实现定时实现按预约的转矩(将来目标值)。
而且,采用第一发明,与主致动器的动作并行,在从主致动器的动作开始起到预约的实现定时为止的期间,使副致动器动作,使得抵消伴随主致动器的动作而产生的转矩变化。通过这样使副致动器动作,从而能够抑制预约的实现定时前的不需要的转矩变化。另外,所述所需时间是为了在预约的实现定时实现将来目标值而没有过度不足的时间,副致动器在该所需时间内动作,所以副致动器的动作时间被抑制于必要最小限度。即,采用第一发明,能够既将副致动器的介入抑制于必要最小限度又能够实现预期的转矩。
采用第二发明,在直到达到将来目标值为止的转矩的时间变化率能够由主致动器的动作实现的情况下仅靠主致动器的动作来进行转矩调整,仅限于靠主致动器的动作不能实现的情况,通过副致动器介入进行转矩调整。这样,在预约信息中包括转矩的调整开始定时和直到达到将来目标值为止的转矩的时间变化率的情况下,基于这些协调控制主致动器和副致动器,从而能够既将副致动器的介入抑制于必要最小限度又能够以预期的时间变化率调整转矩。
采用第三发明,在直到预约的实现定时为止的富余时间相对于所述所需时间不足的情况下,通过迅速开始所述主致动器的动作,能够在可能的范围内在预约的实现定时实现将来目标值。另外,在这样富余时间短的状况下,由于使副致动器动作所产生的转矩变化的抑制效果并不大。因此,通过将富余时间足够作为副致动器的动作条件,从而能够防止副致动器的无用的动作。
采用第四发明,通过主致动器调整吸入空气量,从而能够不对燃料经济性和/或排气产生较大影响地调整转矩。另外,通过由副致动器调整点火正时,从而能够以高响应性调整转矩。通过如第一至第三发明的任一那样协调控制这些致动器,从而能够既将对燃料经济性和/或排气的影响抑制于最小限度又实现预期的转矩。
采用第五发明,通过以吸入空气量为主体而进行最小限度的点火延迟,能够实现向增大方向的转矩调整。具体而言,对于转矩的增加调整的预约,先于预约的实现定时增大吸入空气量。而且,在从吸入空气量的增大开始起到预约的实现定时为止的期间,延迟点火正时,使得抵消与吸入空气量的增大相伴而生的转矩增加。由此,能够将与点火正时的延迟相伴而生的燃料经济性的降低抑制于最小限度又按预期使转矩增大。
采用第六发明,在受理来自转矩消耗要素的转矩消耗量的变更许可的要求时,根据变更后的推定转矩消耗量设定转矩的将来目标值,根据当前的内燃机运行状态计算实现该将来目标值所需的所需时间(在使主致动器动作而进行了内燃机的转矩调整的情况下)。而且,在为了实现将来目标值而开始主致动器的动作,在经过了基于所述所需时间而设定的待机时间后,对于转矩消耗要素许可转矩消耗量的变更。通过这样对于转矩消耗量的变更许可使主致动器的动作先开始,从而能够在短时间内可靠地实现与变更后的转矩消耗量相匹配的转矩。
而且,采用第六发明,与主致动器的动作并行,在从主致动器的动作开始起到给予转矩消耗量的变更许可为止的期间,副致动器动作,使得抵消与主致动器的动作相伴而生的转矩变化。通过这样使副致动器动作,能够抑制转矩消耗量变更前的不需要的转矩变化。另外,所述待机时间被设定为对于实现与转矩消耗量相匹配的目标转矩不会过度不足,副致动器在该待机时间内动作,所以副致动器的动作被抑制于必要最小限度。即,采用第六发明,能够既将副致动器的介入抑制于必要最小限度又能够实现与在转矩消耗要素的转矩消耗量相匹配的转矩。
采用第七发明,考虑从许可转矩消耗量的变更起到实际完成变更为止的延迟时间而设定待机时间,所以能够抑制内燃机的输出转矩和由转矩消耗要素所产生的转矩消耗量的失衡,对于车辆驱动单元整体能够维持在预期的转矩。另外,通过使待机时间最优化,从而能够将副主动器的介入抑制于必要最小限度。
采用第八发明,通过主致动器调整吸入空气量,从而能够不会带给燃料经济性和/或排气较大影响地调整转矩。另外,通过副致动器调整点火正时,从而能够以高响应性调整转矩。通过像第六或第七发明那样协调控制这些致动器,从而能够既将对燃料经济性和/或排气的影响抑制于必要最小限度,又实现与转矩消耗量相应的预期的转矩。
采用第九发明,通过以吸入空气量的调整为主体,通过最小限度的点火延迟,能够实现伴随转矩消耗量的增量而产生的向增大方向的转矩调整。具体而言,对于转矩消耗量的变更许可的要求,在先行使吸入空气量增大之后给予变更许可。而且,在从吸入空气量的增大开始起到给予转矩消耗量的变更许可为止的期间,延迟点火正时,使得抵消伴随吸入空气量的增大而产生的转矩增量。由此,能够既将伴随点火正时的延迟而产生的燃料经济性的降低抑制于最小限度,又按预期地使转矩增大。
附图说明
图1是表示作为本发明的第一实施方式的车辆驱动单元的控制装置的构成的框图。
图2是表示本发明的第一实施方式所涉及的发动机控制器的构成的框图。
图3是表示对于将来的转矩变化的节气门开度和点火正时的各控制模式的具体例的时序图。
图4是表示通过本发明的第一实施方式的控制装置实施的一连串的处理的流程图。
图5是表示在本发明的第一实施方式中所使用的将来信息的形式的时序图。
图6是表示由发动机模型所确定的转矩的计算结果的一例的时序图。
图7是表示本发明的第一实施方式的控制装置的控制结果的一例的时序图。
图8是表示本发明的第一实施方式的控制装置的控制结果的一例的时序图。
图9是表示在本发明的第二实施方式中所使用的将来信息的形式的时序图。
图10是通过本发明的第二实施方式的控制装置实施的一连串的处理的流程图。
图11是表示作为本发明的第三实施方式的车辆驱动单元的控制装置的构成的框图。
图12是表示本发明的第三实施方式所涉及的发动机控制器的构成的框图。
图13是通过本发明的第二实施方式的控制装置实施的一连串的处理的流程图。
图14是表示作为本发明的第四实施方式的车辆驱动单元的控制装置的构成的框图。
图15是对于辅机的驱动定时的节气门开度和点火正时的各控制模式的具体例的时序图。
图16是通过本发明的第四实施方式的控制装置实施的一连串的处理的流程图。
图17是表示本发明的第四实施方式的控制装置的控制结果的一例的时序图。
图18是表示到辅机的驱动开始为止的待机时间的计算方法的时序图。
附图标记说明
2 发动机    4 节气门(主致动器)    6 点火装置(副致动器)
10、30 发动机控制器    12 动力传动系统管理器(power trainmanger)    14加速传感器    16 变速器控制器    18 马达控制器
20 导航系统
22 VICS
24 车车间通信系统    26 辅机    28 辅机控制器
具体实施方式
第一实施方式
图1是表示作为本发明的第一实施方式的车辆驱动单元的控制装置的构成的框图。本实施方式的控制装置构成为,将火花点火式的内燃机(下面称为发动机)2作为动力装置的车辆驱动单元的控制装置。下面,参照图1对本实施方式的控制装置的构成进行说明。
本实施方式的控制装置包括直接控制发动机2的发动机控制器10。在发动机控制器10上连接有与发动机2的转矩控制相关的2种致动器4、6。这些致动器4、6,根据输入的信号动作,使发动机2实现与该动作相应的转矩。在本实施方式中,通过使这些致动器4、6协动而进行发动机2的转矩调整。但是,关于转矩调整这2个致动器并不是同等,一方的致动器4为主要使用的主致动器。另一方的致动器6为辅助使用的副致动器。
在本实施方式中,主致动器4为节气门而副致动器6为点火装置。作为主致动器4的节气门,是通过其开度调整对汽缸内的吸入空气量,能够通过吸入空气量控制发动机2的转矩的致动器。作为副致动器6的点火装置,是通过其点火正时能够控制发动机2的转矩的致动器,其特征在于,相比节气门转矩对于动作的相应性高。下面,有时将主致动器4记为节气门4,将副致动器6记为点火装置6。
在车辆驱动单元的控制系统中,在发动机控制器10的上位设置有动力传动系统管理器12。动力传动系统管理器12,通过经由发动机控制器10调整发动机2输出的转矩,从而控制车辆的驱动状态。在动力传动系统管理器12上,除检测驾驶者的转矩要求的加速传感器14外,还连接有与车辆的控制相关的各种设备16、18、20、22、24。动力传动系统管理器12,基于来自这些设备的信息计算在当前时刻应该使发动机2输出的转矩,作为转矩要求输出至发动机控制器10。
动力传动系统管理器12,不仅计算当前时刻的车辆控制所必需的转矩,而且还计算在将来车辆控制所必需的转矩(将来转矩)。而且,将计算出的将来转矩作为将来信息输出至发动机控制器10。该动作意味着从动力传动系统管理器12对发动机2的转矩调整的预约。发动机控制器10所受理的将来信息变为预约信息,按照其内容建立发动机2的控制计划。
在动力传动系统管理器12中的将来转矩的计算中,使用来自各种设备16、18、20、22、24的信息。例如,能够事先从变速器控制器16取得与变速器的变速相关的信息。在变速时,在变速器的下游产生转矩变动,但通过事先取得该信息,能够事先计算变速时的转矩变动的吸收所必需的转矩。将该转矩作为发动机2的将来转矩对发动机控制器10进行预约,从而在之后进行变速动作时,能够进行适当的转矩调整。
另外,在车辆驱动单元是包括发动机和马达的混合动力系统的情况下,能够事先从马达控制器16取得与马达的运行/停止相关的信息。根据该信息事先计算伴随马达的运行/停止而产生的转矩变动的吸收所必需的转矩,对发动机控制器10进行预约,从而之后能够实现马达运行/停止时的适当的转矩调整。
另外,在具有导航系统20、VICS22或车车间通信系统24那样的信息通信系统的情况下,根据这些信息能够预测稍后车辆所处的状态。提前计算与预测到的状态最适应的转矩,对发动机控制器10进行预约,从而能够进行与随后车辆所处的状态相应的适当的转矩调整。例如,根据导航系统20的信息,能够预测稍后的上坡角度。如果根据预测到的上坡角度计算必要的转矩,并对发动机控制器10进行预约,则通过在适当定时的转矩提升能够防止在上坡时的减速。
另外,在本实施方式那样的线控驱动(drive-by-wire)系统的情况下,不是直接将加速传感器14的信号即来自驾驶者的转矩要求输出至发动机控制器10,而是还能够在实施延迟处理之后输出。在这样的情况下,加速传感器14的信号表示将来转矩。
图2是表示发动机控制器10的构成的框图。如该图所示,发动机控制器10具有多个计算要素102、104、106、108、110、112、114。具有控制节气门的动作的节气门驱动器116和控制点火装置的动作的点火装置驱动器118。对发动机控制器10,除从动力传动系统管理器12供给的转矩要求和将来信息外,也输入与发动机2的运行状态相关的信息。运行状态信息中包括发动机转速、空气流量计的输出值、当前时刻的实际点火正时、冷却水温度和气门定时等。
从动力传动系统管理器12供给的转矩要求,被输入目标转矩计算部102。目标转矩计算部102,以输出了的转矩要求为基础来计算发动机2的目标转矩。在目标转矩的计算中,进行对转矩要求值加算减振转矩等的处理。计算出的目标转矩被输出至后述的目标转矩校正部108和转矩功率计算部110。
从动力传动系统管理器12供给的将来信息,与运行状态信息一起被输入至目标效率计算部104。目标效率计算部104,基于输入的将来信息来计算目标效率。另外,基于将来信息和运行状态信息来计算目标效率的输出定时(变更定时)。计算出的目标效率被输出至后述的目标转矩校正部108。目标效率通常被设定为1。目标效率和其输出定时的计算是本实施方式中的一个重要部分,对于其详细情况将追加说明。
推动转矩计算部106,根据运行状态信息推定计算发动机2的转矩。更加详细而言,将点火正时暂定为MBT,基于根据各种各样的运行状态信息能够计算的预计空气量来计算转矩(在MBT下的推定转矩)。计算出的推定转矩被输出至后述的转矩效率计算部110。
对目标转矩校正部108输入目标转矩和目标效率。目标转矩校正部108,将目标转矩除以目标效率而进行校正,将该校正目标转矩输出至节气门开度计算部112。在目标效率为通常值即1的情况下,由目标转矩计算部102计算出的目标转矩被原样输出至节气门开度计算部112。另一方面,在目标效率为小于1的值的情况下,由于与目标效率进行除法运算导致目标转矩升高,升高了的目标转矩被输出至节气门开度计算部112。
节气门开度计算部112,将从目标转矩校正部108供给的校正目标转矩转换为空气量,计算用于实现该空气量的节气门4的开度。由节气门开度计算部112计算出的开度,作为节气门4的目标开度被设定给节气门驱动器116。节气门驱动器116控制节气门4,使得实现该目标开度。
对转矩效率计算部110输入目标转矩和推定转矩。转矩效率计算部110计算目标转矩和推定转矩之比。在本说明书中,将该比定义为转矩效率。在空气量变化的过渡状态下,根据空气量推定转矩变化,从而使转矩效率也与其相应地变化。但是,在空气量恒定的稳定状态下,推定转矩与校正转矩一致的结果,使得转矩效率与上述的目标效率变为一致。转矩效率计算部110,将计算出的转矩效率输出至点火正时计算部114。
点火正时计算部114,首先,根据转矩效率计算对于MBT的延迟量。在延迟角的计算中,使用至少以转矩效率为一轴的映射图。在该计算中,转矩效率越小则延迟角的值设定为越大。而且,根据从转矩效率所确定的延迟角和根据发动机2的运行状态所确定的基本点火正时来计算最终点火正时。计算出的最终点火正时,从点火正时计算部114设定给点火装置驱动器118。点火装置驱动器118,按照最终点火正时控制点火装置6。
采用上述那样的发动机控制器10的构成,通过设定目标效率,能够唯一确定用于实现目标转矩的节气门开度和点火正时。例如在目标转矩为100Nm的情况下,将目标效率设定为1,则被输入节气门开度计算部112的校正目标转矩为100Nm。在节气门开度计算部112中,计算能够使该校正目标转矩(110Nm)在MBT产生的节气门开度,将其设定为节气门4的目标开度。在节气门开度变更之后,在空气量变为恒定时,在推定转矩计算部106计算出的推定转矩也变为大约100Nm,目标转矩和推定转矩之比即转矩效率变为1。在转矩效率为1时,在点火正时计算部114计算出的延迟量为零,最终点火正时被设定为MBT。
当在相同目标转矩下将目标效率变更为0.8时,校正目标转矩变为125Nm。由此,节气门4的目标开度增大至能够在MNT产生125Nm的转矩的开度。另外,推定转矩也追随校正目标转矩而变化,大约变为125Nm。其结果,作为目标转矩与推定转矩之比的转矩效率变为0.8。即,转矩效率也追随目标效率而变化。转矩效率变为小于1的0.8,从而使最终点火正时被设定为与MBT相比延迟的定时。
在将目标效率改变为0.8时,产生由节气门开度的增大所引发的转矩上升效果。但是,与此同时点火正时延迟,所以通过其转矩降低效果来抵消上述的转矩上升效果,结果,发动机2所输出的转矩被维持在目标转矩。作为副致动器的点火装置6,转矩对于其动作的响应性高,所以能够可靠地抵消伴随节气门开度的增大而产生的转矩增大。
发动机控制器10,将从动力传动系统管理器12供给来的将来信息作为预约信息受理,按照其内容建立发动机2的控制计划。图3是表示其一例的图。图3所示的时序图(A),是表示以当前时刻为基准的将来的转矩变化的图。下面,对于从动力传动系统管理器12对发动机2预约了转矩的增加调整时的处理进行说明。
在通过发动机2的控制来实现时序图(A)所示的转矩变化时,可以采用的各致动器4、6的动作模式有多种。但,考虑到燃料经济性时,优选的动作模式集中为一种。就是尽可能地抑制作为副致动器的点火装置6的介入那样的动作模式,更加具体而言,是尽可能缩短进行点火延迟的时间的动作模式。在这样的动作模式下若能够使节气门4和点火装置6准确地协动,就能够维持燃料经济性较高同时实现预期的转矩。
图3所示的时序图(B)是表示用于实现时序图(A)所示的转矩变化的节气门4的动作模式的图。时序图(C)是表示用于实现时序图(A)所示的转矩变化的点火装置6的动作模式的图。若详细地对各时序图进行说明,则在时序图(A)中以虚线表示的转矩变化,表示仍将点火正时设定为MBT时,在以时序图(B)所示的定时使节气门开度增大时推定的转矩变化。增大前的节气门开度是与当前时刻的目标转矩相对应的开度,增大后的节气门开度,是与将来目标转矩(将其称为转矩的将来目标值)的开度。另外,这里使节气门开度阶梯状增大,但也可以在一旦打开到最大开度后(即,使节气门开度超调之后),使其返回与将来转矩目标值相对应的节气门开度。
时序图(A)中虚线所示的推定转矩和实线所示的目标转矩之差,能够通过使点火正时与MBT相比延迟来消除。具体而言,如时序图(C)所示,在打开节气门4的同时也延迟点火正时,在预约的将来目标值的实现定时再次提前到MBT。通过这样进行点火正时的延迟,能够抑制预约的实现定时前的不需要的转矩变化。另外,在时序图(C)中,在延迟前和从延迟的恢复后,点火正时(MBT)产生不同,但这是因为MBT也与目标转矩相对应地变化。
如果在时序图(B)所示的定时使节气门开度增大,则如时序图(A)中虚线所示,能够在预期的定时使转矩到达将来目标值。假设在与时序图(B)所示的定时相比延迟使节气门开度增大的情况下,就不能够在预期的定时使转矩达到将来目标值。另一方面,在与时序图(B)所示的定时相比提早使节气门开度增大的情况下,无用地延长使点火正时延迟的期间,相应地导致燃料经济性的恶化。因此,为了既较高地维持燃料经济性性能又可靠地实现预约的将来目标值,正确地计算时序图(B)所示的定时是很重要的。
在本实施方式中,使节气门开度增大的定时(图3的时序图(B)所示的定时),由目标效率的输出定时确定。采用上述的发动机控制器10的构成,目标效率计算部104计算目标效率并在输出的定时将节气门4打开。另外,根据目标效率的设定值,确定节气门开度和/或点火正时的延迟量。下面,使用图4至图8对作为本发明的实施方式的重要部分即目标效率和其输出定时的计算进行说明。
图4以流程图表示在目标效率计算部104所实施的一连串的处理。如图4的流程所示,在最初的步骤102中,将来信息被输入目标效率计算部104。将来信息,以按以当前时刻为基准的时间的将来的转矩值这样的形式被输入。图5以时序图表示将来信息的一例。如图5所示,能够从将来信息中读取:转矩的将来目标值、将来目标值相对于当前目标转矩的转矩偏差ΔTrq、朝向将来目标值的转矩的调整开始定时Ts、达到将来目标值的转矩的时间变化率Dt、和将来目标值的实现定时(调整完成定时)Te。在下面的步骤S104中,计算从当前时刻起到转矩实现定时Te为止的时间,作为到实现将来目标值为止的富余时间ΔT。
在下面的步骤S106中,在使作为主致动器的节气门4动作而进行了发动机2的转矩调整时,计算实现将来目标值需要的所需时间。在该所需时间的计算中,使用安装于目标效率计算部104的发动机模型。发动机模型是基于各种参数和各种计算式将发动机2的功能模式化后得到的。在将节气门开度、点火正时、发动机转速、气门定时等的发动机2的运行条件输入发动机模型时,计算与这些输入条件相对应的转矩并输出。
图6的时序图,表示了基于发动机模型的转矩的计算结果的例子。在该计算中,点火正时被设定为MBT,发动机转速和/或气门定时等的其他运行条件使用实际值。时序图(A)表示节气门开度的变化,时序图(B)表示与之相对应的转矩的变化。在步骤S106中,计算从使节气门开度增大起到转矩的增加量到达ΔTrq为止的时间Δt作为所述的所需时间。
在下面的步骤S108中,对在步骤S104中计算出的富余时间ΔT和在步骤S106中计算出的所需时间Δt进行比较。如果富余时间ΔT相对于所需时间Δt足够,则通过先行使节气门开度增大,从而能够在预期的定时使转矩达到将来目标值。在步骤S108的比较结果是富余时间ΔT相对于所需时间Δt足够时,进行步骤S110以后的处理。
另一方面,在富余时间ΔT相对于所需时间Δt不足时,即使先行使节气门开度增大也不能在预期的定时之前使转矩达到将来目标值。于是,在步骤S108的比较结果是富余时间ΔT相对于所需时间Δt不足时,进行后述的步骤S122的处理。
在步骤S110中,基于在步骤S102中输入的将来信息,计算转矩到达将来目标值的时间变化率Dt(参照图5)。另外,在步骤S112中,使用基于上述的发动机模型的计算结果,计算转矩的增量到达ΔTrq为止的期间的最大时间变化率Dtm(参照图6)。该最大时间变化率Dtm是仅靠节气门4的动作能够实现的转矩的最大时间变化率,在谋求它以上的时间变化率时,必需并用基于其他致动器的转矩调整。
在下面的步骤S114中,将在步骤S110中计算出的将来转矩的时间变化率Dt和在步骤S112中计算出的最大时间变化率Dtm进行比较。在将来转矩的时间变化率Dt与靠节气门4能够实现的最大时间变化率Dtm相比小时,没有必要先行打开节气门4,通过与通常同样地配合转矩的上升,使节气门开度增大即足够。
在步骤S114的判定结果是时间变化率Dt小于最大时间变化率Dtm时,跳过下面的步骤结束本程序。由此,在目标效率计算部104中不进行目标效率的更新,输出的目标效率仍为通常值1。如果目标效率为1,则不进行在目标转矩校正部10处的目标转矩的上升校正。另外,如果目标效率为1,则从转矩效率计算部110输出的转矩效率为1,因此,在点火正时计算部114计算出的延迟量变为零,最终点火正时被维持在MBT。因此,在选择否作为步骤S114的判定结果时,按照目标转矩仅靠节气门4进行转矩调整。
相对于此,在将来转矩的时间变化率Dt与靠节气门4实现的最大时间变化率Dtm相比大时,进行步骤S116、S118以及S120的处理。首先,在步骤S116中,计算从转矩的实现定时Te起提前了所述的所需时间ΔT的定时,作为目标效率的输出定时Tt。重复说明的是,采用本实施方式的发动机控制器10的构成,使目标转矩的输出定时Tt变为节气门开度的增大定时。通过使目标效率的输出定时Tt与转矩的实现定时Te相比提早,从而在转矩的上升之前打开节气门4。此外,将提前的时间设定为所述的所需时间Δt,从而能够在预期的定时使转矩到达将来目标值。
在步骤S118中,判定当前时刻是否达到目标效率的输出定时Tt。在当前时刻变为目标效率的输出定时Tt之前,反复实施该判定。接着,在目标效率的输出定时Tt到来的时刻,实施步骤S120的处理。
在步骤S120中,计算目标效率。接着,计算出的目标效率被输出至目标转矩校正部108。这里,计算当前的目标转矩相对于将来目标值之比,作为目标效率。图7以时序图的形式表示选择了步骤S116到S120的处理时的控制结果。在图7的时序图(A)中,一并表示预约的转矩的将来目标值和在目标转矩计算部102计算出的目标转矩。在时序图(B)中表示目标效率的计算结果。在目标效率的输出定时Tt之前,目标效率被设定为其通常值即1。接着,在目标效率的输出定时Tt以后,目标转矩相对于将来目标值之比被设定为目标效率,从而在到目标转矩与将来目标值一致为止的期间,目标效率被设定为比1小的值。
在图7的时序图(C)中,表示了基于节气门开度计算部112的目标开度的计算结果。通过将目标转矩与将来目标值之比作为目标效率输出,从而使在目标转矩校正部108计算出的校正目标转矩的值与将来目标值一致。其结果,节气门4的目标开度,在输出目标效率的定时Tt增大至与将来目标值相匹配的开度。
另外,在图7的时序图(D)中,表示了基于点火正时计算部114的最终点火正时的计算结果。如时序图(C)所示,打开节气门4的结果,导致吸入空气量急剧增大,与此相伴,在推定转矩计算部106计算出的推定转矩也增大。作为点火延迟量的计算基础的转矩效率是目标转矩和推定转矩之比,所以与吸入空气量的增大相对应地转矩效率降低,伴随转矩效率的降低,点火正时延迟。节气门4的目标开度增大的定时Tt,成为点火正时的延迟开始定时。不久目标转矩增加而目标转矩和将来目标值之差向缩小的方向变化,则点火正时返回提前角侧,在目标转矩与将来转矩值一致的定时Te,恢复为MBT。
接下来,对于步骤S108的判定结果是富余时间ΔT小于所需时间Δt时的处理进行说明。此时,代替步骤S110至S120的处理而进行步骤S122的处理。
在步骤S122中,计算当前的目标转矩相对于将来目标值之比作为目标效率。而且,计算出的目标效率被输出至目标转矩校正部108。即,不测定输出定时Tt,迅速进行目标效率的输出。图8以时序图的形式表示选择了步骤S122的处理时的控制结果。在图8的时序图(A)中,示出预约的转矩的将来目标值、在目标转矩计算部102计算出的目标转矩、和如后所述控制了节气门4和点火装置6时的实际的发动机转矩。在时序图(B)示出了目标效率的计算结果。
通过输出目标效率,从而能够将节气门开度快速增大为与将来目标值相匹配的开度。在图8的时序图(C)中,示出了基于节气门开度计算部112的目标开度的计算结果。
打开节气门4的结果,转矩效率与吸入空气量的增大相对应地降低。在点火正时计算部114中,将转矩效率作为点火延迟量的计算基础,在选择了步骤S122的处理时,对点火延迟量进行了防护。更为详细而言,不管转矩效率的值如何点火延迟量都被设定为零。在图8的时序图(D)中,表示基于点火正时计算部114的最终点火正时的计算结果。如该图所示,在富余时间ΔT相对于所需时间Δt不足时,不延迟点火正时而是将其维持在与目标转矩相对应的MBT。
如上所说明,本实施方式的控制装置,发动机控制器10的构成和控制的内容具有各种各样的特征。下面,对于发动机控制器10所具有的特征动作及其效果,总结说明。
发动机控制器10,当以将来信息的形式受理来自动力传动系统管理器12的发动机的转矩调整的预约时,从该将来信息读取转矩的将来目标值,接着根据发动机2的运行状态计算实现将来目标值需要的所需时间Δt。接着,在与预约的实现定时相比提前了所需时间Δt的定时Tt,为了实现将来目标值而开始作为主致动器的节气门4的动作。通过这样提前使节气门4动作,从而能够在按预约的实现定时Te实现按预约的将来转矩(将来目标值)。
而且,发动机控制器10,打开节气门4,同时在从使节气门开度增大起到预约的实现定时Te为止的期间,使作为副致动器的点火装置6动作,使得抵消伴随节气门开度的增大而产生的转矩变化。通过由点火装置6进行点火正时的延迟,从而能够抑制在预约的实现定时Te之前的不需要的转矩变化。另外。所需时间Δt是为了在预约的实现定时Te时实现将来目标值而没有过度不足的时间,点火装置6在该所需时间Δt内进行点火正时的延迟,所以能够将点火正时的延迟时间抑制于必要最小限度。
另外,发动机控制器10,在将来转矩的时间变化率Dt比靠节气门4能够实现的最大时间变化率Dtm小时,仅靠节气门4的控制来进行转矩调整。而且,限于靠节气门4的控制不能实现该时间变化率Dt时,也利用基于点火装置6的点火正时的延迟来进行转矩调整。这样,基于将来转矩的时间变化率Dt对节气门4和点火装置6进行协调控制,从而能够既将点火正时的延迟抑制于必要最小限度,又以预期的时间变化率Dt使转矩增大。
另外,发动机控制器10,在到实现将来目标值为止的富余时间ΔT相对于所需时间Δt不足时,使节气门开度快速增大而谋求转矩的上升,另外禁止点火正时的延迟。这样在富余时间ΔT短的状况下,基于点火正时的延迟的转矩变化的抑制效果也不大。因此,将富余时间ΔT相对于所需时间Δt足够作为点火正时延迟的条件,从而能够防止点火正时无用地延迟。
另外,在本实施方式中,动力传动系统管理器12相当于第一发明中的“车辆控制机构”。另外,发动机控制器10相当于第一发明中的“预约信息取得机构”,目标效率计算部104相当于第一发明的“所需时间计算机构”。另外,由目标效率计算部104、目标转矩校正部108、节气门开度计算部112以及节气门驱动器116构成第一发明的“主致动器控制机构”。由目标效率计算部104、转矩效率计算部110、点火正时计算部114以及点火装置驱动器118构成第一发明的“副致动器控制机构”。
第二实施方式
作为本发明的第二实施方式的控制装置,与第一实施方式的控制装置的不同在于,从动力传动系统管理器12供给至发动机控制器10的将来信息(预约信息)的内容。另外,对于控制装置的构成,与第一实施方式相同,由图1表示整体构成,图2表示发动机控制器10的详细构成。
在本实施方式中,仅将将来目标值和其实现定时作为将来信息供给至发动机控制器10。图9以时序图的形式表示将来信息的一例。如图9所示,能够从将来信息中读取的仅是转矩的将来目标值和其实现定时(调整完成定时)Te,在将来信息中不含有朝向将来目标值的转矩的调整开始定时和/或到达到将来目标值为止的时间变化率。将来信息在目标效率计算部104中用于目标效率的计算。因此,在与第一实施方式相比,目标效率计算部104中的处理的内容不同。
图10是表示在本实施方式中在目标效率计算部104中实施的一连串的处理的流程图。在该流程图中,与图4所示的流程标注了相同的步骤编号的处理,意味着其处理内容一样。下面,对于目标效率计算部104中的处理,沿着流程进行说明。
在最初的步骤S102中,将来信息被输入目标效率计算部104。将来信息的形式按照图9的时序图所示。在下面的步骤S104中,计算从当前时刻起到实现定时Te为止的时间,作为到实现将来目标值为之的富余时间ΔT。另外,在步骤S106中,在使节气门4动作而进行了发动机2的转矩调整时,使用发动机模型计算实现将来目标值需要的所需时间Δt。
在下面的步骤S108中,将在步骤S104中计算出的富余时间ΔT和在步骤S106计算出的所需时间Δt进行比较。在富余时间ΔT相对于所需时间Δt不足时,进行步骤S122的处理。即,不计算输出定时而快速进行目标效率的输出,快速增大节气门开度直到与将来目标值相匹配的开度。另外,不延迟点火正时而将其维持在与目标转矩相对应的MBT。
另外,在富余时间ΔT相对于所需时间Δt足够时,进行步骤S116的处理。本实施方式中的目标效率计算部104的处理流程,与从第一实施方式中的目标效率计算部104的处理流程中去除步骤S110、S112以及S114的处理后剩下的处理相当。这是因为:如图9的时序图所示,在本实施方式中所使用的将来信息中不含有达到将来目标值为止的转矩的时间变化率,所以步骤S110、S112以及S114的处理是无用的。
在步骤S116中,计算从将来目标值的实现定时Te起提前了所述所需时间Δt的定时,作为目标效率的输出定时Tt。在下面的步骤S118中,判定当前时刻是否达到了目标效率的输出定时Tt。而且,在目标效率的输出定时Tt到来的时刻,实施步骤S120的处理。
在步骤S120,计算当前的目标转矩相对于将来目标值之比,作为目标效率,该算出值被输出于目标转矩校正部108。由此,节气门开度增大到与将来目标值相匹配的开度。另外,增大节气门开度,同时延迟点火正时,在将来目标值的实现定时Te使点火正时返回MBT。
如上所说明,本实施方式中所用的将来信息与第一实施方式中所用的将来信息相比信息量少。但是,如果将来信息中至少包括将来目标值和其实现定时,则与第一实施方式同样地,能够既将点火正时的延迟时间抑制于必要最小限度,又能够在按预约的实现定时Te实现按预约的将来转矩(将来目标值)。
第三实施方式
图11是表示作为本发明的第三实施方式的车辆驱动单元的控制装置的构成的框图。在图11中,对与第一实施方式的控制装置共有的要素标注同一附图标记。本实施方式的控制装置,与第一实施方式的控制装置的不同仅在于发动机控制器30的构成不同,其他的要素与第一实施方式共有。
从发动机控制器30的上位的动力传动系统管理器12对其供给转矩要求和将来信息。将来信息的供给意味着从动力传动系统管理器12向发动机2预约转矩调整。发动机控制器30所受理的将来信息变为预约信息,按照其内容建立发动机2的控制计划。另外,在本实施方式中所使用的将来信息中包括如图5的时序图所示那样的信息。即,作为信息包括转矩的将来目标值、将来目标值相对于当前的目标转矩的转矩偏差ΔTrq、朝向将来目标值的转矩的调整开始定时Ts、到达将来目标值的转矩的时间变化率Dt、和将来目标值的实现定时Te。
图12是表示发动机控制器30的构成的框图。如该图所示,发动机控制器30具有多个计算要素302、304、306、308、310。另外,具备控制节气门的动作的节气门驱动器312和控制点火装置的动作的点火装置驱动器314。从动力传动系统管理器12对发动机控制器30供给转矩要求和将来信息,此外也对发动机控制器30供给发动机转速、空气流量计输出值、当前时刻的实际点火正时、冷却水温度、气门定时等与发动机2的运行状态相关的信息。
从动力传动系统管理器12供给的转矩要求,被输入至目标转矩计算部302。目标转矩计算部302,将输出了的转矩要求作为基础来计算发动机2的目标转矩。在目标转矩的计算中,进行对转矩要求值加上减振转矩等的处理。计算出的目标转矩被输出至后述的目标转矩分配部306。
从动力传动系统管理器12供给的将来信息,和运行状态信息一起被输入至定时计算部304。定时计算部304,基于输入了的将来信息,计算相对于将来目标值的实现定时使节气门4和点火装置6提前动作的定时。计算出的提前动作开始定时被输出至后述的目标转矩分配部306。
目标转矩分配部306,将从目标转矩计算部302供给的目标转矩分割为由节气门4实现的转矩(节气门用转矩)和由点火装置6实现的转矩(点火装置用转矩)。被分割了的转矩中的节气门用转矩被输出至节气门开度计算部308,点火装置用转矩被输出至点火正时计算部310。
在目标转矩分配部306中,除目标转矩外还输入有提前动作开始定时和将来信息。在没有到达提前动作开始定时时,即,在通常时候,目标转矩分配部306将目标转矩原样作为节气门用转矩,将点火装置用转矩设定为零。在到达提前动作开始定时之后,将将来信息中所含的将来目标值作为节气门用转矩,计算目标转矩和将来目标值之差的负转矩作为点火装置用转矩。而且,在到达将来目标值的实现定时之后,再次将目标转矩原样作为节气门用转矩,将点火装置用转矩设定为零。
节气门开度计算部308,将从目标转矩分配部306供给的节气门用转矩转换为空气量,计算用于实现该空气量的节气门4的开度。在节气门开度计算部308中计算出的开度,被设定给节气门驱动器312作为节气门4的目标开度。节气门驱动器312,控制节气门4,使得其实现该目标开度。
点火正时计算部310,首先,根据从目标转矩分配部306供给的点火装置用转矩计算相对于MBT的延迟量。在延迟量的计算中,使用至少以转矩为一轴的映射图。在该计算中,转矩的绝对值越大则延迟量设定为越大的值。而且,根据从点火装置用转矩决定的延迟量、和根据发动机2的运行状态决定的基本点火正时,计算最终点火正时。计算出的最终点火正时,从点火正时计算部310被设定给点火装置驱动器314。点火装置驱动器314,按照最终点火正时控制点火装置6。
采用上述那样的发动机控制器30的构成,与第一实施方式同样地,能够按照图3所示的时序图所示那样的动作模式使节气门4和点火装置6动作。下面,对于从动力传动系统管理器12供给了将来信息时的发动机控制器30的计算动作,详细说明。
图13是表示由发动机控制器30实施的一连串的处理的流程图。如图13的流程所示,在最初的步骤S202中,对定时计算部304和目标转分配部306输入将来信息。将来信息的形式如图5的时序图所示。
从下面的步骤S204起到步骤S216为止,是在定时计算部304中实施的处理。首先,在步骤S204中,计算从当前时刻起到实现定时Te为止的时间,作为到实现将来目标值为止的富余时间ΔT。另外,在步骤S206中,使用发动机模型来计算使节气门4动作而进行了发动机2的转矩调整时的、实现将来目标值需要的所需时间Δt。所需时间Δt的计算方法与第一实施的相同,所以省略其详细。
在下面的步骤S208中,将在步骤S204中计算出的富余时间ΔT与在步骤S206中计算出的所需时间Δt进行比较。在富余时间ΔT相对于所需时间Δt足够时,进行步骤S210以后的处理。另一方面,在富余时间ΔT相对于所需时间Δt不足时,进行后述的步骤S228的处理。
在步骤S210中,基于在步骤S202中输入的将来信息,计算到达将来目标值的转矩的时间变化率Dt。另外,在步骤S212中,使用基于所述发动机模型的计算结果,计算到转矩的增加量达到ΔTrq之前的最大时间变化率Dtm。
在下面的步骤S214中,将在步骤S210中计算出的将来转矩的时间变化率Dt和在步骤S212中计算出的最大时间变化率Dtm进行比较。在将来转矩的时间变化率Dt比靠节气门4能够实现的最大时间变化率Dtm大时,进行下面的步骤S216的处理。另一方面,在将来转矩的时间变化率Dt比靠节气门4能够实现的最大时间变化率Dtm小时,进行后述的步骤S226的处理。
在步骤S216中,计算从将来转矩的实现定时Te起提前所述的所需时间Δt的定时作为提前动作开始定时Tt。计算出的提前动作开始定时Tt被输出至目标转矩分配部306。
从下面的步骤S218起到步骤S224为止,是在目标转矩分配部306中实施的处理。在步骤S218中,判定当前时刻是否到达了提前动作开始定时Tt。在当前时刻到达提前动作开始定时Tt之前,反复实施该判定。而且,在到达了提前动作开始定时Tt的时间点,实施步骤S220的处理。
在步骤S220中,将节气门用转矩从目标转矩变更为将来信息所含的将来目标值,同时,将点火装置用转矩从通常值零变更为目标转矩与将来目标值之差的负转矩。接受该变更,增大在节气门开度计算部308中计算出的节气门4的目标开度直到成为与将来目标值相匹配的开度,在点火正时计算部310中计算出的最终点火正时相比MBT延迟。
在下面的步骤S222中,判定当前时刻是否到达了将来转矩实现定时Te。在当前时刻成为将来转矩实现定时Te之前,反复实施该判定。而且,在到达了将来转矩实现定时Te的时间点,实施步骤S224的处理。
在步骤S224中,节气门用转矩从将来目标值返回目标转矩,同时点火装置用转矩返回通常值零。在该时间点,目标转矩与将来目标值一致。因此,在节气门开度计算部308中计算出的节气门4的目标开度仍维持当前的开度。在点火正时计算部310中计算出的最终点火正时提前至MBT。
通过步骤S220至S224的处理,通过先行使节气门4动作,从而能够按预约在将来转矩实现定时Te实现将来转矩(将来目标值)。而且,从使节气门开度增大起到将来转矩实现定时Te为止的期间,进行点火正时的延迟,使得抵消伴随节气门开度的增大而产生的转矩变化,从而能够抑制将来转矩实现定时以前的不需要的转矩变化。另外,所需时间Δt是为了在将来转矩实现定时Te实现将来目标值而没有过度不足的时间,点火装置6在该所需时间Δt内进行点火正时的延迟,所以也能够将点火正时的延迟时间抑制于必要最小限度。
接下来,对于步骤S214的判定结果是将来转矩的时间变化率Dt小于靠节气门4能够实现的最大时间变换率Dtm时的处理进行说明。在此时,代替步骤S216至S224的处理而进行步骤S226的处理。
步骤S226是在目标转矩分配部306中实施的处理。在步骤S226中,将节气门用转矩仍设为目标转矩,点火装置用转矩也不变更而仍设为通常值零。由此,节气门4的目标开度按照目标转矩变化,最终点火正时被维持在MBT。因此,在此时就按照目标转矩仅靠节气门4进行转矩调整。这样,通过基于将来转矩的时间变化率Dt来对节气门4和点火装置6进行协调控制,从而能够既将点火正时的延迟抑制于必要最小限度,又能够以预期的时间变化率Dt使转矩增大。
接下来,在步骤S208的判定结果是富余时间ΔT比所需时间Δt小时的处理进行说明。此时,代替步骤S210至S224的处理而进行步骤S228的处理。
步骤S228是在目标转矩分配部306中实现的处理。在步骤S228中,将节气门用转矩从目标转矩变更为将来信息中所包含的将来目标值。接受该变更,使节气门4的目标开度快速增大为与将来目标值相匹配的开度。但是,点火装置用转矩并没有变更而是仍维持为通常值零。即,仅使节气门开度快速增大,但点火正时不延迟而维持为与目标转矩相对应的MBT。这样在富余时间ΔT短的状况下,基于点火正时的延迟的转矩变化的抑制效果并不大。因此,通过将富余时间ΔT相对于所需时间Δt足够作为点火正时的延迟条件,从而能够防止点火正时无用地延迟。
如上所说明,本实施方式的发动机控制器30,与第一实施方式的发动机控制器10,在其构成上在控制内容上都大为不同。但是,关于所得到的效果,是与第一实施相等同的,能够既将点火正时的延迟时间抑制为必要最小限度,又在按预约的实现定时Te实现按预约的将来转矩(将来目标值)。
另外,在本实施方式中,以将来信息中包括如图5的时序图所示那样的信息为前提,但也并非必须包括这些全部的信息。如果将来信息至少包括将来目标值和其实现定时,则能够既将点火正时的延迟时间抑制于必要最小限度,又能够按预约的实现定时实现按预约的将来转矩。因此,如图9的时序图所示,将来信息中也可以不包括到达将来目标值的转矩的时间变化率。此时,通过从图13所示处理流程中省略步骤S210、S212以及S214的处理,能够应对。
在本实施方式中,动力传动系统管理器12相当于第一发明的“车辆控制机构”。另外,发动机控制器30相当于第一发明的“预约信息取得机构”,定时计算部304相当于第一发明的“所需时间计算机构”。另外,目标转矩分配部306、节气门开度计算部308和节气门驱动器312构成第一发明的“主致动器控制机构”,由目标转矩分配部306、点火正时计算部310和点火装置驱动器312构成第一发明的“副致动器控制机构”。
第四实施方式
图14是表示作为本发明的第四实施方式的车辆驱动单元的控制装置的构成的框图。在图14中,对于与第一实施方式的控制装置共有的要素标注同一幅图标记。该控制装置包括发动机控制器10,其构成与第一实施方式相同,由图2的框图表示。下面,参照图14以及图2,对于本实施方式的控制装置的构成进行说明。
本实施方式的控制装置,包括控制辅机26的辅机控制器28。辅机控制器28,与发动机控制器10一起连接于动力传动系统管理器12。在发动机控制器10上,作为在发动机2的转矩调整中使用的致动器,连接有作为主致动器的节气门4和作为副致动器的点火装置6。
所谓本实施方式中的辅机26,是指像交流发电机和/或空气压缩机那样由发动机2驱动的设备。这些的辅机26,消耗从发动机2输出的转矩而动作。因此,当突然开始辅机26的驱动时,发动机2输出的转矩的一部份突然被辅机26消耗,作为车辆驱动单元整体导致急剧的转矩下降。
这样的问题,通过配合辅机26的驱动开始而使发动机2的转矩增大,能够解决。即,只要使发动机2的输出转矩也增加与辅机26的驱动所需要的转矩(辅机驱动转矩)相当的量即可。但是,对于发动机2而言难以突然使转矩增加,所以在预先获知了辅机26的驱动开始时,必需提前使与发动机2的转矩调整有关的致动器4、6动作来防备。
因此,控制辅机26的辅机控制器28,在产生了驱动辅机26的必要性的情况下,首先,对于动力传动系统管理器12要求辅机26的驱动许可。接着,从给予了来自动力传动系统管理器12的驱动许可起开始辅机26的驱动。
另一方面,动力传动系统管理器12,当受理了来自辅机控制器28的驱动许可要求时,就对发动机控制器10指示致动器4、6的提前动作的开始。而且,在适当的定时对于辅机控制器28许可辅机26的驱动。
在上面的处理中最重要的是,从开始各致动器4、6的提前动作起到许可辅机26的驱动为止的时间。下面,对于这一点使用图15的时序图进行说明。
在图15所示的时序图(A)中,示出了在辅机26的驱动开始的前后的辅机驱动转矩的变化。如该图所示,与辅机26的驱动开始同时,辅机驱动转矩以大致台阶状快速上升。为了能由发动机2来吸收这样的辅机驱动转矩的变化,必需使发动机2的转矩也与辅机驱动转矩相对应地如时序图(B)所示那样变化。
在通过发动机2的控制来实现时序图(B)所示的转矩变化时,能采用的各致动器4、6的动作模式存在多种。但是,在考虑到燃料经济性时,优选的动作模式集中为一种。就是尽可能地抑制作为副致动器的点火装置6的介入的动作模式,更加具体而言,是能尽可能缩短进行点火延迟的时间的动作模式。如果能在那样的动作模式下使节气门4和点火装置6确切地协同动作,则能够既维持燃料经济性较高又实现预期的转矩。
图15所示的时序图(C)是用于实现时序图(B)所示的转矩变化的节气门4的动作模式的图。时序图(D)是表示用于实现时序图(B)所示的转矩变化的点火装置6的动作模式的图。对于各时序图具体地说明,在时序图(B)中虚线所示的转矩变化,表示在将点火正时仍设定为MBT而在时序图(C)所示的定时使节气门开度增大时所推定的转矩变化。增大前的节气门开度是与当前时刻的目标转矩相对应的开度,增大后的节气门开度是与加上了辅机驱动转矩而得的将来的目标转矩(将其称为转矩的将来目标值)相对应的开度。另外,这里使节气门开度台阶状地增大,但也可以在一旦打开至最大开度之后(即,使节气门开度超调之后),使其返回至与将来目标值相对应的节气门开度。
在时序图(B)中虚线所示的推定转矩和实线所示的目标转矩之差,能够通过使点火正时相比MBT延迟来解决。具体而言,如时序图(D)所示,与打开节气门4同时也延迟点火正时,在开始辅机26的驱动的定时再次提前至MBT。通过这样进行点火正时的延迟,能够抑制辅机26的驱动开始前的不需要的转矩。另外,在时序图(D)中,在延迟前和从延迟恢复后,点火正时(MBT)产生差异,这是因为MBT也与目标转矩相对应地变化。
如果开始各致动器4、6的提前动作的定时和开始辅机26的驱动的定时的关系适当,则如时序图(B)所示,能够使转矩在预期的定时达到将来目标值。但是,在从各致动器4、6的提前动作开始起到辅机26的驱动开始为止的时间过短时,在预期的定时之前不能使转矩充分地上升。另一方面,在从各致动器4、6的提前动作开始起到辅机26的驱动开始为止的时间过长时,使点火正时延迟的期间无用地变长,导致相应的燃料经济性的恶化。因此,为了既维持燃料经济性较高、又可靠地抑制在辅机26的驱动前后的转矩变化,正确地计算从各致动器4、6的提前动作开始起到辅机26的驱动开始为止的确切时间是很重要的。
下面,对于作为本实施方式的主要部分的辅机26的驱动许可定时的计算,使用图16至图18进行说明。另外,开始各致动器4、6的提前动作的定时,能够通过在发动机控制器10内的目标效率的输出定时来任意地确定。如在第一实施方式中已说明的那样,采用图2所示的发动机控制器10的构成,目标效率计算部104计算目标效率,在其输出该目标效率的定时,打开节气门4,并延迟点火正时。另外,根据目标效率的设定值,确定节气门开度和/或点火正时的延迟量。
图16是以流程图的形式表示在本实施方式中在动力传动系统管理器12中实施的一连串的处理的图。另外,图17是以时序图的形式表示基于图16的流程图的控制结果。下面,适当参照图17的时序图,沿着图16的流程图说明基于动力传动系统管理器12的处理的内容。
在最初的步骤S302中,判定是否输入了辅机26的驱动许可要求。从辅机控制器28对动力传动系统管理器12出示辅机驱动许可要求标志。如图17的时序图(A)所示,在该辅机驱动许可要求标志被设为ON(开)时,就输入驱动许可要求。在输入了驱动许可要求的情况下,实施下面的步骤S304以后的处理。
在步骤S304中,进行辅机26的驱动所需的转矩(辅机驱动转矩)的预算。辅机驱动转矩的大小,能够根据辅机26的目标动作状态(例如如果辅机26是交流发电机则为目标发电量)求出。
在下面的步骤S306中,在步骤S304中计算出的辅机驱动转矩被作为将来信息输出至发动机控制器10。在图17的时序图(B)中,示出了输出至发动机控制器10的将来信息(辅机驱动转矩)。
在下面的步骤S308中,预测使作为主致动器的节气门4动作而谋求转矩上升时的转矩梯度。在预测该转矩变化时,使用发动机模型。根据发动机模型,能够从节气门开度、点火正时、发动机转速和气门定时等的发动机2的运行条件,预测发动机2输出的转矩的梯度。图18的时序图,表示了基于发动机模型的转矩梯度的预测结果。在该计算中,点火正时被设定为MBT,发动机转速和/或气门定时等其他的运行条件中使用实际值。
在下面的步骤S310中,使用步骤S308的预测结果,计算到开始辅机26的驱动为止的待机时间Δt。在图18的时序图中,表示了待机时间Δt的计算方法。由此,首先,计算从使节气门开度增大起到转矩增加与辅机驱动转矩相当的量为止的所需时间Δt2。另外,计算在对于辅机控制器28许可辅机26的驱动之后,辅机26的驱动所需要的转矩实际上达到预计值为止的延迟时间Δt1。接着,计算从所需时间Δt2中减去延迟时间Δt1所得的时间作为所述的待机时间Δt。
在下面的步骤S312中,在步骤S304中计算出的辅机驱动转矩被延迟处理待机时间Δt。而且,将延迟处理了的辅机驱动转矩与其他的要求转矩(包括驾驶者要求转矩)相加而得的转矩作为最终的转矩要求输出至发动机控制器10。在图17的时序图(C)中,表示了被输出至发动机控制器10的转矩要求值。
在下面的步骤S314中,判定是否经过了上述的待机时间Δt。在经过了待机时间Δt之前,反复执行该判定。而且,在从输入了辅机26的驱动许可要求起经过了待机时间Δt的时间点,实施下面的步骤S316的处理。
在步骤S316中,对于辅机驱动控制器28许可辅机26的驱动。从动力传动系统管理器12对辅机控制器28出示辅机驱动许可标志。如图17的时序图(G)所示,在该辅机驱动许可标志被设为ON(开)时,给予了辅机26的驱动许可。接受来自动力传动系统管理器12的驱动许可,辅机控制器28开始辅机26的驱动。
与上述说明的处理并行,在发动机控制器10中进行独立的处理。首先,在上述的步骤S312中输出的转矩要求,被输入发动机控制器10的目标转矩计算部102。目标转矩计算部102以输入的转矩要求为基础,计算发动机2的目标转矩。计算出的目标转矩被输出至目标转矩校正部108。
另外,作为在上述的步骤S306中输出的将来信息的辅机驱动转矩,被输入发动机控制器10的目标效率计算部104。目标效率计算部104使用该被输入的辅机驱动转矩来计算目标效率。具体而言,将辅机驱动转矩设为将来目标值,计算当前目标转矩相对于将来目标值之比作为目标效率。在图17的时序图(D)中,表示了目标效率的计算结果。计算出的目标效率被输出至目标转矩校正部108。
在图17的时序图(E)中,表示基于节气门开度计算部112的目标开度的计算结果。通过输出目标转矩与将来目标值(与辅机驱动转矩相对应)之比作为目标效率,从而使在目标转矩校正部108中计算出的校正目标转矩的值与将来目标值一致。其结果,使节气门4的目标开度快速增大至与将来目标值相匹配的开度。
另外,在图17的时序图(F)中,表示了基于点火正时计算部114的最终点火正时的计算结果。如时序图(E)所示,节气门4打开的结果,吸入空气量急剧增加,与之相伴地在推定转矩计算部106计算出的推定转矩也增大。成为点火延迟量的计算的基础的转矩效率为目标转矩与推定转矩之比,所以与吸入空气量的增大相对应地转矩效率降低,伴随着转矩效率的降低点火正时也延迟。不久在目标转矩变得与将来目标值一致的定时,点火正时返回MBT。
如上所说明的,本实施的方式的控制装置,其特征在于,与辅机26的驱动相关的控制。下面,对于该控制的结果所产生的效果,总结说明。
当动力传动系统管理器12从辅机控制器28受理辅机26的驱动许可的要求时,根据辅机26的驱动所需的转矩(辅机驱动转矩)计算转矩的将来目标值,根据发动机2的运行状态计算实现将来目标值需要的所需时间Δt2。而且,在经过了基于所需时间Δt2设定的待机时间Δt之后,对于辅机控制器28许可辅机26的驱动。与该处理并行,动力传动系统管理器12对发动机控制器10发出指示(将来信息),为了实现将来目标使作为主致动器的节气门4提前动作。通过这样在许可辅机26的驱动之前使节气门4提前动作,从而能够可靠地在短时间内实现辅机26的驱动作需要的转矩。
而且,动力传动系统管理器12,对发动机控制器10发出指示(将来信息),在从使节气门开度增大起到给予辅机26的驱动许可为止的期间,使作为副致动器的点火装置6动作,使得抵消伴随节气门开度的增大而产生的转矩变化。通过由点火装置6进行点火正时的延迟,从而能够抑制辅机26的驱动开始之前的不需要的转矩变化。另外,待机时间Δt是正好实现与辅机驱动转矩相匹配的目标转矩而没有过度不足的时间,点火装置6在该待机时间Δt内进行点火正时的延迟,所以能够将点火正时的延迟时间抑制于必要最小限度。
而且,动力传动系统管理器12,考虑根据辅机26的动作特性而产生的延迟时间Δt1来设定所述的待机时间Δt,所以能够抑制发动机2的输出转矩和基于辅机26的驱动的转矩消耗量的失衡,作为车辆驱动单元整体能够维持预期的转矩。另外,通过最优化待机时间Δt,从而能够将点火正时的延迟时间抑制于必要最小限度。
在本实施方式中,通过辅机26的辅机控制器28构成了第六发明“转矩消耗要素”。另外,基于动力传动系统管理器12的步骤S302、S304及S306的处理的实施相当于第六发明的“将来目标值设定机构”,步骤S308以及S310的处理的实施相当于第六发明的“所需时间计算机构”。另外,发动机控制器10的目标效率计算部104、目标转矩校正部108、节气门开度计算部112和节气门驱动器116构成第六发明的“主致动器控制机构”,目标效率计算部104、转矩效率计算部110、点火正时计算部114以及点火装置驱动器118构成了第六发明的“副致动器控制机构”。
其他
上面,对本发明的实施方式进行了说明,但本发明并不限定于上述的实施方式,在不脱离本发明的要旨的范围内能够实施各种各样的变形。例如,也可以如下变形而实施。
在第一实施方式中,动力传动系统管理器12对发动机2预约的转矩调整为转矩的增加调整,但根据第一实施方式的控制装置的构成,也能应对转矩的减小调整。此时,与转矩降低的实现定时相比提前关闭节气门4,提前点火正时,使得抵消伴随节气门开度的减少而产生的转矩变化。关于第二实施方式和第三实施方式也一样。
在第四实施方式中,从辅机控制器28对动力传动系统管理器12要求辅机26的驱动许可,但根据第四实施方式的控制装置的构成,也能应对辅机26的停止。此时,当存在从辅机控制器28对辅机26的停止要求时,在许可辅机26的停止之前关闭节气门4,提前点火正时,使得抵消伴随节气门开度的减少而产生的转矩变化。
另外,根据第四实施方式的控制装置的构成,不仅是辅机26的驱动/停止,还能应对辅机26的驱动量、即转矩消耗量的阶段性变更或连续性变更。例如,如果辅机26是交流发电机,则当存在来自辅机控制器28的交流发电机的发电量的变更要求时,在许可发电量的变更之前变更节气门4的开度,变更点火正时,使得抵消伴随节气门开度的变化而产生的转矩变化。此时,如果发电量的变更要求是增量要求,则与要求的增量的程度相对应地增大节气门开度,与此相应地延迟点火正时。
在第四实施方式中,可以将构成控制装置的发动机控制器10替换为图12所示的构成的发动机控制器30。任何一种发动机控制器10、30都使用从动力传动系统管理器12供给的转矩要求和将来信息进行演算,这一点是共通的。另外,通过对在第一实施方式中所得到的作用以及效果、和在第三实施方式中所得到的作用和效果相比较,可知使用哪一个发动机控制器10、30都能够得到相同的控制效果。
在第一实施方式中,也可以将发动机控制器12与动力传动系统管理器12一体化而作为一个装置来构成。如果能够获取与第一实施方式相同的控制效果、即实现主致动器和副致动器的动作,则对构成控制装置的各个计算要素的功能没有限定。关于第二实施方式到第四实施方式也一样。
在第一实施方式中,作为主致动器4也可以代替节气门而使用对进气门的最大升程量进行变更的气门升程量可变装置。此时,有必要变更发动机控制器10内的构成,但也可以代替节气门开度计算部112而配置根据校正目标转矩计算进气门的最大升程量的计算要素。关于第二实施方式到第四实施方式也一样。
在第一实施方式中,作为副致动器6可以代替点火装置而使用对进气门的最大升程量进行变更的气门升程量可变装置。如果将作为主致动器4的节气门和气门升程量可变装置相比较,则气门升程量可变装置的转矩相对于动作的响应性高,所以也能够作为副致动器使用。此时,也有必要变更发动机控制器10内的构成,只要代替点火正时计算部114,配置根据转矩效率计算进气门的最大升程量的计算要素即可。关于第二实施方式到第四实施方式也一样。
此外,作为主致动器或副致动器,也能够使用燃料喷射装置、EGR装置或可变压缩比装置。另外,在具有带马达辅助的涡轮增压器(MAT)的发动机中,也能够使用MAT作为副致动器。另外,关于第一实施方式至第三实施方式,也能够使用交流发电机等的由发动机驱动的辅机作为副致动器。通过控制辅机的转矩消耗量,从而能够间接地调整发动机2的转矩(有效转矩)。

Claims (8)

1.一种车辆驱动单元的控制装置,所述车辆驱动单元以内燃机为动力装置,其特征在于,包括:
车辆控制机构,通过调整所述内燃机输出的转矩来进行与车辆的驱动状态相关的控制;
主致动器,用于所述内燃机的转矩调整;
副致动器,是独立于所述主致动器而用于所述内燃机的转矩调整的致动器,与所述主致动器相比转矩对于动作的响应性高;
预约信息获取机构,从所述车辆控制机构受理对所述内燃机的转矩调整的预约,至少获取所述内燃机输出的转矩的将来目标值和所述将来目标值的实现定时作为预约信息;
所需时间计算机构,在使所述主致动器动作而进行了所述内燃机的转矩调整时,根据当前的内燃机运行状态计算实现所述将来目标值所需的所需时间;
主致动器控制机构,在比所述实现定时提前所述所需时间的定时,为了所述将来目标值的实现而开始所述主致动器的动作;和
副致动器控制机构,在从所述主致动器的动作开始起到所述实现定时为止的期间,使所述副致动器动作,使得抵消伴随所述主致动器的动作而产生的转矩变化。
2.根据权利要求1所述的车辆驱动单元的控制装置,其特征在于,
由所述预约信息获取机构获取的预约信息中包括转矩的调整开始定时和直到达到所述将来目标值为止的转矩的时间变化率,
所述主致动器控制机构,在所述时间变化率是能够由所述主致动器实现的时间变化率时,从所述调整开始定时起开始所述主致动器的动作。
3.根据权利要求1或2所述的车辆驱动单元的控制装置,其特征在于,
包括判定直到所述实现定时为止的富余时间相对于所述所需时间是否足够的判定机构,
所述主致动器控制机构,在所述富余时间相对于所述所需时间不足时,迅速开始所述主致动器的动作,
所述副致动器控制机构,以所述富余时间相对于所述所需时间足够为条件使所述副致动器动作。
4.根据权利要求1所述的车辆驱动单元的控制装置,其特征在于,
所述内燃机是火花点火式的内燃机,
所述主致动器是调整所述内燃机的吸入空气量的致动器,
所述副致动器是调整所述内燃机的点火正时的致动器。
5.根据权利要求4所述的车辆驱动单元的控制装置,其特征在于,
从所述车辆控制机构对于所述内燃机所预约的转矩调整是转矩的增加调整。
6.一种车辆驱动单元的控制装置,所述车辆驱动单元以内燃机为动力装置,其特征在于,包括:
转矩消耗要素,消耗所述内燃机输出的转矩;
主致动器,用于所述内燃机的转矩调整;
副致动器,是独立于所述主致动器而用于所述内燃机的转矩调整的致动器,与所述主致动器相比转矩对于动作的响应性高;
将来目标值设定机构,受理来自所述转矩消耗要素的转矩消耗量的变更许可的要求,根据变更后的推定转矩消耗量设定所述内燃机输出的转矩的将来目标值;
所需时间计算机构,在使所述主致动器动作而进行了所述内燃机的转矩调整时,根据当前的内燃机运行状态计算实现所述将来目标值所需的所需时间;
延迟时间计算机构,计算从对于所述转矩消耗要素许可转矩消耗量的变更起到实际完成变更为止的延迟时间;
待机时间设定机构,将从所述所需时间减去所述延迟时间而得到的时间设定为待机时间;
主致动器控制机构,为了所述将来目标值的实现而开始所述主致动器的动作;
许可机构,在从所述主致动器的动作开始起经过了所述待机时间的定时,对于所述转矩消耗要素许可转矩消耗量的变更;和
副致动器控制机构,在从所述主致动器的动作开始起到对于所述转矩消耗要素给予转矩消耗量的变更许可为止的期间,使所述副致动器动作,使得抵消伴随所述主致动器的动作而产生的转矩变化。
7.根据权利要求6所述的车辆驱动单元的控制装置,其特征在于,
所述内燃机是火花点火式的内燃机,
所述主致动器是调整所述内燃机的吸入空气量的致动器,
所述副致动器是调整所述内燃机的点火正时的致动器。
8.根据权利要求7所述的车辆驱动单元的控制装置,其特征在于,
由所述转矩消耗要素所要求的转矩消耗量的变更许可,是转矩消耗量的增量许可。
CN200880110226XA 2007-10-05 2008-10-01 车辆驱动单元的控制装置 Expired - Fee Related CN101815855B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP262636/2007 2007-10-05
JP2007262636A JP4389990B2 (ja) 2007-10-05 2007-10-05 車両駆動ユニットの制御装置
PCT/JP2008/067846 WO2009044779A1 (ja) 2007-10-05 2008-10-01 車両駆動ユニットの制御装置

Publications (2)

Publication Number Publication Date
CN101815855A CN101815855A (zh) 2010-08-25
CN101815855B true CN101815855B (zh) 2013-01-23

Family

ID=40526204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880110226XA Expired - Fee Related CN101815855B (zh) 2007-10-05 2008-10-01 车辆驱动单元的控制装置

Country Status (6)

Country Link
US (1) US8209104B2 (zh)
EP (1) EP2194259B1 (zh)
JP (1) JP4389990B2 (zh)
KR (1) KR101074308B1 (zh)
CN (1) CN101815855B (zh)
WO (1) WO2009044779A1 (zh)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009054945A1 (de) * 2009-12-18 2011-06-22 Robert Bosch GmbH, 70469 Verfahren zum Betreiben einer Antriebseinrichtung sowie Steuergerät für eine Antriebseinrichtung
US8967118B2 (en) * 2011-01-14 2015-03-03 GM Global Technology Operations LLC Turbocharger boost control systems and methods for gear shifts
JP5708812B2 (ja) * 2011-08-31 2015-04-30 トヨタ自動車株式会社 内燃機関の制御装置
US9394842B2 (en) * 2011-12-13 2016-07-19 Ford Global Technologies, Llc Method for improving engine starting
US8903578B2 (en) 2012-05-07 2014-12-02 Ford Global Technologies, Llc Hybrid vehicle control utilizing grade data
JP5962758B2 (ja) * 2012-06-14 2016-08-03 日産自動車株式会社 内燃機関の制御装置
US9534547B2 (en) 2012-09-13 2017-01-03 GM Global Technology Operations LLC Airflow control systems and methods
US9541019B2 (en) 2014-03-26 2017-01-10 GM Global Technology Operations LLC Estimation systems and methods with model predictive control
US9378594B2 (en) 2014-03-26 2016-06-28 GM Global Technology Operations LLC Fault diagnostic systems and methods for model predictive control
US9435274B2 (en) 2014-03-26 2016-09-06 GM Global Technology Operations LLC System and method for managing the period of a control loop for controlling an engine using model predictive control
US9920697B2 (en) 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9328671B2 (en) 2013-04-23 2016-05-03 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9714616B2 (en) 2014-03-26 2017-07-25 GM Global Technology Operations LLC Non-model predictive control to model predictive control transitions
US9334815B2 (en) 2014-03-26 2016-05-10 GM Global Technology Operations LLC System and method for improving the response time of an engine using model predictive control
US9429085B2 (en) 2013-04-23 2016-08-30 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9765703B2 (en) 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9388754B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Artificial output reference for model predictive control
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
US9528453B2 (en) 2014-11-07 2016-12-27 GM Global Technologies Operations LLC Throttle control systems and methods based on pressure ratio
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9587573B2 (en) 2014-03-26 2017-03-07 GM Global Technology Operations LLC Catalyst light off transitions in a gasoline engine using model predictive control
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9376965B2 (en) 2013-04-23 2016-06-28 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9347381B2 (en) 2014-03-26 2016-05-24 GM Global Technology Operations LLC Model predictive control systems and methods for internal combustion engines
US9605615B2 (en) 2015-02-12 2017-03-28 GM Global Technology Operations LLC Model Predictive control systems and methods for increasing computational efficiency
US9599049B2 (en) 2014-06-19 2017-03-21 GM Global Technology Operations LLC Engine speed control systems and methods
US9388758B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Model predictive control systems and methods for future torque changes
US9382865B2 (en) 2014-03-26 2016-07-05 GM Global Technology Operations LLC Diagnostic systems and methods using model predictive control
US9086026B2 (en) * 2012-12-13 2015-07-21 GM Global Technology Operations LLC System and method for controlling torque output of an engine when a water pump coupled to the engine is switched on or off
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
US9789876B1 (en) 2016-06-16 2017-10-17 GM Global Technology Operations LLC Axle torque control system for a motor vehicle
JP6834497B2 (ja) * 2017-01-12 2021-02-24 スズキ株式会社 エンジン制御装置
US10125712B2 (en) 2017-02-17 2018-11-13 GM Global Technology Operations LLC Torque security of MPC-based powertrain control
US10119481B2 (en) 2017-03-22 2018-11-06 GM Global Technology Operations LLC Coordination of torque interventions in MPC-based powertrain control
US10399574B2 (en) 2017-09-07 2019-09-03 GM Global Technology Operations LLC Fuel economy optimization using air-per-cylinder (APC) in MPC-based powertrain control
US10358140B2 (en) 2017-09-29 2019-07-23 GM Global Technology Operations LLC Linearized model based powertrain MPC
US10619586B2 (en) 2018-03-27 2020-04-14 GM Global Technology Operations LLC Consolidation of constraints in model predictive control
US10661804B2 (en) 2018-04-10 2020-05-26 GM Global Technology Operations LLC Shift management in model predictive based propulsion system control
US10767571B2 (en) * 2018-07-18 2020-09-08 Ford Global Technologies, Llc Methods and system for operating an engine
US10859159B2 (en) 2019-02-11 2020-12-08 GM Global Technology Operations LLC Model predictive control of torque converter clutch slip
US11312208B2 (en) 2019-08-26 2022-04-26 GM Global Technology Operations LLC Active thermal management system and method for flow control
US11008921B1 (en) 2019-11-06 2021-05-18 GM Global Technology Operations LLC Selective catalytic reduction device control
US11912262B2 (en) * 2020-11-20 2024-02-27 Ford Global Technologies, Llc Vehicle air conditioning torque reserve via belt integrated starter generator
CN112319506B (zh) * 2021-01-06 2021-03-26 天地科技股份有限公司 一种无人驾驶运输车控制方法及无人驾驶运输车
WO2023275910A1 (ja) * 2021-06-28 2023-01-05 日産自動車株式会社 車両の制御方法及び車両の制御装置
US11739708B2 (en) * 2021-10-20 2023-08-29 Ford Global Technologies, Llc Methods for transient fuel control compensation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1511229A (zh) * 2002-04-03 2004-07-07 �����Զ�����ʽ���� 发动机起动控制装置、发动机起动控制方法以及其中记录有用于实现该方法的程序的记录介质

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2092269A (en) * 1934-05-19 1937-09-07 Ford Motor Co Ignition distributor
US4724723A (en) * 1986-07-30 1988-02-16 General Motors Corporation Closed loop shift quality control system
JPH039044A (ja) * 1989-06-02 1991-01-16 Toyota Motor Corp 自動変速機及びエンジンの一体制御装置
JP3011339B2 (ja) * 1990-03-30 2000-02-21 マツダ株式会社 自動変速機付きエンジンの出力低下制御装置
JP2832266B2 (ja) 1990-06-30 1998-12-09 マツダ株式会社 エンジンのスロットル弁制御装置
DE4232973C2 (de) 1992-10-01 2002-03-21 Bosch Gmbh Robert Verfahren und Vorrichtung zum Einstellen des Drehmoments eines Ottomotors während eines Schaltvorgangs
JP2860852B2 (ja) * 1993-03-18 1999-02-24 株式会社ユニシアジェックス 内燃機関のアイドル回転速度制御装置
US5421302A (en) * 1994-02-28 1995-06-06 General Motors Corporation Engine speed control state prediction
JP3391085B2 (ja) * 1994-03-17 2003-03-31 日産自動車株式会社 内燃機関のアイドル回転速度制御装置
US5987432A (en) * 1994-06-29 1999-11-16 Reuters, Ltd. Fault-tolerant central ticker plant system for distributing financial market data
JPH08156652A (ja) * 1994-12-07 1996-06-18 Hitachi Ltd 車両の駆動トルク制御装置
US5577474A (en) * 1995-11-29 1996-11-26 General Motors Corporation Torque estimation for engine speed control
JP3204140B2 (ja) * 1996-07-24 2001-09-04 トヨタ自動車株式会社 車両の出力制御装置
DE19806665B4 (de) * 1998-02-18 2008-05-15 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JPH11336591A (ja) * 1998-05-22 1999-12-07 Yamaha Motor Co Ltd エンジンの燃料噴射制御方法
JPH11351044A (ja) * 1998-06-11 1999-12-21 Toyota Motor Corp 内燃機関の制御装置
US6624761B2 (en) * 1998-12-11 2003-09-23 Realtime Data, Llc Content independent data compression method and system
US6601104B1 (en) * 1999-03-11 2003-07-29 Realtime Data Llc System and methods for accelerated data storage and retrieval
US20010047473A1 (en) * 2000-02-03 2001-11-29 Realtime Data, Llc Systems and methods for computer initialization
US8692695B2 (en) * 2000-10-03 2014-04-08 Realtime Data, Llc Methods for encoding and decoding data
US7386046B2 (en) * 2001-02-13 2008-06-10 Realtime Data Llc Bandwidth sensitive data compression and decompression
DE10225448A1 (de) * 2002-06-08 2003-12-18 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung der Brennkraftmaschine eines Fahrzeugs
JP2004346868A (ja) * 2003-05-23 2004-12-09 Denso Corp 筒内噴射式内燃機関の制御装置
US6959692B2 (en) * 2003-04-15 2005-11-01 Ford Global Technologies, Llc Computer controlled engine valve operation
US7351183B2 (en) * 2004-12-16 2008-04-01 Ford Global Technologies, Llc Ratio shift control for a multiple ratio automatic transmission
JP2007113555A (ja) 2005-10-24 2007-05-10 Toyota Motor Corp 内燃機関の制御装置
DE102005058864A1 (de) * 2005-12-09 2007-06-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1511229A (zh) * 2002-04-03 2004-07-07 �����Զ�����ʽ���� 发动机起动控制装置、发动机起动控制方法以及其中记录有用于实现该方法的程序的记录介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开平11-336591A 1999.12.07
JP特开平11-351044A 1999.12.21
JP特开平7-259616A 1995.10.09

Also Published As

Publication number Publication date
JP2009091965A (ja) 2009-04-30
JP4389990B2 (ja) 2009-12-24
CN101815855A (zh) 2010-08-25
US20100268436A1 (en) 2010-10-21
WO2009044779A1 (ja) 2009-04-09
EP2194259A1 (en) 2010-06-09
KR101074308B1 (ko) 2011-10-17
KR20100058594A (ko) 2010-06-03
EP2194259A4 (en) 2012-07-18
US8209104B2 (en) 2012-06-26
EP2194259B1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
CN101815855B (zh) 车辆驱动单元的控制装置
US7650954B2 (en) Method for controlling the drive power distribution in a motor vehicle with hybrid drive
CN102102591B (zh) 用于内燃发动机的速度控制系统和方法
CN101784779B (zh) 内燃机的控制装置
CN101363373B (zh) 用于反馈协调扭矩控制系统的信息的方法和系统
CN102094721B (zh) 线性变换发动机扭矩控制系统和用于增加扭矩请求的方法
KR101174960B1 (ko) 전체-속도 조속기를 가진 엔진의 토크 속도제어 장치
CN102951156A (zh) 用于曲轴扭矩修改的方法及其控制系统
US8813720B2 (en) Cylinder deactivation EMS control
JPS6359019B2 (zh)
CN109779775A (zh) 一种发动机可变喷油压力控制方法
CN101372916B (zh) 全量程扭矩降低
CN108688643A (zh) 混合动力传动系统转速控制
CN101782023B (zh) 带扫气的扭矩控制系统
CN105317576A (zh) 用于内燃机的控制设备
JP6136947B2 (ja) 内燃機関の制御装置
US6994653B2 (en) Method and arrangement for controlling the internal combustion engine of a vehicle
CN103382897A (zh) 控制发动机扭矩以防在减档期间节气门阀关闭时传动系碰撞的系统和方法
JP5601894B2 (ja) 車両制御装置
JP2007138878A (ja) 内燃機関の制御装置
JPH08232705A (ja) 車両の内燃機関を制御するための方法及び装置
CN202448981U (zh) 汽车动力总成控制系统
CN101545534B (zh) 估计转矩设定装置、自动变速器控制装置以及内燃机延迟模型学习方法
JP4937837B2 (ja) 内燃機関制御装置
JP4850853B2 (ja) エンジンの吸気制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130123

Termination date: 20191001

CF01 Termination of patent right due to non-payment of annual fee