CN101808737B - 烃重整用催化剂及使用了该催化剂的合成气体的制法 - Google Patents

烃重整用催化剂及使用了该催化剂的合成气体的制法 Download PDF

Info

Publication number
CN101808737B
CN101808737B CN2008801095406A CN200880109540A CN101808737B CN 101808737 B CN101808737 B CN 101808737B CN 2008801095406 A CN2008801095406 A CN 2008801095406A CN 200880109540 A CN200880109540 A CN 200880109540A CN 101808737 B CN101808737 B CN 101808737B
Authority
CN
China
Prior art keywords
catalyst
hydrocarbon
reaction
reforming
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008801095406A
Other languages
English (en)
Other versions
CN101808737A (zh
Inventor
永冈胜俊
泷田祐作
若月俊也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Exploration Co Ltd
Original Assignee
Japan Petroleum Exploration Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Exploration Co Ltd filed Critical Japan Petroleum Exploration Co Ltd
Publication of CN101808737A publication Critical patent/CN101808737A/zh
Application granted granted Critical
Publication of CN101808737B publication Critical patent/CN101808737B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/864Cobalt and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明提供了重整用催化剂及使用了该催化剂的合成气体的制法,该重整用催化剂包含具有下述式(I)表示的组成的复合氧化物,Co、Ni及M分散在该复合氧化物中。aM·bCo·cNi·dMg·eCa·fO (I)[式(I)中,a、b、c、d、e、f是摩尔分数,a+b+c+d+e=1、0.0001<a≤0.20、0<b≤0.20、0≤c≤0.20、0.001<(b+c)≤0.20、0.60≤(d+e)≤0.9989、0<d<0.9989、0<e<0.9989、f=元素与氧保持电荷平衡的必要数值。此外,M是元素周期表第3B族元素、第6A族元素中的至少一种元素。]上述重整用催化剂在烃的重整中可使催化剂活性长期维持在高水平。

Description

烃重整用催化剂及使用了该催化剂的合成气体的制法
技术领域
本发明涉及重整用催化剂及使用了该重整催化剂的合成气体的制法,该重整用催化剂用于从甲烷等烃和水、二氧化碳、氧、空气等重整物质获得作为一氧化碳(CO)和氢(H2)的混合气体的合成气体。 
本申请基于2007年10月11日申请的日本国专利申请2007-265490号而主张优先权,在此引用其内容。 
背景技术
使甲烷、天然气体、石油气体、石脑油、重油、原油等烃在催化剂存在下的高温区与水、空气、二氧化碳等重整物质反应时,可重整为富有反应活性的一氧化碳、氢的混合气体。重整得到的一氧化碳、氢的混合气体,可作为甲醇、液体燃料油等的原料而使用。最近,关于从混合气体制取燃料电池用氢气的研究、开发也正在深入开展。一氧化碳、氢的混合气体的合成反应中,使用镍/氧化铝、镍/氧化镁/氧化铝等重整用催化剂。 
在使用了重整用催化剂的烃/水蒸气的反应体系中,作为反应副产物的碳质粒子容易在催化剂表面析出。析出的碳质粒子覆盖催化剂表面的活性点,从而使催化剂活性降低。碳质粒子的大量析出,当然是催化剂的堵塞、破损等的原因,而且会使反应区中的气体偏流,结果使对重整反应有促进作用的催化剂的比例降低。虽然通过输送过剩量的水蒸气可防止碳质粒子在催化剂表面的析出,但能量成本上升、设备大型化等问题不可避免。 
为了在不需要供给过剩量水蒸气的情况下抑制碳质粒子的析出,有人提出了使催化剂活性成分高分散的重整用催化剂(专利文献1、2)。在专利文献1中,记载了如下所述的获得催化剂活性成分高分散化的重整用催化剂的方法。采用了如下方法:在催化剂粒子的各构成元素的水溶性盐的水溶液中添加共沉淀剂,使氢氧化物沉淀,在温度为673K~873K的范围内进行一次烧结,在温度为1223K~1573K的范围内进行二次烧结。此外, 专利文献2记载的重整用催化剂是将多孔质成形体(催化剂载体)浸渍在含有Ni、Co等催化剂活性成分及Mg、Al、Zr、Ti、Ca等载体构成成分的水溶液中,使催化剂活性成分、载体构成成分浸透到多孔质成形体内。接着,将多孔质成形体干燥后,在700℃以上高温烧结,在500℃以上进行活化处理时,极其微小的粒状催化剂粒子在多孔质成形体的表层高分散。并且记载了通过催化剂粒子的高分散,可抑制碳质粒子在催化剂表面的析出,可长期维持优异的催化剂活性作用。 
专利文献1:日本特开2002-126528号公报 
专利文献2:日本特开2004-141860号公报 
发明内容
但是,专利文献1及2中介绍的重整催化剂,虽然通过催化剂活性成分的高分散可抑制由碳质粒子析出所产生的不良影响,但长时间使用时,有时在剩余的水蒸气、二氧化碳等作用下,催化剂活性成分发生氧化,从而使催化剂活性等性能降低。 
此外,作为防止因活性成分氧化所导致的性能降低的方法,考虑到可通过增加活性成分的担载量来应对,但大量的活性成分存在于催化剂表面上时,将不能维持其分散性,其结果碳质粒子的大量析出不可避免。 
本发明是为了解决上述问题而研究出的发明,其目的在于提供使催化剂活性长期维持在高水平的烃重整用催化剂、以及使用了该催化剂的合成气体的制法。 
一氧化碳、氢的混合气体根据下述反应式(1)~(4)的反应由烃原料合成。另一方面,碳质粒子在催化剂表面析出的反应用下述反应式(5)~(8)表示。通过下述反应式(5)~(8)的反应而析出的碳质粒子蓄积在催化剂活性成分/催化剂载体间,使活性度降低,最终催化剂受到破坏。即使活性度还未降低,但因蓄积的碳质粒子的影响,使反应器中流动的气体发生偏流,对重整反应无用的催化剂的比例容易增加。 
CH4+CO2<=>2CO+2H2            (1) 
CH4+H2O<=>CO+3H2             (2) 
CnHm+nH2O<=>nCO+(n+m/2)H2    (3) 
CO2+H2<=>CO+H2O    (4) 
2CO<=>C+CO2         5) 
CH4<=>C+2H2        (6) 
CO+H2<=>C+H2O      (7) 
CnHm=>nC+m/2H2     (8) 
将担载于载体上的催化剂活性成分制成非常微细的粒子时,可抑制碳质粒子的蓄积。催化剂活性成分的粒径对于碳质粒子蓄积的消除所产生的影响,认为是因为与碳质粒子的生成、析出反应(5)~(8)相比,逆反应的速度相对较大。催化剂活性成分的粒径越细,即催化剂活性成分的分散性越高,碳质粒子的蓄积被消除的趋势越强。此外,发现担载于载体表面的镓、铬、钨等耐氧化性提高成分可抑制因水蒸气、二氧化碳等引起的催化剂活性成分的氧化,可提高活性成分自身的耐氧化性,于是完成了本发明。 
本发明的重整用催化剂包含具有下述式(I)表示的组成的复合氧化物,Co、Ni、及M分散在该复合氧化物中。 
所述M优选为选自镓、铬、钨中的至少一种。 
aM·bCo·cNi·dMg·eCa·fO          (I) 
式(I)中,a、b、c、d、e、f为摩尔分数,a+b+c+d+e=1、0.0001<a≤0.20、0<b≤0.20、0≤c≤0.20、0.001<(b+c)≤0.20、0.60≤(d+e)≤09989、0<d<0.9989、0<e<0.9989、f=元素与氧保持电荷平衡的必要数值。此外,M(以下,有时称为耐氧化性提高成分)是元素周期表第3B族元素、第6A族元素中的至少一种元素。 
本发明的合成气体的制造方法是使用上述重整用催化剂,由烃和重整物质获得合成气体。优选将烃和重整物质的供给比例设定为重整物质/碳比例=0.3~100。 
根据本发明,可以提供使催化剂活性长期维持在高水平的烃重整用催化剂、以及使用了该催化剂的合成气体的制法。 
附图说明
图1为示意地表示本发明的催化剂的表面状态的说明图。 
符号说明 
1催化剂 
2微小粒子 
具体实施方式
本发明的重整用催化剂包含具有下述式(I)表示的组成的复合氧化物,Co、Ni、及M分散在该复合氧化物中。此外,在本发明中,下述式(I)表示的组成是以烧结后的无水物为基准来表示的组成。 
aM·bCo·cNi·dMg·eCa·fO    (I) 
式(I)中,a、b、c、d、e、f为摩尔分数,a+b+c+d+e=1、0.0001<a≤0.20、0<b≤0.20、0≤c≤0.20、0.001<(b+c)≤0.20、0.60≤(d+e)≤0.9989、0<d<0.9989、0<e<0.9989、f=元素与氧保持电荷平衡的必要数值。此外,M是元素周期表第3B族元素、第6A族元素中的至少一种元素。 
此外,在此元素周期表是IUPAC规定的元素周期表。 
上述(I)式中的M是元素周期表第3B族元素、第6A族元素中的至少一种元素。其中,作为第3B族元素,优选为镓,作为第6A族元素,优选为铬、钨。 
此外,在该组成中,M的含量(a)为0.0001以下时,未确认有氧化抑制效果,超过0.20时使重整反应的活性降低,故不适合。因此,M的含量(a)为0.0001<a≤0.20,优选为0.0001<a≤0.15,进一步优选为0.0001<a≤0.10。 
钴含量(b)为0<b≤0.20,此外镍含量(c)为0≤c≤0.20。钴含量(b)和镍含量(c)的合计量(b+c)为0.001以下时,钴及/或镍的含量过少,反应活性低;超过0.20时阻碍后述的高分散化,不能充分获得防止碳质析出的效果。因此,钴含量(b)和镍含量(c)的合计量(b+c)为0.001<(b+c)≤0.20,优选为0.001<(b+c)≤0.15,进一步优选为0.001<(b+c)≤0.10。 
镁含量(d)和钙含量(e)的合计量(d+e)为0.60≤(d+e)≤0.9989,优选为0.70≤(d+e)≤0.9989,进一步优选为0.80≤(d+e)≤0.9989。 其中,镁含量(d)为0<d<0.9989,优选为0.20≤d<0.9989,进一步优选为0.50≤d<0.9989。钙含量(e)为0<e<0.9989,优选为0<e≤0.5,进一步优选为0<e≤0.3。 
镁含量(d)和钙含量(e)的合计量(d+e)由与M含量(a)、钴含量(b)及镍含量(c)之间的平衡来决定。如果(d+e)在上述范围内,任何比例均可对重整反应发挥优异的效果,但钙含量(e)多时,虽然有抑制含碳物质析出的效果,但与镁含量(d)多时相比,催化剂活性低。因此,如果重视活性,则钙含量(e)超过0.5时活性降低,故不优选。 
本发明的复合氧化物,是指MgO、CaO呈岩盐型晶体结构、位于其晶格中的Mg或Ca原子的一部分置换为Co、Ni及M的一种固溶体,其形成单相,并不是所谓的各元素单独氧化物的混合物。而且,在本发明中,钴、镍以及M在该复合氧化物中呈高分散状态。 
本发明中的分散是通常在催化剂领域中所定义的分散,例如“催化剂讲座第5卷催化剂设计”第141页(催化剂学会编、讲谈社刊)等中所述,定义为在催化剂表面露出的原子数相对于担载的金属的全部原子数的比。 
根据本发明的图1的示意图具体对此进行说明,包含复合氧化物的催化剂1的表面上存在有无数个成为活性中心的半球状等的微小粒子2,该微小粒子2是在下述活性化(还原)处理后,由钴、镍以及M的金属元素或其化合物形成。将形成该微小粒子2的钴、镍以及M的金属元素或其化合物的原子数设定为A,将这些原子中在粒子2的表面露出的原子数设定为B,那么B/A为分散度。 
如果认为参与催化反应的是微小粒子2表面露出的原子,那么分散度接近1的催化剂,通过在其表面分布大量的原子,活性中心增加,可变为高活性。此外,如果微小粒子2的粒径可无限小,则形成微小粒子2的原子的大部分在粒子2的表面露出,分散度接近1。因此,微小粒子2的粒径可作为表示分散度的指标。 
本发明的催化剂的微小粒子2的粒径低于各种测定方法、例如X射线衍射法等的测定限度即3.5nm。由此可以说分散度高,为高分散状态。因此,参与反应的钴、镍以及M的原子数增加,成为高活性,反应按照化学 计量地进行,可防止碳质(碳)的析出。 
接着,对本发明的重整用催化剂的制法进行说明。本发明的催化剂的制法通过利用所谓的含浸法使其担载于载体上来进行。将催化剂活性成分担载于载体上后,再担载耐氧化性提高成分,使催化剂活性成分和耐氧化性提高成分含浸在载体上,干燥后通过高温烧结形成复合氧化物,从而使微粒状的催化剂活性成分分散在载体表面。 
作为催化剂载体,可使用通过将选自氧化镁或氧化镁和氧化钙的复合体中的至少一种成形、烧结而得到的载体。因为载体是细孔在表面开口的结构,可担载比较多的催化剂活性成分及耐氧化性提高成分。催化剂活性成分的担载量随着载体的细孔容积(空隙率)的增加而增加,但空隙率的增加意味着载体的强度下降。因此,可考虑催化剂活性成分的必要担载量、载体强度而适当决定载体的空隙率。载体例如可通过下述方法制造,即:根据需要在载体粉末中配合石墨等润滑剂、对于提高成形体强度有效的水泥、粘合剂等而得到混合物,将该混合物压缩成形、挤压成型。可通过压粉体的密度、添加发泡剂等来调整为必要的空隙率。 
含浸用水溶液分别制备成在水中添加催化剂活性成分并使其溶解而成的催化剂活性成分水溶液、和在水中添加耐氧化性提高成分并使其溶解而成的耐氧化性提高成分水溶液。具体为:制备以上述式(I)表示的比率含有Co及/或Ni的催化剂活性成分水溶液、和含有M的耐氧化性提高成分水溶液。 
本发明的催化剂活性成分是选自镍、钴中的至少一种。 
本发明的耐氧化性提高成分是选自在上述式(I)中用M表示的元素中的至少一种。 
催化剂活性成分、耐氧化性提高成分均可单独使用1种、或将2种以上的成分复合使用。可形成乙酸盐、甲酸盐等有机酸盐或硝酸盐、氯化物等无机酸盐来进行配合。优选将耐氧化性提高成分/催化剂活性成分的摩尔比调整为0.001~0.5。 
含浸处理中规定水溶液浓度、温度、时间等浸渍条件,以使得到的重整用催化剂中的催化剂活性成分的担载量为0.1~20摩尔%。催化剂活性成分的担载量低于0.1摩尔%时,催化剂活性降低,相反超过20摩尔%的担 载量,则阻碍高分散化,碳质粒子的抑制效果不充分。催化剂活性成分的担载量可利用荧光X射线分析、原子吸光分析来测定。 
含浸用水溶液的温度优选为0~80℃。低于0℃时,催化剂活性成分、耐氧化性提高成分有可能在载体上含浸不充分。另一方面,超过80℃的温度时,载体的一部分变为氢氧化物,有可能产生催化剂强度降低等不良情况。 
浸渍时间优选为10~60分钟。浸渍时间低于10分钟时,催化剂活性成分、耐氧化性提高成分有可能在载体上含浸不充分。另一方面,超过60分钟时,有可能大量产生构成催化剂载体的氧化物的氢氧化物。 
将含浸处理过的催化剂前体加热干燥以除去水分,得到干燥后的催化剂前体。干燥温度无特别限定,但因为越是高温干燥越能促进水分蒸发,所以优选将干燥温度设定为100℃以上,从而使干燥时间缩短。通过将上述催化剂前体充分干燥,部分结晶水被除去,接下来的烧结工序中的催化剂前体的体积变化也变小。不充分干燥时,烧结工序中容易产生残留水分的暴沸、催化剂前体的收缩,有可能造成催化剂前体的破坏。是否完全除去水分可根据干燥前后的重量减少来判断。 
将干燥后的催化剂前体在大气等氧化性气氛中烧结。烧结温度无特别限定,优选在700~1300℃烧结。低于700℃时,催化剂活性成分、耐氧化性提高成分的氧化有可能不充分,超过1300℃时,有可能使催化剂的表面积减小,使催化剂活性降低。 
此外,烧结时间优选进行1~20小时,低于1小时时,催化剂活性成分、耐氧化性提高成分的氧化有可能不充分,超过20小时时,催化剂活性有可能降低。 
本发明的重整用催化剂由从含浸用水溶液迁移到载体上的催化剂活性成分、耐氧化性提高成分所形成,因此在载体的表面层均匀分布。此外,因为在载体的表层均匀分散有催化剂粒子,所以有助于催化反应的催化剂粒子的比例特别高,结果可降低催化剂的使用量。 
对本发明的使用重整用催化剂的合成气体的制法进行说明。 
首先,进行重整用催化剂的活化处理。该活化处理通过下述方法进行,即:使催化剂在氢气等还原性气体的存在下,在500~1000℃、优选在600~ 1000℃、进一步优选在650~1000℃的温度范围内加热约0.5~50小时左右。还原性气体可用氮气等不活泼性气体进行稀释。该活化处理也可在进行重整反应的反应器内进行。 
通过该活化处理,图1中的催化剂1表面的微小粒子2被还原,形成Co、Ni或M的金属元素或其化合物,表现出催化剂活性。本发明中的活化处理,与以往Co或Ni氧化物类催化剂的活化处理相比,在更高温度下进行。因为以往的Co或Ni氧化物类催化剂通常在低于500℃时进行,所以本发明的在高温下的活化处理可能有助于上述高分散化。 
接着,在填充有进行了上述活化处理的重整用催化剂的反应管内,供给由烃和重整物质组成的原料气体,在任意的反应条件下进行反应。具体为:温度条件为500~1000℃、优选为600~1000℃、进一步优选为650~1000℃。低于500℃时烃转化率低,不实用;超过1000℃的条件下,另外还需要具有耐高温性的反应管,存在经济方面的问题。压力条件(表压,以下相同)为0.1~10MPa、优选为0.1~5MPa、进一步优选为0.1~3MPa范围内进行反应。因为低于0.1MPa时反应管变大,从而投资增加,超过10MPa时需要耐高压性的反应管。 
原料气体的空间速度(GHSV:原料气体的供给速度除以按体积换算的催化剂量而得到的值)期望为500~200000h-1、优选为1000~100000h-1、进一步优选为1000~75000h-1的范围。此外,催化床的形态可任意选择固定床、移动床、流化床等公知的形态。 
作为合成气体的原料的烃,可使用从天然气体、石油气体、石脑油、重油、原油等、煤炭、煤砂等中获得的烃等,只要其中一部分含有甲烷等烃即可,无特别限定。这些烃也可将2种以上混合。 
作为重整物质,可使用水(水蒸气)、二氧化碳、氧、空气等,也可将2种以上混合。作为优选的重整物质,为水、或二氧化碳、或水与二氧化碳的混合物。 
反应时的烃与重整物质的供给比例,用以烃中的碳原子数为基准的摩尔比表示,重整物质/碳比=0.3~100,优选为0.3~10,进一步优选为0.5~3。重整物质/碳比低于0.3时,碳质的析出加剧,超过100时反应管变大,投资等增加。 
在烃和重整物质的混合气体中,可以共存作为稀释剂的氮等不活泼性气体。 
本发明的重整用催化剂使CoO、NiO或MOx形成与MgO或MgO/CaO的复合氧化物,是分散有钴、镍及M的催化剂,从而成为高活性。这样,即使甲烷等烃和水蒸气等重整物质以等化学当量或与该化学当量接近的量进行反应,也可抑制碳质(碳)的析出,可高效制造合成气体。因此,不需要大量过剩供给水蒸气等重整物质,不会浪费重整物质,可低成本生产合成气体。此外,因为催化剂没有被碳质污染,所以可抑制催化剂活性的经时性降低,使催化剂的寿命延长。进而,可抑制由氧化引起的催化性能降低,可使催化剂的活性长期维持在高水平。 
实施例 
以下,例举实施例对本发明进行具体说明,但并不限于这些实施例。 
(实施例1) 
将含有0.1质量%钙的氧化镁粉末成形为外径3mm、高3mm的圆柱形,通过在1100℃烧结而得到载体。对于含浸用水溶液,将Co(NO3)2·6H2O:397.32g溶解于水中,制备1升的催化剂活性成分水溶液。此外,将Cr(NO3)2·9H2O:184.54g溶解于水中,制备1升的耐氧化性提高成分水溶液。在维持常温的上述催化剂活性成分水溶液中将上述载体浸渍30分钟后,使从该水溶液中拉起的催化剂前体在大气中、在120℃干燥12小时。使浸渍、干燥重复进行3次直至Co(催化剂活性成分)的担载量为5摩尔%。干燥后,在维持常温的耐氧化性提高成分水溶液中将上述催化剂前体浸渍30分钟,在120℃干燥12小时。干燥后,通过将浸渍有Co、Cr的硝酸盐的催化剂前体在大气气氛中、在1250℃烧结5个小时,得到催化剂A。 
对于得到的催化剂A,进行下述反应例1~3。反应例1~3的结果如表1所示。 
(实施例2) 
将实施例1的Co(NO3)2·6H2O:397.32g改为Co(NO3)2·6H2O:396.72g,此外,将Cr(NO3)2·9H2O:184.54g变为Ga(NO3)2·nH2O:137.69g,除此之外,与实施例1相同,得到催化剂B。对于得到的催化剂B,进行下述反 应例1~3。反应例1~3的结果如表1所示。 
(实施例3) 
将实施例1的Co(NO3)2·6H2O:397.32g改为Co(NO3)2·6H2O:395.63g,将Cr(NO3)2·9H2O:184.54g改为(NH4)10W12O41·5H2O:34.13g,除此之外,与实施例1相同,得到催化剂C。对于得到的催化剂C,进行下述反应例1~3。反应例1~3的结果如表1所示。 
(实施例4) 
将实施例1的Co(NO3)2·6H2O:397.32g改为Co(NO3)2·6H2O:297.99g和Ni(NO3)2·6H2O:99.25g,除此之外,与实施例1相同,得到催化剂D。对于得到的催化剂D,进行下述反应例1~3。反应例1~3的结果如表1所示。 
(实施例5) 
将实施例2的Co(NO3)2·6H2O:396.72g改为Co(NO3)2·6H2O:297.54g和Ni(NO3)2·6H2O:99.10g,除此之外,与实施例2相同,得到催化剂E。对于得到的催化剂E,进行下述反应例1~3。反应例1~3的结果如表1所示。 
(实施例6) 
将实施例3的Co(NO3)2·6H2O:395.63g改为Co(NO3)2·6H2O:296.72g和Ni(NO3)2·6H2O:98.83g,除此之外,与实施例3相同,得到催化剂F。对于得到的催化剂F,进行下述反应例1~3。反应例1~3的结果如表1所示。 
(比较例1) 
除去实施例1的Cr(NO3)2·9H2O:184.54g,除此之外,其它与实施例1相同,得到催化剂G。对于得到的催化剂G,进行下述反应例1~3。反应例1~3的结果如表1所示。 
(比较例2) 
将比较例1的Co(NO3)2·6H2O:397.32g改为Ni(NO3)2·6H2O:397.00g,除此之外,与比较例1相同,得到催化剂H。对于得到的催化剂H,进行下述反应例1~3。反应例1~3的结果如表1所示。 
(比较例3) 
将比较例1的Co(NO3)2·6H2O:397.32g改为Co(NO3)2·6H2O:297.99g、Ni(NO3)2·6H2O:99.25g,除此之外,与比较例1相同,得到催化剂I。对于得到的催化剂I,进行下述反应例1~3。反应例1~3的结果如表1所示。 
(反应例1) 
对于催化剂A~I,分别将20ml的催化剂填充到内径16mm的流通式反应管内,在输送氢气的同时将催化剂层加热保持在850℃以上,实施活化处理。 
接着,将催化剂层的出口温度维持为850℃,将气氛气压维持为2.0MPa,使作为反应气体的甲烷/二氧化碳/水蒸气以2/1/2的比例在气体空间速度(GHSV)为3000h-1的条件下输入流通式反应管内。反应20小时后的时间点的甲烷转化率以及在催化剂上析出的碳量如表1所示。 
(反应例2) 
省略反应例1的反应气体中的二氧化碳,使甲烷/水蒸气以2/3的比例在GHSV:3000h-1的条件下输入流通式反应管。反应20小时后的时间点的甲烷转化率如表1所示。 
(反应例3) 
省略反应例1的反应气体中的二氧化碳,使甲烷/水蒸气以2/3的比例在催化剂层出口温度:580℃、GHSV:72000h-1的条件下输入流通式反应管。反应5小时后的时间点的甲烷转化率如表1所示。 
(甲烷转化率) 
用气相色谱法测定反应气体中的甲烷浓度(原料气体甲烷浓度)、以及催化剂层出口的甲烷浓度(反应后甲烷浓度),甲烷转化率用下式(II)求出。 
Figure GPA00001075246700121
(碳析出量) 
使反应例1的反应结束后,从反应管取出催化剂,用热重量分析法及升温氧化法测定在催化剂表面析出的碳量。 
表1 
Figure GPA00001075246700131
*:在反应开始5小时时催化剂层堵塞,反应终止 
**:反应开始5小时的甲烷转化率 
***:反应开始1小时时失活 
表1是实施例1~6及比较例1~3的反应例1~3的结果。 
在实施例1~6的反应例1及2的任一者中,20小时后仍维持着高的甲烷转化率。并且,可知反应例1中碳析出量被抑制地较少。另一方面,在比较例1的反应例2中,20小时后甲烷转化率显著降低。在比较例2的反应例1中,反应开始5小时后催化剂层发生堵塞,反应终止。此时碳析出量为45质量%,预测超过5小时后的反应中碳析出量将增加更多。 
反应例3的结果中,在实施例1~6中即使将原料气体的空间速度显著增大,也未发现催化剂失活、堵塞的现象。相对于此,在比较例1中反应开始1小时后催化剂失活,在比较例3中反应开始5小时后甲烷转化率显著降低。 
本发明涉及重整用催化剂,其包含具有下述式(I)表示的组成的复合氧化物,Co、Ni及M分散在该复合氧化物中。 
aM·bCo·cNi·dMg·eCa·fO    (I) 
其中,式(I)中,a、b、c、d、e、f是摩尔分数, 
a+b+c+d+e=1, 
0.0001<a≤0.20, 
0<b≤0.20, 
0≤c≤0.20, 
0.001<(b+c)≤0.20, 
0.60≤(d+e)≤0.9989, 
0<d<0.9989, 
0<e<0.9989, 
f=元素与氧保持电荷平衡的必要数值。此外,M是元素周期表第3B族元素、第6A族元素中的至少一种元素。 
根据本发明,可以使催化剂活性长期维持在高水平。 

Claims (4)

1.一种烃重整用催化剂,其由具有下述式(I)表示的组成的复合氧化物构成,Co、Ni及M分散在该复合氧化物中,所述烃为从天然气体、石油气体、石脑油、重油、原油、煤炭、煤砂中获得的烃、且至少含有甲烷,
aM·bCo·cNi·dMg·eCa·fO    (I)
式(I)中,a、b、c、d、e、f是摩尔分数,
a+b+c+d+e=1,
0.0001<a≤0.20,
0<b≤0.20,
0≤c≤0.20,
0.001<(b+c)≤0.20,
0.60≤(d+e)≤0.9989,
0<d<0.9989,
0<e<0.9989,
f=元素与氧保持电荷平衡的必要数值;此外,M是选自元素周期表第3B族元素、第6A族元素中的至少一种元素。
2.根据权利要求1所述的烃重整用催化剂,其中,所述M为选自由镓、铬、钨组成的组中的至少一种元素。
3.一种合成气体的制造方法,其使用权利要求1或2所述的烃重整用催化剂,由烃和重整物质获得合成气体。
4.根据权利要求3所述的合成气体的制造方法,其中,烃和重整物质的供给比例用以烃中的碳原子数为基准的摩尔比表示,为重整物质/碳=0.3~100。
CN2008801095406A 2007-10-11 2008-10-08 烃重整用催化剂及使用了该催化剂的合成气体的制法 Expired - Fee Related CN101808737B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-265490 2007-10-11
JP2007265490 2007-10-11
PCT/JP2008/068310 WO2009048083A1 (ja) 2007-10-11 2008-10-08 炭化水素リフォーミング用触媒およびこれを用いた合成ガスの製法

Publications (2)

Publication Number Publication Date
CN101808737A CN101808737A (zh) 2010-08-18
CN101808737B true CN101808737B (zh) 2013-05-08

Family

ID=40549227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801095406A Expired - Fee Related CN101808737B (zh) 2007-10-11 2008-10-08 烃重整用催化剂及使用了该催化剂的合成气体的制法

Country Status (10)

Country Link
US (1) US8178003B2 (zh)
EP (1) EP2198960A1 (zh)
JP (1) JP4496346B2 (zh)
CN (1) CN101808737B (zh)
AU (1) AU2008311709B2 (zh)
BR (1) BRPI0817652A2 (zh)
CA (1) CA2702041A1 (zh)
MY (1) MY155824A (zh)
RU (1) RU2475302C2 (zh)
WO (1) WO2009048083A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102035714B1 (ko) * 2012-08-08 2019-10-23 연세대학교 원주산학협력단 탄화수소 개질용 니켈 촉매
RU2572530C1 (ru) * 2014-11-25 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" Способ получения синтез-газа
RU2573005C1 (ru) * 2014-11-25 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" Способ получения синтез-газа
JP6131370B1 (ja) * 2016-06-10 2017-05-17 千代田化工建設株式会社 合成ガス製造触媒用担体及びその製造方法、合成ガス製造触媒及びその製造方法、並びに合成ガスの製造方法
JP2017217630A (ja) * 2016-06-10 2017-12-14 千代田化工建設株式会社 マグネシア系触媒担体及びその製造方法
RU2638534C1 (ru) 2016-12-15 2017-12-14 Публичное акционерное общество "Нефтяная компания "Роснефть" Катализатор конверсии природного или попутного газа в синтез-газ в процессе автотермического риформинга и способ его получения
CN107597199A (zh) * 2017-09-13 2018-01-19 武汉凯迪工程技术研究总院有限公司 循环流化床烃重整催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1623893A (zh) * 2003-10-29 2005-06-08 株式会社日本触媒 部分氧化用重整催化剂和重整方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3421871A (en) * 1963-01-03 1969-01-14 Ici Ltd Steam reforming of hydrocarbons
GB1314011A (en) * 1969-05-20 1973-04-18 Ici Ltd Steam reforming hydrocarbons
JPS5849602A (ja) 1981-09-18 1983-03-23 Matsushita Electric Ind Co Ltd 水蒸気改質装置
GB9028034D0 (en) * 1990-12-24 1991-02-13 Isis Innovation Improved processes for the conversion of methane to synthesis gas
US5756421A (en) * 1992-09-10 1998-05-26 Council Of Scientific & Industrial Research Composite catalysts containing transitional and alkaline earth metal oxides useful for oxidative conversion of methane (or natural gas) to carbon monoxide and hydrogen (or synthesis gas)
NZ260621A (en) * 1993-06-18 1996-03-26 Shell Int Research Process for catalytic partial oxidation of hydrocarbon feedstock
MY131617A (en) * 1993-09-23 2007-08-30 Shell Int Research Process for the preparation of carbon monoxide and hydrogen
US5720901A (en) * 1993-12-27 1998-02-24 Shell Oil Company Process for the catalytic partial oxidation of hydrocarbons
US5744419A (en) * 1994-12-19 1998-04-28 Council Of Scientific And Industrial Research Process for the preparation of an improved supported catalyst, containing nickel and cobalt, with or without noble metals, useful for the oxidative conversion of methane, natural gas and biogas to syngas
US5980840A (en) * 1997-04-25 1999-11-09 Bp Amoco Corporation Autothermic reactor and process using oxygen ion--conducting dense ceramic membrane
JP4355047B2 (ja) * 1999-04-05 2009-10-28 石油資源開発株式会社 リホーミング用触媒およびこれを用いた合成ガスの製法
JP4505126B2 (ja) * 2000-10-18 2010-07-21 独立行政法人石油天然ガス・金属鉱物資源機構 リホーミング用触媒の製法
JP4505127B2 (ja) * 2000-10-18 2010-07-21 独立行政法人石油天然ガス・金属鉱物資源機構 リホーミング用触媒の製法およびこれを用いた合成ガスの製法
JP2002126528A (ja) 2000-10-18 2002-05-08 Japan National Oil Corp リホーミング用触媒の製造方法
GB0214383D0 (en) 2002-06-21 2002-07-31 Isis Innovation Catalyst
JP4202072B2 (ja) * 2002-08-30 2008-12-24 三菱重工業株式会社 水素製造触媒の調製方法
JP4316323B2 (ja) 2002-10-04 2009-08-19 独立行政法人石油天然ガス・金属鉱物資源機構 炭化水素リフォーミング用触媒及びその製造方法
US7157401B2 (en) * 2002-10-17 2007-01-02 Carnegie Mellon University Catalyst for the treatment of organic compounds
JP3950099B2 (ja) 2003-09-30 2007-07-25 株式会社東芝 金属粒子担持複合酸化物、その製造方法、およびそれを用いた燃料改質器
US7432222B2 (en) * 2004-11-01 2008-10-07 Council Of Scientific And Industrial Research High temperature stable non-noble metal catalyst, process for production of syngas using said catalyst
JP2007265490A (ja) 2006-03-28 2007-10-11 Funai Electric Co Ltd 録画装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1623893A (zh) * 2003-10-29 2005-06-08 株式会社日本触媒 部分氧化用重整催化剂和重整方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开2002-126529A 2002.05.08
JP特开2002-126530A 2002.05.08

Also Published As

Publication number Publication date
US8178003B2 (en) 2012-05-15
EP2198960A1 (en) 2010-06-23
BRPI0817652A2 (pt) 2015-09-29
MY155824A (en) 2015-12-08
RU2475302C2 (ru) 2013-02-20
AU2008311709A1 (en) 2009-04-16
WO2009048083A1 (ja) 2009-04-16
JPWO2009048083A1 (ja) 2011-02-24
CN101808737A (zh) 2010-08-18
JP4496346B2 (ja) 2010-07-07
AU2008311709B2 (en) 2011-09-15
US20100207070A1 (en) 2010-08-19
CA2702041A1 (en) 2009-04-16
RU2010113913A (ru) 2011-10-20

Similar Documents

Publication Publication Date Title
CN102099114B (zh) 烃重整催化剂用复合氧化物及其制造方法、以及使用了该烃重整催化剂用复合氧化物的合成气体的制法
CN101808737B (zh) 烃重整用催化剂及使用了该催化剂的合成气体的制法
JP5666777B2 (ja) 一酸化炭素転換用触媒およびそれを用いた一酸化炭素変成方法
CN102083745B (zh) 运行hts反应器的方法
JP4316323B2 (ja) 炭化水素リフォーミング用触媒及びその製造方法
EP1732688B1 (en) Nickel supported on titanium stabilized promoted calcium aluminate carrier
EP2994226A2 (en) Alkaline earth metal/metal oxide supported catalysts
CN101678329A (zh) 将二氧化碳催化加氢成合成气混合物
JPWO2011065194A1 (ja) 逆シフト反応用触媒およびそれを用いた合成ガスの製造方法
US4153580A (en) CO conversion catalyst
US4233180A (en) Process for the conversion of carbon monoxide
KR20090057554A (ko) 수성가스 전환반응을 위한 촉매, 이의 제조방법 및 이를이용한 수성가스 전환 방법
KR101487387B1 (ko) 금속 카바이드계 메탄 리포밍 촉매 제조방법 및 그 방법에 의해 제조된 메탄 리포밍 촉매
KR102572062B1 (ko) 이산화탄소의 직접 수소화 반응용 촉매
KR101982773B1 (ko) 내열성이 개선된 메탄 개질 반응용 모노리스 촉매 및 이의 제조방법
JP4776403B2 (ja) 炭化水素の改質用触媒
KR102186052B1 (ko) 산화마그네슘-알루미나 복합 지지체를 이용한 아세톤의 이산화탄소 개질 반응용 촉매 및 이를 이용한 합성가스의 제조방법
WO2023277187A1 (ja) 液化石油ガス合成用触媒および液化石油ガスの製造方法
EP4373614A1 (en) Steam reforming catalyst for heavy hydrocarbon feeds
EP4096823A1 (en) Reforming catalyst
Trane Catalytic Steam Reforming of Bio-Oil to Hydrogen Rich Gas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130508

Termination date: 20151008

EXPY Termination of patent right or utility model