CN101740625A - 横向双扩展mos器件及其制造方法 - Google Patents

横向双扩展mos器件及其制造方法 Download PDF

Info

Publication number
CN101740625A
CN101740625A CN200910222933A CN200910222933A CN101740625A CN 101740625 A CN101740625 A CN 101740625A CN 200910222933 A CN200910222933 A CN 200910222933A CN 200910222933 A CN200910222933 A CN 200910222933A CN 101740625 A CN101740625 A CN 101740625A
Authority
CN
China
Prior art keywords
separator
type
tagma
substrate
hvwell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910222933A
Other languages
English (en)
Inventor
李镕俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DB HiTek Co Ltd
Original Assignee
Dongbu Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongbu Electronics Co Ltd filed Critical Dongbu Electronics Co Ltd
Publication of CN101740625A publication Critical patent/CN101740625A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明披露了一种横向双扩散金属氧化物半导体(LDMOS)器件及其制造方法。横向双扩散金属氧化物半导体(LDMOS)器件包括:高压阱(HVWELL),形成在衬底上;RESURF区,形成在HVWELL中;本体区,邻近RESURF区形成;隔离层,包括形成在RESURF区上的预定区域,该隔离层与衬底的顶部表面部分重叠;低压阱(LVWELL),形成在隔离层的另一区域的下方的衬底的预定区域上;栅电极,从本体区的预定的顶部表面区延伸到隔离层的预定顶部表面;漏极区,形成在隔离层的另一区域下方的LVWELL上;以及源极区,形成在栅电极下方的本体区中。

Description

横向双扩展MOS器件及其制造方法
本申请要求于2008年11月19日提交的韩国专利申请第10-2008-0115090号的优先权,其全部内容结合于此作为参考。
技术领域
本发明涉及一种半导体器件及其制造方法。更具体地,本发明涉及一种横向双扩散金属氧化物半导体(LDMOS)器件及其制造方法。
背景技术
通常,传统的MOS场效应晶体管(在下文中,称为MOSFET)与双极性晶体管相比具有高的输入阻抗,因此,具有简单栅极驱动电路的MOSFET具有优良的电学效益(electricity benefit)。并且,MOSFET是一种单极性器件,该单极性器件具有无时间延迟(当关闭MOSFET时,由少数载流子存储或复合而引起时间延迟)的优点。结果,MOSFET已经更广泛地应用于开关模式供电器件(powersupply device)、灯镇流器和电机驱动电路。使用平面扩散技术(planar diffusion technology)的这种DMOSFET(双扩散MOSFET)是一种用于MOSFET的众所周知的结构。在于1981年11月10日由Sel Colak提交的第4,300,150号美国专利中公开了一种众所周知的LDMOS晶体管。
由于其简单的结构,传统的LDMOS器件很适用于VLSI工艺。然而,这种LDMOS器件与DMOS(VDMOS)器件相比具有更少的良好的技术特点,因此其没能引起足够的注意。然而,近年来,已经证明降低的表面电场(Reduced SURface Field,RESURF)SLMOS器件具有良好的导通电阻(Rsp)。
以下,将参照附图描述传统的LDMOS器件。
图1是示出了传统的LDMOS器件的截面图。
参照图1中,高压阱(HVWELL)20在形成在衬底(未示出)上的p型外延层10上形成。p型本体30形成在HVWELL 20上。P+区74和N+源极70形成在p型本体30的表面上。用于LV(低电压)的N+阱50形成在隔离层40的右侧上,以及N+漏极72形成在N+阱50上。栅极介电层60和栅电极62与隔离层40的顶部和源极70部分重叠。
如图1所示,隔离层40设置在漏极72和源极70之间以防止电场被集中在能够输出高于30V的HV器件中的栅极边缘附近的区域。这里,提升栅电极62以使用隔离层40作为电场极板。
根据LDMOS器件,电流沿着器件的表面流过只会使电流驱动效率恶化。如图1所示,当施加高电压时,电场集中在邻近栅极边缘的区域上。为解决电场集中问题,栅极边缘附近的区域是磨圆的(corner-rounded),但不限于此。结果,出现了器件的可靠性恶化的问题。
发明内容
因此,本发明针对一种横向双扩散金属氧化物半导体(LDMOS)器件及其制造方法。
本发明的一个目的是提供一种LDMOS器件及其制造方法,该LDMOS器件能够降低导通电阻并且能够获得高的击穿电压。
本发明的其他优点、目的和特征一部分将在下文中阐述,一部分对于本领域的普通技术人员而言通过下文的实验将变得显而易见或者可以从本发明的实践中获得。通过所写的说明书及其权利要求以及附图中特别指出的结构,可以了解和获知本发明的这些目的和其他优点。
为了实现这些目的和其他优点以及根据本发明的目的,如在本文中所体现和概括描述的,横向双扩散金属氧化物半导体(LDMOS)器件包括:高压阱(HVWELL),形成在衬底上;RESURF区,形成在HVWELL中;本体区,邻近RESURF区形成;隔离层,包括形成在RESURF区上的预定区域,该隔离层与衬底的顶部表面部分重叠;低压阱(LVWELL),形成在隔离层的另一区域的下方的衬底的预定区域上;栅电极,从本体区的预定的顶部表面区域延伸到隔离层的预定顶部表面;漏极区,形成在隔离层的另一区域下方的LVWELL上;以及源极区,形成在栅电极下方的本体区中。
在本发明的另一方面中,一种用来制造横向双扩散金属氧化物半导体(LDMOS)器件的方法包括:在衬底上形成高压阱(HVWELL);在HVWELL中形成RESURF区;邻近RESURF区的预定区域形成本体区;在衬底上形成隔离层,该隔离层包括与RESURF区的另一区域部分重叠的预定区域;在隔离层的另一区域的下方的衬底上形成低压阱(LVWELL);形成从本体区的预定的顶部表面区域延伸到隔离层的预定顶部表面的栅电极;以及在隔离层的另一区域下方的LVWELL中形成漏极区,在栅电极下方的本体区中形成源极区。
可以理解的是,本发明的上述总体描述和以下的具体描述都是示例性的和说明性的,并且旨在提供对所要求的本发明的进一步解释。
附图说明
附图被包括用来提供对本发明的进一步理解,并结合于此而构成本申请的一部分。本发明的示例性实施例连同描述都用来解释本发明的原理。在附图中:
图1是示出了传统的LDMOS器件的截面图;
图2是示出了根据本发明的示例性实施例的LDMOS器件的截面图;
图3A至3G是示出了根据制造LDMOS器件的方法的示例性实施例的过程截面图。
具体实施方式
现在将详细地参照本发明的特定实施方式和在附图中示出的实施例。在所有可能的地方,在整个附图中使用相同的标号以表示相同或相似的部件。
以下,将参照附图描述根据本发明示例性实施例的LDMOS器件。为了更加容易地理解本发明,第一导电型是p-型而第二导电型是n-型。然而,本发明可以适用于第一导电型为n-型而第二导电型为p-型的相反的情况。
图2是示出了根据本发明的示例性实施例的LDMOS器件的截面图;
参照图2,p-型外延层100可以形成在p-型衬底(未示出)上。这里,n型高压阱(HVWELL)110形成在p-型外延层100上。根据本发明,n-型RESURF区120形成在HVWELL 110上。n-型RESURF区120设置在隔离层140和栅极介电层160的下方以及p-型本体130的侧面。
n-型RESURF区120的深度可以是1微米~1.2微米。
本发明的LDMOS器件可以进一步包括p型第一杂质区122和n型第二杂质区124。
在HVWELL 110内,p型第一杂质区122形成在n型RESURF区120的下方,而n型第二杂质区124形成在p型第一杂质区122的下方。
与图1中所示的传统的LDMOS器件不同的是,n型RESURF区120以及第一和第二杂质区122和124设置在隔离层140和栅极介电层160的下方。结果,在根据本发明的LDMOS器件中,在n型RESURF区120和p型第一杂质区122之间形成了耗尽层,在p型第一杂质区122和n型第二杂质区124之间形成了耗尽层。
p型本体区130嵌入在n型RESURF区120和p型第一杂质区122之间的预定区域中。
隔离层140包括形成在n型RESURF区120上的预定区域和形成在n型HVWELL 110上的另一区域。隔离层140可以是场氧化层,例如,热增长的氧化硅。
n型低压阱(LVWELL)150形成在衬底的n型HVWELL 110(形成在隔离层140的另一区域的下方)上。
栅极图样由栅极介电层160和栅电极162构成。栅电极162从p型本体区130的顶部延伸到隔离层140的顶部表面。栅电极162可以是掺有杂质的多晶硅。栅极介电层160形成在栅电极162的下方从p型本体区130的顶部的预定区域到隔离层140的区域上。
高浓度n型漏极区172形成在隔离层140的另一区域下方的LVWELL 150上。高浓度n型源极区170在p型本体区130的上部区域中,邻近栅极图样160和162。高浓度p型区174是设置为接触源极区170的源极接触层。即,p型区174与p型本体区130有良好的接触,p型区174比p型本体区130具有更高的掺杂浓度。
形成在栅极介电层160的下方的n型源极区170与n型RESURF区120之间的p型本体区130的预定区域对应于沟道区。形成在栅极介电层160和隔离层140的下方的p型本体区130和n型LVWELL 150之间的预定区域对应于漂移区。
除了n型RESURF区120、p型第一杂质区122和n型第二杂质区124之外,图2中所示的LDMOS器件的其他的区域具有与传统的LDMOS器件相同的结构。结果,除了n型RESURF区120、p型第一杂质区122和n型第二杂质区124之外的区域可以具有各种体现形式,并不限于图2中所示的结构。当然,可以在图2中所示的栅极图样160和162的侧壁中形成间隔(未示出)。
以下,将参照附图描述根据本发明的示例性实施例的制造以上LDMOS器件的的方法。
图3A至3G是示出了制造根据本发明的示例性实施例的LDMOS器件的过程截面图。例如,图3A至3G是示出了制造图2中所示的LDMOS器件的过程截面图。
参照图3A,在衬底(未示出)上形成p型外延层100。然后,在p型外延层100上形成n型HVWELL 110。例如,在p型外延层100上形成用于n型HVWELL 110的由SiO2形成的介电层112。此后,将n-型掺杂物注入到相对p型外延层100一定的深度,p型外延层100以高温推进以便可以形成n型HVWELL 110。
参照图3B,以传统的光刻工艺形成光刻胶图样126,该光刻胶图样126用来暴露将要形成n型RESURF区120、第一和第二杂质区122和124的区域。因此,通过使用光刻胶图样126作为离子注入掩膜注入n型杂质离子128,以形成n型RESURF区120。这里,可以注入杂质离子以形成具有1微米~1.2微米的深度的n型RESURF区120。此外,可以通过使用光刻胶图样126作为离子注入掩膜注入p型杂质离子128,以在n型RESURF区120的下方进一步形成p型第一杂质区122。可以注入n型杂质离子128以在p型第一杂质区122下方进一步形成n型第二杂质区124。
即,使用同样的光刻胶图样126作为注入掩膜,注入不同的离子能量以形成n型RESURF区120、p型第一杂质区122和n型第二杂质区124。结果,可以以各种顺序形成RESURF区120以及第一和第二杂质区122和124。此后,以灰化和剥离工艺去除光刻胶图样126。
这里,实施例中采用光刻胶图样作为离子注入掩膜126。然而,可以使用其它类型的材料(例如硬质掩膜)作为离子注入掩膜。
参照图3C,形成光刻胶图样132,该光刻胶图样132用来暴露将要形成p型本体区130的区域,即,形成在介电层112下方的n型RESURF区120的预定区域。通过使用形成的光刻胶图样132作为离子注入掩膜注入p-型杂质离子134,以仅形成p型本体区130。此后,去除光刻胶图样132和介电层112。
参照图3D和3E,具有与n型RESURF区120的另一区域部分重叠的区域的隔离层140形成在衬底上,即,形成在n型RESURF区120和n型HVWELL 110两者上。可以以硅的局部氧化(LOCalOxidation of Silicon,LOCOS)工艺(将在以下描述)来形成隔离层140。
如图3D中所示,在p型本体区130、n型RESURF区120和n型HVWELL 110上形成氧化层(SiO2)142。氮化层(Si3N4)144顺序地堆积在氧化层142上。然后,如图3E所示,氧化层142热增长以形成隔离层140,而使用磷酸溶液去除氮化层(Si3N4)144。
根据图3E中所示的LDMOS器件,示出了以LOCOS工艺形成隔离层140。可选地,可以以浅沟槽隔离(Shallow Trench Isolation,STI)工艺形成隔离层140。
如图3F所示,以传统的众所周知的工艺,在衬底的n型HVWELL 110(在隔离层140的另一区域的下方)上形成n型低压阱(LVWEll)150。
如图3G所示,形成包含栅极介电层160A和栅电极162的栅极图样。具体地,栅电极162从p型本体区130的预定的上表面区域延伸到隔离层140的预定的上表面区域。这里,栅极介电层160A形成在除了隔离层140之外的p型本体区130和n型RESURF区120两者上以及n型LVWELL 150上。例如,如图3G所示,在顺序地堆积之后,图样化SiO2和多晶硅以便分别形成栅极介电层160A和栅电极162。这里,栅极介电层160A可以包括氧化物、氮化物或其化合物,即,堆积的NO或ONO层。
因此,如图2所示,以传统的众所周知的离子注入工艺形成高浓度n型源极区170、高浓度n型漏极区172和高浓度p型区174。即,在隔离层140的另一区域下方的LVWELL 150的表面上形成高浓度n型漏极区172,在栅电极162下方的p型本体区130的表面上形成高浓度n型源极区170。此后,去除除了在栅电极162下方之外的栅极介电层160A的区域。
在执行形成以上区域的离子注入工艺之后,可以进行热处理。
根据上述LDMOS器件及其制造方法,在隔离层和栅极图样的下方顺序地形成n型RESURF区、p型第一杂质区和n型第二杂质区。结果,耗尽层可以均匀地分布在RESURF区的表面上,从而降低了表面区域聚集的电场。并且,消除了隔离层的栅极边缘中的表面击穿,从而获得了高击穿电压。可以通过使用单个掩膜来形成第一和第二杂质区以及RESURF区,从而具有制造工艺简单的优点。
在不脱离本发明的精神和范围内可以作各种修改及变形,这对于本领域的技术人员而言是显而易见的。因此,本发明意在涵盖在所附权利要求及其等同替换的范围内的对本发明的修改和变形。

Claims (10)

1.一种横向双扩散金属氧化物半导体(LDMOS)器件,包括:
高压阱(HVWELL),形成在衬底上;
RESURF区,形成在所述HVWELL中;
本体区,邻近所述RESURF区形成;
隔离层,包括形成在所述RESURF区上的预定区域,所述隔离层与所述衬底的顶部表面部分重叠;
低压阱(LVWELL),形成在所述隔离层的另一区域的下方的所述衬底的预定区域上;
栅电极,从所述本体区的预定的顶部表面区域延伸到所述隔离层的预定的顶部表面;
漏极区,形成在所述隔离层的所述另一区域下方的所述LVWELL上;以及
源极区,形成在所述栅电极下方的所述本体区中。
2.根据权利要求1所述的LDMOS器件,进一步包括:
第一导电型第一杂质区,形成在所述RESURF区的下方。
3.根据权利要求2所述的LDMOS器件,进一步包括:
第二导电型第二杂质区,形成在所述第一导电型第一杂质区的下方。
4.根据权利要求1所述的LDMOS器件,其中,所述衬底和所述本体区是p导电型。
5.根据权利要求1所述的LDMOS器件,其中,所述HVWELL、所述RESURF区、所述LVWELL、所述漏极区和所述源极区是n导电型。
6.一种用于制造横向双扩散金属氧化物半导体(LDMOS)器件的方法,包括:
在衬底上形成高压阱(HVWELL);
在所述HVWELL中形成RESURF区;
邻近所述RESURF区的预定区域形成本体区;
在所述衬底上形成隔离层,所述隔离层包括与所述RESURF区的另一区域部分重叠的预定区域;
在所述隔离层的另一区域的下方的所述衬底上形成低压阱(LVWELL);
形成从所述本体区的预定的顶部表面区域延伸到所述隔离层的顶部表面的栅电极;以及
在所述隔离层的所述另一区域下方的所述LVWELL中形成漏极区,在所述栅电极下方的本体区中形成源极区。
7.根据权利要求6所述的制造LDMOS器件的方法,进一步包括:
在所述RESURF区下方形成第一导电型第一杂质区。
8.根据权利要求7所述的制造LDMOS器件的方法,进一步包括:
在所述第一导电型第一杂质区下方形成第二导电型第二杂质区。
9.根据权利要求8所述的制造LDMOS器件的方法,其中,形成所述第一和第二杂质区的步骤包括:
在所述HVWELL上形成介电层;
在所述介电层上形成光刻胶图样;以及
通过使用所述光刻胶图样作为离子注入掩膜注入相应的杂质离子来形成所述第一和第二杂质区。
10.根据权利要求6所述的制造LDMOS器件的方法,其中,所述衬底是p导电型,所述本体区以p导电型形成,而其中所述HVWELL、所述RESURF区、所述LVWELL、所述漏极区和所述源极区是n导电型。
CN200910222933A 2008-11-19 2009-11-19 横向双扩展mos器件及其制造方法 Pending CN101740625A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0115090 2008-11-19
KR1020080115090A KR101049876B1 (ko) 2008-11-19 2008-11-19 횡형 디모스 소자 및 그의 제조 방법

Publications (1)

Publication Number Publication Date
CN101740625A true CN101740625A (zh) 2010-06-16

Family

ID=42171306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910222933A Pending CN101740625A (zh) 2008-11-19 2009-11-19 横向双扩展mos器件及其制造方法

Country Status (4)

Country Link
US (1) US8058129B2 (zh)
KR (1) KR101049876B1 (zh)
CN (1) CN101740625A (zh)
TW (1) TW201021212A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296080A (zh) * 2012-02-22 2013-09-11 旺宏电子股份有限公司 半导体结构及其形成方法
CN104143570A (zh) * 2013-05-07 2014-11-12 旺宏电子股份有限公司 具有低导通电阻的金属氧化物半导体装置及其制造方法
WO2017092419A1 (zh) * 2015-11-30 2017-06-08 无锡华润上华半导体有限公司 横向扩散金属氧化物半导体场效应管
CN106847833A (zh) * 2017-03-30 2017-06-13 电子科技大学 一种soi横向高压器件及其制造方法
CN109616522A (zh) * 2018-09-13 2019-04-12 电子科技大学 一种横向高压器件
CN110176488A (zh) * 2018-02-20 2019-08-27 马克西姆综合产品公司 具有击穿电压钳位的ldmos晶体管
CN115662900A (zh) * 2022-10-21 2023-01-31 苏州华太电子技术股份有限公司 超级结ldmos器件的制作方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223291B2 (ja) * 2007-10-24 2013-06-26 富士電機株式会社 半導体装置の製造方法
JP2010010408A (ja) * 2008-06-27 2010-01-14 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP2013012577A (ja) * 2011-06-29 2013-01-17 Hitachi Ltd 半導体装置
TWI456765B (zh) * 2012-02-24 2014-10-11 Macronix Int Co Ltd 半導體結構及其形成方法
US9029950B2 (en) 2012-03-20 2015-05-12 Macronix International Co., Ltd. Semiconductor structure and method for forming the same
KR101872942B1 (ko) * 2012-03-29 2018-06-29 삼성전자주식회사 반도체 장치
KR101988425B1 (ko) 2012-11-05 2019-06-12 삼성전자주식회사 반도체 소자 및 그의 제조 방법
US20150145034A1 (en) * 2013-11-24 2015-05-28 United Microelectronics Corporation Ldmos structure and manufacturing method thereof
KR101699585B1 (ko) 2014-09-24 2017-01-24 주식회사 동부하이텍 고전압 반도체 소자 및 그 제조 방법
KR102088548B1 (ko) 2016-03-25 2020-04-14 주식회사 디비하이텍 고전압 반도체 소자
KR102490091B1 (ko) 2016-07-08 2023-01-18 삼성전자주식회사 반도체 소자
US10177252B2 (en) * 2016-11-10 2019-01-08 Nxp Usa, Inc. Semiconductor device isolation with RESURF layer arrangement
KR102424768B1 (ko) 2017-12-13 2022-07-25 주식회사 디비하이텍 Pldmos 트랜지스터 및 이의 제조 방법
KR102424771B1 (ko) 2018-01-24 2022-07-25 주식회사 디비하이텍 반도체 소자 및 그 제조 방법
TWI673870B (zh) * 2018-10-09 2019-10-01 立錡科技股份有限公司 高壓元件及其製造方法
CN111081775A (zh) * 2018-10-19 2020-04-28 立锜科技股份有限公司 高压元件及其制造方法
US11398552B2 (en) * 2020-08-26 2022-07-26 Vanguard International Semiconductor Corporation High-voltage semiconductor device and method of forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483149B1 (en) * 1996-05-15 2002-11-19 Texas Instruments Incorporated LDMOS device with self-aligned resurf region and method of fabrication
CN1632931A (zh) * 2004-12-23 2005-06-29 上海华虹(集团)有限公司 提高表面降场型ldmos器件耐压的工艺
CN101034671A (zh) * 2006-03-02 2007-09-12 沃特拉半导体公司 横向双扩散金属氧化物半导体场效应晶体管及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306652A (en) * 1991-12-30 1994-04-26 Texas Instruments Incorporated Lateral double diffused insulated gate field effect transistor fabrication process
KR100958421B1 (ko) * 2002-09-14 2010-05-18 페어차일드코리아반도체 주식회사 전력 소자 및 그 제조방법
US6693339B1 (en) * 2003-03-14 2004-02-17 Motorola, Inc. Semiconductor component and method of manufacturing same
US8106451B2 (en) * 2006-08-02 2012-01-31 International Rectifier Corporation Multiple lateral RESURF LDMOST

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483149B1 (en) * 1996-05-15 2002-11-19 Texas Instruments Incorporated LDMOS device with self-aligned resurf region and method of fabrication
CN1632931A (zh) * 2004-12-23 2005-06-29 上海华虹(集团)有限公司 提高表面降场型ldmos器件耐压的工艺
CN101034671A (zh) * 2006-03-02 2007-09-12 沃特拉半导体公司 横向双扩散金属氧化物半导体场效应晶体管及其制造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296080A (zh) * 2012-02-22 2013-09-11 旺宏电子股份有限公司 半导体结构及其形成方法
CN103296080B (zh) * 2012-02-22 2015-09-09 旺宏电子股份有限公司 半导体结构及其形成方法
CN104143570A (zh) * 2013-05-07 2014-11-12 旺宏电子股份有限公司 具有低导通电阻的金属氧化物半导体装置及其制造方法
CN104143570B (zh) * 2013-05-07 2017-05-03 旺宏电子股份有限公司 具有低导通电阻的金属氧化物半导体装置及其制造方法
WO2017092419A1 (zh) * 2015-11-30 2017-06-08 无锡华润上华半导体有限公司 横向扩散金属氧化物半导体场效应管
US10505036B2 (en) 2015-11-30 2019-12-10 Csmc Technologies Fab2 Co., Ltd. Lateral diffused metal oxide semiconductor field effect transistor
CN106847833A (zh) * 2017-03-30 2017-06-13 电子科技大学 一种soi横向高压器件及其制造方法
CN110176488A (zh) * 2018-02-20 2019-08-27 马克西姆综合产品公司 具有击穿电压钳位的ldmos晶体管
CN109616522A (zh) * 2018-09-13 2019-04-12 电子科技大学 一种横向高压器件
CN109616522B (zh) * 2018-09-13 2020-11-13 电子科技大学 一种横向高压器件
CN115662900A (zh) * 2022-10-21 2023-01-31 苏州华太电子技术股份有限公司 超级结ldmos器件的制作方法

Also Published As

Publication number Publication date
US20100123195A1 (en) 2010-05-20
KR101049876B1 (ko) 2011-07-19
TW201021212A (en) 2010-06-01
US8058129B2 (en) 2011-11-15
KR20100056101A (ko) 2010-05-27

Similar Documents

Publication Publication Date Title
CN101740625A (zh) 横向双扩展mos器件及其制造方法
KR0167273B1 (ko) 고전압 모스전계효과트렌지스터의 구조 및 그 제조방법
US9660074B2 (en) Methods and apparatus for LDMOS devices with cascaded RESURF implants and double buffers
US7508032B2 (en) High voltage device with low on-resistance
KR100974697B1 (ko) Ldmos 소자 및 ldmos 소자의 제조 방법
EP1946378B1 (en) Method of manufacturing a semiconductor device
JP3954493B2 (ja) パワーmosfet及び自己整合本体注入工程を用いたパワーmosfetの製造方法。
KR100340925B1 (ko) 고주파용 전력소자 및 그의 제조 방법
JP5098026B2 (ja) 高圧nmosトランジスタの製造方法
US20080070369A1 (en) MOS transistor device structure combining Si-trench and field plate structures for high voltage device
US20060001122A1 (en) Semiconductor device and method for manufacturing the same
JPH0897411A (ja) 横型高耐圧トレンチmosfetおよびその製造方法
KR20100067834A (ko) 반도체 소자 및 그 제조 방법
KR100883795B1 (ko) 대칭적인 트렌치 mosfet 디바이스 및 그 제조 방법
KR20100064264A (ko) 반도체 소자 및 이의 제조 방법
KR101699585B1 (ko) 고전압 반도체 소자 및 그 제조 방법
CN102386211A (zh) Ldmos器件及其制造方法
US7018899B2 (en) Methods of fabricating lateral double-diffused metal oxide semiconductor devices
KR20110078621A (ko) 반도체 소자 및 그 제조 방법
CN104576732A (zh) 一种寄生FinFET的横向双扩散半导体器件
KR102088548B1 (ko) 고전압 반도체 소자
KR100492981B1 (ko) 래터럴 이중확산 모스 트랜지스터 및 그 제조방법
CN113990942B (zh) 圆形对称结构的ldmos器件及其制备方法
KR100834287B1 (ko) 횡형 디모스소자 및 그 제조방법
KR100790247B1 (ko) Ldmos 트랜지스터 및 이의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100616