CN101708450A - 一种装载水溶性物质的基质型微胶囊的制备方法 - Google Patents

一种装载水溶性物质的基质型微胶囊的制备方法 Download PDF

Info

Publication number
CN101708450A
CN101708450A CN 200910216060 CN200910216060A CN101708450A CN 101708450 A CN101708450 A CN 101708450A CN 200910216060 CN200910216060 CN 200910216060 CN 200910216060 A CN200910216060 A CN 200910216060A CN 101708450 A CN101708450 A CN 101708450A
Authority
CN
China
Prior art keywords
polyelectrolyte
matrix
mnco
microcapsule
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200910216060
Other languages
English (en)
Other versions
CN101708450B (zh
Inventor
魏清荣
艾华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN 200910216060 priority Critical patent/CN101708450B/zh
Publication of CN101708450A publication Critical patent/CN101708450A/zh
Application granted granted Critical
Publication of CN101708450B publication Critical patent/CN101708450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明公开了一种装载水溶性物质的基质型微胶囊的制备方法,其特点是设计生物相容的、性质可控的有机/无机杂化胶体微粒模板,在胶体模板上通过聚电解质的层层交替自组装,达到一定层数以后,溶解去除杂化模板中的无机成分,制备得到内部充填有多糖大分子基质结构的聚电解质微胶囊,在温和条件下,实现对广泛水溶性物质的有效装载。微胶囊的装载能力可以通过内部的多糖基质量来调节;改变环境条件,装载在微胶囊内的水溶性物质能够释放出来,有良好的缓释效应。

Description

一种装载水溶性物质的基质型微胶囊的制备方法
技术领域
本发明涉及一种装载水溶性物质的基质型微胶囊的制备方法,尤其是一种可控性良好、对水溶性物质有高装载效率和缓释性的聚电解质微胶囊的制备方法,属于生物医学材料、药物递送以及组织工程领域。
背景技术
微胶囊是一种通过成膜物质将囊内外空间隔离开来,并具有特定几何结构的微型容器,尺寸大小通常在纳/微米至毫米级,形状以球形为主。微胶囊的内部空间可以容纳大量的客体分子,实现微观包裹效应,并在最大程度上保护客体分子的性质不受外界环境影响。在许多领域,水溶性物质包括无机小分子、有机小分子及生物大分子都需要装载于微胶囊内,例如将各种药物、香精、油墨、染料、纳米粒子甚至生物细胞等装载于微胶囊内得到不同功能的微胶囊,广泛用于医药、食品、印刷以及生物工程方面。
微胶囊的制备方法有化学法和物理法,即微胶囊的囊壁膜由化学反应合成或通过物理化学法或物理作用形成;微胶囊壁膜材料可以是天然大分子、合成高分子以及无机化合物,也可以由多种材料复合构成。
微胶囊装载客体物质可以在制备微胶囊的同时完成对客体分子的装载。例如水/油/水双乳法装载药物分子、生物酶等;凝聚相分离法包裹亲水性或亲油性物质(Yi-Yan YangH.-H.C.,Tai-Shung Chung.Effect of preparation temperature on the characteristics and release profiles ofPLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method.Journal of Controlled Release.2000,69(1):81-96;Joachim Herrmann R.B.The effect of particlemicrostructure on the somatostatin release from poly(lactide)microspheres prepared by a W/O/W solventevaporation method.Journal of Controlled Release.1 995,36(1-2)63-7 1);界面溶剂交换法(Yoon Yeo K.P.A new microencapsulation method using an ultrasonic atomizer based on interfacial solvent exchange.Journalof Controlled Release.2004,100(3):379-388);微乳液聚合法等(樊耀峰,王学晨,等.高分子材料科学与工程2005,21(1):288-292)。这些方法都需要使用有机溶剂或乳化剂,对蛋白质等生物大分子物质的活性很不利,并且微囊的通透性及缓释性难以在微观上进行调控。
与上述方法相比,层层自组装构建聚电解质微胶囊的方法在水相中进行。微胶囊的大小和形状由用作模板的胶体粒子控制,囊壁厚度可以在纳米尺度内精确调控。利用层层自组装法,可以在组装构建微胶囊的同时实现对物质的包裹装载,例如,在蛋白质聚集体或药物晶体等胶体粒子表面直接进行聚电解质分子的层层包覆,但是对被包覆物的形状、尺寸、溶解性及电性等都有特定的要求;也可以将待装载物作为囊壁材料之一组装形成亚稳定的内壳,在适当的条件下再使其解体而包覆于稳定外壳形成的微胶囊内。该方法的适用性很有限,且活性物质经历的制备过程长而复杂。聚电解质微胶囊装载物质的另一种方式是预先制备了中空微胶囊,再将客体分子装载到微胶囊内部。例如,通过改变盐浓度、pH值、引入光或热等外界信号调节微胶囊膜壁的渗透性,从而使囊外物质渗入囊内。这种方法的特点是装条件较温和,但最大缺点在于装载效率低;通过改变溶剂性质或pH值等环境条件来改变客体物质的溶解性,使其沉淀在微胶囊内部的方法对被装载物的溶解性质有特定要求,适用范围有限。
在预先制备的微胶囊对物质的装载中,利用微胶囊内预先存在的带电荷的大分子基质造成微胶囊内外环境条件的差异,该差异推动微囊外溶液中的物质向微囊内迁移和聚集,达到有效装载的目的,这就是自然沉积装载法。这种方法的最普遍例子是以三聚氰胺-甲醛树脂(Melamine formaldehyde,MF)胶体微粒为模板制备的聚电解质微胶囊(简称MF微胶囊)对物质的装载(Changyou Gao E.D.,Helmuth Jiacong Shen,.Spontaneous Deposition ofWater-Soluble Substances into Microcapsules:Phenomenon,Mechanism,and Application13.AngewandteChemie International Edition.2002,41(20):3789-3793)。MF微胶囊内存在有未溶解完全的MF寡聚体与内层聚电解质聚苯乙烯磺酸钠(PSS)形成的带负电的MF/PSS复合物,从而驱使囊外物质向囊内聚集。利用MF微胶囊已实现了多种物质的装载,但MF具有生物毒性,且复合物MF/PSS的性质具有很大的不确定性。有研究者在此基础上制备了内含PSS或羧甲基纤维素钠(CMC)的CaCO3胶体微粒模板,从而制备了内含PSS或CMC的聚电解质微胶囊(J.Biomater.Sci.Polymer Edn,Vol.17,No.9,pp.997-1014(2006);中国专利200510061354.8)。这种方法中CaCO3胶体微粒的形态和粒径的可控性较差,且CaCO3微粒具有多孔性,对聚电解质大分子有较强的吸附力,因而微胶囊壁的厚度及微囊内的大分子成分不易控制。此外,对CaCO3微粒内有机大分子的生物相容性和可降解性也没有作特别考虑。
发明内容
本发明的目的是针对已有技术的不足而提供一种装载水溶性物质的基质型微胶囊的制备方法。其特点是设计生物相容的、性质可控的有机/无机杂化胶体粒子模板,在胶体模板上通过聚电解质的层层自组装,溶解去除模板中无机成分后制备得到内部充填有多糖大分子基质结构的聚电解质微胶囊,实现对广泛水溶性物质的有效装载。
本发明的目的由以下技术措施实现。
装载水溶性物质的基质型微胶囊的制备方法包括以下步骤:
1.将带有负电荷的天然多糖聚电解质溶于浓度为0.01~0.1mol/L的含碳酸根的无机盐水溶液中,搅拌下与浓度为0.001~0.01mol/L的含锰无机盐水溶液相混合,离子型天然多糖聚电解质在反应体系中的终浓度为0.25~5mg/mL,搅拌反应0.1~20min,离心收集沉淀物,用去离子水洗1~3次,得到内部结合有天然多糖聚电解质的杂化MnCO3胶体微粒模板。
2.将步骤1制得的杂化MnCO3胶体微粒模板分散在NaCl浓度为0.1~1mol/L的负电性聚电解质溶液中,负电性聚电解质的浓度为0.5~5mg/mL。5~30min后离心收集沉淀,以去离子水重新分散后再离心收集沉淀,如此反复水洗1~3次,得到第一层包覆有负电性聚电解质层的杂化MnCO3胶体微粒,再将该胶体微粒分散在NaCl浓度为0.1~1mol/L的正电性聚电解质溶液中,正电性聚电解质的浓度为0.5~5mg/mL。5~30min后离心收集胶体微粒,以去离子水重新分散后再离心收集沉淀物,反复用水洗1~3次,完成了第二层为正电性聚电解质层的包覆。重复以上过程,按要求的层数将负电性和正电性聚电解质交替层层吸附组装,得到具有核-壳结构的胶体微粒,通过溶解或分解去除杂化微粒的MnCO3成分,就得到内部预先充填有带负电荷的天然多糖聚电解质基质的微胶囊。
3.在温度4~40℃,将步骤2所制得的基质型微胶囊分散在浓度为0.1~20mg/mL的水溶性物质的溶液中pH1.0~8.0,共孵育0.5~12h,将客体水溶性物质装载到微胶囊内;对于在海藻酸钠/MnCO3杂化微粒模板上制备的微胶囊(海藻酸钠)/(海藻酸/壳聚糖)5,完成装载后,加入浓度为0.01~0.1mol/L的CaCl2溶液50~500uL,孵育10~60min,以对载药后的微胶囊进行交联处理。
含锰无机盐为硫酸锰或氯化锰。
含碳酸根无机盐为碳酸氢钠、碳酸氢氨或碳酸钠中的任一种。
杂化MnCO3胶体微粒模板中的天然多糖聚电解质为海藻酸钠(alginate sodium,ALG)或透明质酸钠(hyaluronate sodium,HA)或硫酸葡聚糖(dextran sulfate,DEX)或肝素钠(heparinate sodium,HEP)或硫酸软骨素(chondroitinsulfate,CS)或硫酸角质素(keratansulfate,KS)或壳聚糖(chitosan,CHI)中的任一种。
微胶囊囊壁膜所用的正、负聚电解质材料为合成聚电解质或天然生物聚电解质,负电性聚电解质为聚苯乙烯磺酸钠或海藻酸或硫酸葡聚糖或透明质酸或肝素钠或硫酸软骨素或硫酸角质素中的任一种;正电性聚电解质为聚烯丙基胺盐酸盐或壳聚糖或鱼精蛋白(protamin)或胶原蛋白(collagen)中的任一种。
杂化MnCO3胶体微粒模板中的MnCO3成份的去除,用盐酸溶解或用乙二胺四乙酸(Ethylnediam tetraacetic acid disodium,EDTA)络合分解。
水溶性物质为带正电荷的物质、不带电荷的或带负电荷的物质,包括罗丹明、聚烯丙基铵盐酸盐、肌红蛋白、白蛋白、鱼精蛋白、干扰素、溶菌酶、胰岛素、白介素11及其它白介素、促生长多肽激素(Protropin)、重组生长激素(Somatropin)、促滤泡素Gonal-F(follitropin α)、人绒毛膜促性腺激素(HCG)、胸腺肽、红细胞生成素、表皮生长因子、降钙素、骨粘连蛋白、骨钙素、脲素、脲酶、聚赖氨酸、聚组氨酸或聚精氨酸中的任一种。
本发明中微胶囊的囊壁厚度和囊壁结构是通过调整囊壁膜的聚电解质层数或吸附组装的条件(例如聚电解质溶液中NaCl的浓度、pH值和聚电解质浓度)来实现的,从而调控囊内装载物的释放速率。
性能测试:
通过扫描电镜照片、激光共聚焦照片、以及对蛋白质大分子的装载和释放曲线得知,本发明制得的基质型微胶囊内预充填有性质及含量都可调控的多糖大分子基质,这种基质型微胶囊具有规则完整的外形和可调的尺寸;该微胶囊对包括生物大分子在内的水溶性物质有较高的装载量;微胶囊的装载能力可以通过内部的多糖基质量来调节;改变环境条件,装载在微胶囊内的水溶性物质能够释放出来,有良好的缓释效应。
本发明具有如下优点:
1.可调控性:与CaCO3相比,杂化微粒模板中的无机成分MnCO3使模板微粒的形状和粒径分布更易于控制;通过模板微粒中有机多糖的种类可以进一步调控微粒的形貌及粒径,从而有效控制微胶囊的大小;微胶囊内多糖基质的性质及含量可以精确调控,从而可以调控微胶囊的装载能力;微胶囊囊壁厚度具有可调控性。
2.生物相容性:制备基质型微胶囊的胶体模板是由离子型天然多糖大分子与碳酸盐组成的有机/无机杂化微球粒子,模板具有良好的生物相容性,且易于完全去除。
3.本发明中基质型微胶囊的制备方法简单,制备条件温和,整个制备过程不涉及有机溶剂,完全在水相中进行;可完全使用生物相容性材料来制备。
4.基质型微胶囊对水溶性物质的装载原理是自然诱导沉积,其装载量高,装载方法简便,装载条件温和,不使用任何有机溶剂,适用于生物活性大分子的装载。
5.适用范围广:本发明制备的基质型聚电解质微胶囊适用于装载多种水溶性物质,尤其是生物活性大分子,可用于药物缓释、微反应器、生物传感器及组织工程等。
附图说明
图1为制备的含有天然多糖聚电解质有机成分的杂化MnCO3微粒模板的扫描电镜照片:图1A HA/MnCO3,图1B ALG/MnCO3,图1C DEX/MnCO3,图1D HEP/MnCO3
图2为含有由荧光染料DTAF(Ethylonediam tetraacetic acid disodium)标记的天然多糖聚电解质的杂化MnCO3微粒模板的激光共聚焦显微镜照片:图2A DTAF-HA/MnCO3,图2B DTAF-AG/MnCO3,直观证明了多糖大分子结合在杂化MnCO3微粒内。
图3由天然多糖/MnCO3杂化微粒模板制备的内含多糖聚电解质基质的微胶囊的扫描电镜照片,图3A ALG基质微胶囊,图3B DEX基质微胶囊,图3C HA基质微胶囊;微胶囊结构为(多糖)/(PSS/PAH)5/PSS。
图4用DTAF标记天然多糖,制备得到DTAF-天然多糖/MnCO3杂化微粒模板,以该模板制备的内含DTAF-多糖聚电解质基质的微胶囊的激光共聚焦显微镜照片:图4ADTAF-HA基质微胶囊,图4B DTAF-ALG基质微胶囊。进一步证明了由多糖/MnCO3杂化微粒模板制备得到了内部预充填有多糖大分子的解电解质微胶囊。
图5以ALG/MnCO3杂化微粒为模板,以天然生物聚电解质海藻酸钠和壳聚糖为微胶囊囊壁材料制备的结构为(ALG)/(海藻酸/壳聚糖)5的基质型聚电解质微胶囊。
图6基质型微胶囊(ALG)/(PSS/PAH)6(图6A)和非基质型微胶囊(PSS/PAH)6(图6B)装载罗丹明-6G后的激光共聚焦显微镜照片,大量罗丹明分子被装载于基质型微胶囊内,而作为对照的非基质型微胶囊内的罗丹明分子很少。
图7基质型微胶囊(ALG)/(海藻酸盐/壳聚糖)5(图7A)和非基质型微胶囊(海藻酸盐/壳聚糖)5(图7B)装载抗肿瘤蛋白质药物(基因重组人干扰素,rh-IFN)后的激光共聚焦显微镜照片,干扰素由荧光染料FITC标记。FITC-rhIFN分子有效地装载于基质型微胶囊内,而在作为对照的非基质型微胶囊内的FITC-rhIFN分子则很不明显。
图8内含不同类型、不同量的多糖聚电解质基质的微胶囊对肌红蛋白的装载能力。基质型微胶囊对肌红蛋白的平均装载能力明显高于非基质中空微胶囊,并且微胶囊内的多糖基质含量越多,微胶囊的装载能力越大。
图9微胶囊内肌红蛋白的累积释放量与时间的关系。表明在生理条件下(pH7.4),所装载的蛋白质能够从微胶囊内缓释出来,并且在同一释放条件下,微胶囊内多糖聚电解质基质的类型对微胶囊内蛋白质的释放量有一定影响。
图10环境介质的pH条件改变对装载于微胶囊内蛋白质释放行为的影响。pH2.0条件下释放量非常低,几乎没有释放行为。
图11海藻酸基质微胶囊装载干扰素药物后,交联与未交联的比较。说明内含海藻酸基质的以海藻酸钠和壳聚糖为囊壁聚电解质材料的微胶囊装载干扰素药物后,经过Ca2+交联处理,其载药量明显高于未经Ca2+交联处理的微胶囊。
图12装载于Ca2+交联处理和未交联处理的微胶囊内的干扰素在pH7.4条件下的释放行为。这表明Ca2+的交联对微胶囊内的蛋白质药物有进一步的包埋作用,导致交联处理的微胶囊内rh-IFN的释放速率和释放量明显低于未交联处理微胶囊内的rh-IFN的释放。
具体实施方式
以下通过实施例进行具体的描述,有必要在此提出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述本发明的内容作出一些非本质的改进和调整。
实施例1
将透明质酸钠(HA)溶解于500mL浓度为0.01mol/L的碳酸氢铵溶液中,配成HA的终浓度为0.25mg/mL或0.5mg/mL或3.0mg/mL,溶解完全后,与500mL浓度为0.001mol/L的硫酸锰溶液迅速混合。30分钟后,将反应体系离心收集沉淀,得到结合有透明质酸钠大分子的碳酸锰微粒(表示为HA/MnCO3),用去离子水通过离心(5000rpm,10min)洗涤三次,存于1.5mL离心管中备用。HA/MnCO3杂化微粒模板的扫描电镜照片详见图1A。以荧光染料DTAF标记透明质酸钠大分子,按上述方法制备DTAF-HA/MnCO3杂化胶体微粒模板,在激光共聚焦显微镜下观察,详见图2A。
将1 5~30mg直径为3~6μm的HA/MnCO3杂化微粒模板在1.5mL离心管中以去离子水分散后再离心收集,如此洗涤三次后,(A)以50μL水分散,加入1mL聚苯乙烯磺酸钠(PSS)溶液(NaCl含量为0.4mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除多余的游离PSS,在HA/MnCO3杂化微粒模板表面吸附上了一层PSS(表示为MnCO3(HA)/PSS)。(B)再以50μL水分散,加入1mL聚烯丙基胺盐酸盐(PAH)溶液(NaCl含量为0.4mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除游离的PAH,在HA/MnCO3杂化微粒模板表面又吸附上了一层PAH(表示为MnCO3(HA)/PSS/PAH)。重复上述A、B步骤,直到形成具有MnCO3(HA)/(PSS/PAH)5/PSS核-壳结构的微粒。向这些微粒加入浓度为0.2mol/L的EDTA溶液,反应20分钟,离心收集,再加入EDTA溶液,继续反应20分钟,离心收集。该过程重复1~3次,用水洗涤离心收集的沉淀3次,得到了去除MnCO3微粒,结构为(HA)/(PSS/PAH)5/PSS或(HA)/PSS/(PAH/PSS)3/PAH的内部具有HA多糖基质的聚电解质微胶囊,其扫描电镜照片见图3C。以图2A的胶体微粒为模板,用上述方法制备的基质型微胶囊的激光共聚焦显微镜照片见图4A。
取500uL基质型微胶囊(结构为(HA)/PSS/(PAH/PSS)3/PAH)悬液于3mL的小瓶中,与1mL浓度为6mg/mL的肌红蛋白溶液相混合,室温下轻轻振摇8小时,离心收集,沉淀以缓冲液冼涤三次,收集所有上清液备测。对完成蛋白质装载的基质型微胶囊加入500uL磷酸缓冲液(pH7.4)或300uL盐酸缓冲液(pH2.0),37℃下缓慢搅拌进行微胶囊内蛋白质的释放,每隔一定时间离心收集一次,取出480uL或280uL上清液,同时加入480uL或280uL 37℃的新鲜缓冲液(pH7.4或2.0),以保持释放体系体积不变。
用吸光度法测定以上所有离心上清液中蛋白质的浓度,通过已知浓度的标准曲线计算微胶囊对肌红蛋白的装载量,见图8。基质型微胶囊对肌红蛋白的平均装载能力明显高于非基质中空微胶囊,并且微胶囊内的HA基质含量越多,微囊的装载能力越大;在pH7.4条件下,基质型微胶囊内肌红蛋白的累积释放量与时间的关系见图9,表明装载于基质型微胶囊内的蛋白质能够缓释出来;环境介质的pH值会显著影响微胶囊内的蛋白质释放行为,在pH2.0条件下释放量很低,见图10。
实施例2
将透明质酸钠(HA)溶解于500mL浓度为0.05mol/L的碳酸氢钠溶液中,配成HA终浓度为5mg/mL,溶解完全后,与500mL浓度为0.005mol/L的硫酸锰溶液迅速混合。30分钟后,将反应体系离心收集沉淀,洗涤后,得到结合有透明质酸钠大分子的碳酸锰微粒(表示为HA/MnCO3)。以HA/MnCO3杂化微粒为模板,按实施例1制备HA基质微胶囊。取1mL基质型微胶囊悬液与1mL浓度为3mg/mL的胰岛素溶液相混合,调节pH为1.5,室温下放置8小时后离心收集微胶囊,用缓冲液洗涤三次后重新分散于缓冲液中,以未装载胰岛素的基质型微胶囊悬液为空白对照,通过紫外分光光度法证明HA基质微囊内聚集有高浓度的蛋白质。
实施例3
将海藻酸钠(ALG)溶解于500mL浓度为0.01mol/L的碳酸氢氨溶液中,配成ALG的终浓度为0.25mg/mL或0.5mg/mL或4.0mg/mL,溶解完全后,与500mL浓度为0.001mol/L的硫酸锰溶液迅速混合。30分钟后,将反应体系离心收集沉淀,得到结合有海藻酸钠大分子的碳酸锰微粒模板(表示为ALG/MnCO3),用去离子水通过离心(5000rpm,10min)洗涤三次,存于1.5mL离心管中备用。ALG/MnCO3杂化微粒模板的扫描电镜照片详见图1B。以荧光染料DTAF标记海藻酸钠大分子,按上述方法制备DTAF-ALG/MnCO3杂化胶体微粒模板,在激光共聚焦显微镜下观察,详见图2B。
将15~30mg直径为2~4μm的上述ALG/MnCO3杂化微粒模板在1.5mL离心管中以去离子水分散后再离心收集,如此洗涤三次后,(A)以50μL水分散,加入1mL聚苯乙烯磺酸钠(PSS)溶液(NaCl含量为0.5mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除多余的游离PSS,在ALG/MnCO3杂化微粒表面吸附上了一层PSS(表示为MnCO3(ALG)/PSS)。(B)再以50μL水分散,加入1mL聚烯丙基胺盐酸盐(PAH)溶液(NaCl含量为0.5mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除游离的PAH,在ALG/MnC03杂化微粒模板表面又吸附上了一层PAH(表示为MnCO3(ALG)/PSS/PAH)。重复以上A、B步骤,直到形成具有MnCO3(ALG)/(PSS/PAH)5/PSS核-壳结构的微粒。向这些微粒加入浓度为0.2mol/L的EDTA溶液,反应20分钟,离心收集,再加入EDTA溶液,继续反应20分钟,离心收集。该过程重复1~3次,用水洗涤离心收集的沉淀3次,得到了去除MnCO3微粒,结构为(ALG)/(PSS/PAH)5/PSS或(ALG)/(PSS/PAH)6或(ALG)/PSS/(PAH/PSS)3/PAH的内部具有ALG多糖基质的聚电解质微胶囊,其扫描电镜照片见图3A。以纯MnCO3微粒为模板制备的非基质型聚电解质微胶囊的组成为(PSS/PAH)6。以图2B的胶体微粒为模板,用上述方法制备的基质型微胶囊的激光共聚焦显微镜照片见图4B。
各取50μL结构为(ALG)/(PSS/PAH)6的基质型微胶囊和结构为(PSS/PAH)6的非基质型微胶囊悬液分别与200μL浓度为2mg/mL的罗丹明6-G溶液相混合,室温下放置10分钟后离心收集,用水洗涤三次,于激光共聚焦显微镜下观察,详见图6所示,与非基质型微胶囊相比,大量的罗丹明分子集聚在基质型微胶囊内。
取500uL基质型微胶囊(结构为(ALG)/PSS/(PAH/PSS)3/PAH)悬液于3mL的小瓶中,与1mL浓度为6mg/mL的肌红蛋白溶液相混合,室温下轻轻振摇8小时,离心收集,沉淀以缓冲液冼涤三次,收集所有上清液备测。对完成蛋白质装载的基质型微胶囊加入500uL磷酸缓冲液(pH7.4)或300uL盐酸缓冲液(pH2.0),37℃下缓缓搅拌进行微胶囊内蛋白质的释放,每隔一定时间离心收集一次,取出480uL或280uL上清液,同时加入480uL或280uL 37℃的新鲜缓冲液(pH7.4或2.0),以保持释放体系体积不变。
用吸光度法测定以上所有离心上清液中蛋白质的浓度,通过已知浓度的标准曲线计算微胶囊对肌红蛋白的装载量,见图8。基质型微胶囊对肌红蛋白的平均装载能力明显高于非基质中空微胶囊,并且微胶囊内的ALG基质含量越多,微囊的装载能力越大;在pH7.4条件下,基质型微胶囊内肌红蛋白的累积释放量与时间的关系(图9)表明,装载于基质型微胶囊内的蛋白质能够缓释出来;环境介质的pH值会显著影响微胶囊内的蛋白质释放行为,在pH2.0条件下释放量非常低,见图10。
实施例4
将海藻酸钠(ALG)溶解于500mL浓度为0.05mol/L的碳酸氢钠溶液中,配成ALG终浓度为0.5mg/mL,溶解完全后,与500mL浓度为0.005mol/L的硫酸锰溶液迅速混合。30分钟后,将反应体系离心收集沉淀,得到结合有海藻酸钠大分子的碳酸锰微粒(表示为ALG/MnCO3),洗涤后,以ALG/MnCO3杂化微粒为模板,以天然生物聚电解质海藻酸钠和壳聚糖为微胶囊囊壁材料,用实例1的层层自组装方法制备结构为(ALG)/(海藻酸/壳聚糖)5的基质型聚电解质微胶囊,其扫描电镜照片见图5。
以荧光染料FITC标记蛋白质药物基因重组人干扰素分子(表示为FITC-rhIFN)。取少量基质型微胶囊(ALG)/(海藻酸/壳聚糖)5悬液和非基质型微胶囊(海藻酸/壳聚糖)5悬液,分别与0.5mL FITC-rhIFN溶液相混合,室温下共培育2小时,离心收集,水洗三次,于激光共聚焦显微镜下观察(图7),FITC-rhIFN分子有效地装载于基质型微胶囊内,而在非基质型微胶囊内FITC-rhIFN分子很不明显。
取100uL基质型微胶囊(ALG)/(海藻酸/壳聚糖)5悬液于1.5mL的离心管中,加入1mL浓度为5mg/mL的rh-IFN溶液,室温下缓慢振摇6小时,然后分成两份,向其中一份加入50uL浓度为0.01mol/L的CaCl2溶液,孵育30分钟,离心收集;另一份直接离心收集。离心沉淀均以缓冲液洗涤三次,保留所有上清液备测。向这两份装载有rh-IFN的微胶囊各加入500uL磷酸盐缓冲液(pH7.4),37℃下缓慢搅拌进行微胶囊内rh-IFN的释放,每隔一定时间离心收集一次,取出480uL上清液,同时补充等体积37℃的新鲜缓冲液(pH7.4)。
用蛋白质染色吸光度法测定所有上清液中rh-IFN的浓度,通过已知浓度的标准曲线计算基质型微胶囊(ALG)/(海藻酸/壳聚糖)5对rh-IFN的装载量,见图11。内部基质成分和囊壁组分均含有海藻酸钠的微胶囊装载蛋白质药物后,经过Ca2+交联处理,其载药量明显高于未交联处理的微胶囊。生理pH7.4条件下,微胶囊内rh-IFN的累积释放量与时间的关系(图12)说明,相比未交联处理的基质型微胶囊内的rh-IFN,经过Ca2+交联处理的基质型微胶囊内rh-IFN的释放速率和释放量更慢更少,表明Ca2+的交联对微胶囊内的蛋白质药物有进一步的包埋作用。相对于其他化学交联法或高温收缩法,Ca2+交联法温和简便,对生物活性大分子药物很友好。
实施例5
将海藻酸钠(ALG)溶解于500mL浓度为0.1mol/L的碳酸钠溶液中,配成ALG终浓度为5mg/mL,溶解完全后,与500mL浓度为0.01mol/L的氯化锰溶液迅速混合。30分钟后,将反应体系离心收集沉淀,洗涤后,得到结合有海藻酸钠大分子的碳酸锰微粒(表示为ALG/MnCO3)。以ALG/MnCO3杂化微粒为模板,按实施例3制备ALG基质微胶囊。取500μL基质型微胶囊悬液与1mL浓度为1.5mg/mL的溶菌酶溶液相混合,调节pH为6.0,室温下放置8小时后离心收集微胶囊,用缓冲液洗涤三次后重新分散于缓冲液中,以未装载溶菌酶的基质型微胶囊悬液为空白对照,通过紫外分光光度法证明ALG基质微胶囊内聚集有大量的蛋白酶。
实施例6
将硫酸葡聚糖(DEX)溶解于500mL浓度为0.01mol/L的碳酸氢铵溶液中,配成DEX的终浓度为0.25mg/mL或0.5mg/mL或3.0mg/mL,溶解完全后,与500mL浓度为0.001mol/L的硫酸锰溶液迅速混合。30分钟后,将反应体系离心收集沉淀,得到结合有硫酸葡聚糖大分子的碳酸锰微粒模板(表示为DEX/MnCO3),用去离子水通过离心(5000rpm,10min)洗涤三次,存于1.5mL离心管中备用。DEX/MnCO3杂化微粒模板的扫描电镜照片详见图1C。
将15~30mg直径为2~4μm的上述DEX/MnCO3杂化微粒模板在1.5mL离心管中以去离子水分散后再离心收集,如此洗涤三次后,(A)以50μL水分散,加入1mL聚苯乙烯磺酸钠(PSS)溶液(NaCl含量为0.1~1mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除多余的游离PSS,在DEX/MnCO3杂化微粒模板表面吸附上了一层PSS(表示为MnCO3(DEX)/PSS)。(B)再以50μL水分散,加入1mL聚烯丙基胺盐酸盐(PAH)溶液(NaCl含量为0.1~1mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除游离的PAH,在DEX/MnCO3杂化微粒模板表面又吸附上了一层PAH(表示为MnCO3(DEX)/PSS/PAH)。重复以上A、B步骤,直到形成具有MnCO3(DEX)/(PSS/PAH)5/PSS核-壳结构的微粒。向这些微粒加入浓度为0.2mol/L的EDTA溶液,反应20分钟,离心收集,再加入EDTA溶液,继续反应20分钟,离心收集。该过程重复1~3次,用水洗涤离心收集的沉淀3次,得到了去除MnCO3微粒,结构为(DEX)/(PSS/PAH)5/PSS或(DEX)/PSS/(PAH/PSS)3/PAH的内部具有DEX多糖基质的聚电解质微胶囊,其扫描电镜照片见图3B。
取500uL基质型微胶囊(结构为(DEX)/PSS/(PAH/PSS)3/PAH)悬液于3mL的小瓶中,与1mL浓度为6mg/mL的肌红蛋白溶液相混合,室温下轻轻振摇8小时,离心收集,沉淀以缓冲液冼涤三次,收集所有上清液备测。
用吸光度法测定以上所有离心上清液中蛋白质的浓度,通过已知浓度的标准曲线计算微胶囊对肌红蛋白的装载量,见图8。基质型微胶囊对肌红蛋白的平均装载能力明显高于非基质中空微胶囊,并且微胶囊内的DEX基质含量越多,微囊的装载能力越大。
实施例7
将硫酸葡聚糖(DEX)溶解于500mL浓度为0.05mol/L的碳酸氢钠溶液中,配成DEX终浓度为5mg/mL,溶解完全后,与500mL浓度为0.005mol/L的氯化锰溶液迅速混合。30分钟后,将反应体系离心收集沉淀,洗涤后,得到结合有硫酸葡聚糖大分子的碳酸锰微粒(表示为DEX/MnCO3)。以DEX/MnCO3杂化微粒为模板,按实施例6制备DEX基质微胶囊。取1mL DEX基质微胶囊悬液与1mL浓度为5mg/mL的鱼精蛋白溶液相混合,调节pH为5.0,室温下放置6小时后离心收集微胶囊,用缓冲液洗涤三次后重新分散于缓冲液中,以未装载鱼精蛋白的基质型微胶囊悬液为空白对照,通过紫外分光光度法证明DEX基质微胶囊内聚集有高浓度的鱼精蛋白。
实施例8
将肝素钠(HEP)溶解于500mL浓度为0.02mol/L的碳酸氢钠溶液中,配成HEP的终浓度为0.25mg/mL或0.5mg/mL或4.0mg/mL,溶解完全后,与500mL浓度为0.002mol/L的硫酸锰溶液迅速混合。30分钟后,将反应体系离心收集沉淀,得到结合有肝素钠大分子的碳酸锰微粒模板(表示为HEP/MnCO3),用去离子水通过离心(5000rpm,10min)洗涤三次,存于1.5mL离心管中备用。HEP/MnCO3杂化微粒模板的扫描电镜照片详见图1D。
将15~30mg直径为2~4μm的上述HEP/MnCO3杂化微粒模板在1.5mL离心管中以去离子水分散后再离心收集,如此洗涤三次后,(A)以50μL水分散,加入1mL聚苯乙烯磺酸钠(PSS)溶液(NaCl含量为0.1~1mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除多余的游离PSS,在HEP/MnCO3杂化微粒模板表面吸附上了一层PSS(表示为MnCO3(HEP)/PSS)。(B)再以50μL水分散,加入1mL聚烯丙基胺盐酸盐(PAH)溶液(NaCl含量为0.1~1mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除游离的PAH,在HEP/MnCO3杂化微粒模板表面又吸附上了一层PAH(表示为MnCO3(HEP)/PSS/PAH)。重复以上A、B步骤,直到形成具有MnCO3(HEP)/(PSS/PAH)5/PSS核-壳结构的微粒。向这些微粒加入浓度为0.2mol/L的EDTA溶液,反应20分钟,离心收集,再加入EDTA溶液,继续反应20分钟,离心收集。该过程重复1~3次,用水洗涤离心收集的沉淀3次,得到了去除MnCO3微粒,内部具有HEP多糖基质的聚电解质微胶囊。
取1mL HEP基质微胶囊悬液与1mL浓度为10mg/mL的尿素溶液相混合,调节pH为2.0,室温下放置4小时后离心收集微胶囊,再重新分散于缓冲液中,以未装载脲素的基质型微胶囊悬液为空白对照,通过紫外分光光度法证明HEP基质微囊内聚集有高浓度的的脲素。
实施例9
将硫酸软骨素(CS)溶解于500mL浓度为0.01mol/L的碳酸氢钠溶液中,配成CS的终浓度为0.5mg/mL或2mg/mL或4.0mg/mL,溶解完全后,与500mL浓度为0.001mol/L的硫酸锰溶液迅速混合。30分钟后,将反应体系离心收集沉淀,得到结合有肝素钠大分子的碳酸锰微粒模板(表示为CS/MnCO3),用去离子水通过离心(5000rpm,10min)洗涤三次,存于1.5mL离心管中备用。
将15~30mg直径为2~4μm的上述CS/MnCO3杂化微粒模板在1.5mL离心管中以去离子水分散后再离心收集,如此洗涤三次后,(A)以50μL水分散,加入1mL聚苯乙烯磺酸钠(PSS)溶液(NaCl含量为0.1~1mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除多余的游离PSS,在CS/MnCO3杂化微粒模板表面吸附上了一层PSS(表示为MnCO3(CS)/PSS)。(B)再以50μL水分散,加入1mL聚烯丙基胺盐酸盐(PAH)溶液(NaCl含量为0.1~1mol/L),轻轻振摇离心管。15分钟后,离心收集,水洗三次,去除游离的PAH,在CS/MnCO3杂化微粒模板表面又吸附上了一层PAH(表示为MnCO3(CS)/PSS/PAH)。重复以上A、B步骤,直到形成具有MnCO3(CS)/(PSS/PAH)5/PSS核-壳结构的微粒。向这些微粒加入浓度为0.2mol/L的EDTA溶液,反应20分钟,离心收集,再加入EDTA溶液,继续反应20分钟,离心收集。该过程重复1~3次,用水洗涤离心收集的沉淀3次,得到了去除MnCO3微粒,内部具有CS多糖基质的聚电解质微胶囊。
取1mL1 CS基质微胶囊悬液与2mL浓度为1mg/mL的骨粘连蛋白溶液相混合,调节pH为1.2,室温下放置10小时后离心收集微胶囊,再重新分散于缓冲液中,以未装载骨粘连蛋白的基质型微胶囊悬液为空白对照,通过紫外分光光度法证明CS基质微囊内聚集有高浓度的的蛋白质。

Claims (7)

1.一种装载水溶性物质的基质型微胶囊的制备方法,其特征在于该方法包括以下步骤:
(1)将带有负电荷的天然多糖聚电解质溶于浓度为0.01~0.1mol/L的含碳酸根的无机盐水溶液中,搅拌下与浓度为0.001~0.01mol/L的含锰无机盐水溶液相混合,离子型天然多糖聚电解质在反应体系中的终浓度为0.25~5mg/mL,搅拌反应0.1~20min,离心收集沉淀物,用去离子水洗1~3次,得到内部结合有天然多糖聚电解质的杂化MnCO3胶体微粒模板;
(2)将步骤1制得的杂化MnCO3胶体微粒模板分散在NaCl浓度为0.1~1mol/L的负电性聚电解质溶液中,负电性聚电解质的浓度为0.5~5mg/mL;5~30min后离心收集沉淀,以去离子水重新分散后再离心收集沉淀,如此反复水洗1~3次,得到第一层包覆有负电性聚电解质层的杂化MnCO3胶体微粒,再将该胶体微粒分散在NaCl浓度为0.1~1mol/L的正电性聚电解质溶液中,正电性聚电解质的浓度为0.5~5mg/mL;5~30min后离心收集胶体微粒,以去离子水重新分散后再离心收集沉淀物,反复用水洗1~3次,完成了第二层为正电性聚电解质层的包覆;重复以上过程,按要求的层数将负电性和正电性聚电解质交替层层吸附组装,得到具有核-壳结构的胶体微粒,通过溶解或分解去除杂化微粒的MnCO3成分,就得到内部预先充填有带负电荷的天然多糖聚电解质基质的微胶囊;
(3)在温度4~40℃,将步骤2所制得的基质型微胶囊分散在浓度为0.1~20mg/mL的水溶性物质的溶液中,共孵育0.5~12h,将客体水溶性物质装载到微胶囊内;对于在海藻酸钠/MnCO3杂化微粒模板上制备的微胶囊(海藻酸钠)/(海藻酸/壳聚糖)5,完成装载后,加入浓度为0.01~0.1mol/L的CaCl2溶液50~500uL,孵育10~60min,对该载药后的微胶囊进行交联处理。
2.如权利要求1所述装载水溶性物质的基质型微胶囊的制备方法,其特征在于含锰无机盐为硫酸锰或氯化锰。
3.如权利要求1所述装载水溶性物质的基质型微胶囊的制备方法,其特征在于含碳酸根无机盐为碳酸氢钠、碳酸氢铵或碳酸钠中的任一种。
4.如权利要求1所述装载水溶性物质的基质型微胶囊的制备方法,其特征在于杂化MnCO3胶体微粒模板中的天然多糖聚电解质为海藻酸钠、透明质酸钠、硫酸葡聚糖、肝素钠、硫酸软骨素、硫酸角质素或壳聚糖中的任一种。
5.如权利要求1所述装载水溶性物质的基质型微胶囊的制备方法,其特征在于微胶囊囊壁膜所用的聚电解质材料为负电性聚电解质聚苯乙烯磺酸钠、海藻酸、硫酸葡聚糖、透明质酸、肝素钠、硫酸软骨素或硫酸角质素中的任一种;正电性聚电解质为聚烯丙基胺盐酸盐、壳聚糖、鱼精蛋白或胶原蛋白中的任一种。
6.如权利要求1所述装载水溶性物质的基质型微胶囊的制备方法,其特征在于杂化MnCO3胶体微粒模板中的MnCO3成份的去除,用盐酸溶解或用乙二胺四乙酸络合分解。
7.如权利要求1所述装载水溶性物质的基质型微胶囊的制备方法,其特征在于所述水溶性物质为罗丹明、聚烯丙基铵盐酸盐、肌红蛋白、白蛋白、鱼精蛋白、干扰素、溶菌酶、胰岛素、白介素11及其它白介素、促生长多肽激素、重组生长激素、促滤泡素、人绒毛膜促性腺激素、胸腺肽、红细胞生成素、表皮生长因子、降钙素、骨粘连蛋白、骨钙素、脲素、脲酶、聚赖氨酸、聚组氨酸或聚精氨酸中的任一种。
CN 200910216060 2009-10-30 2009-10-30 一种装载水溶性物质的基质型微胶囊的制备方法 Active CN101708450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910216060 CN101708450B (zh) 2009-10-30 2009-10-30 一种装载水溶性物质的基质型微胶囊的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910216060 CN101708450B (zh) 2009-10-30 2009-10-30 一种装载水溶性物质的基质型微胶囊的制备方法

Publications (2)

Publication Number Publication Date
CN101708450A true CN101708450A (zh) 2010-05-19
CN101708450B CN101708450B (zh) 2011-10-19

Family

ID=42401270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910216060 Active CN101708450B (zh) 2009-10-30 2009-10-30 一种装载水溶性物质的基质型微胶囊的制备方法

Country Status (1)

Country Link
CN (1) CN101708450B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972491A (zh) * 2010-09-25 2011-02-16 上海交通大学医学院附属瑞金医院 一种葡萄串状微囊体系及其制备方法
CN102416200A (zh) * 2011-12-02 2012-04-18 四川大学 一种构建胶原基生物大分子/羟基磷灰石微球复合支架材料的制备方法
CN102580106A (zh) * 2012-03-21 2012-07-18 浙江大学 一种pH敏感型聚电解质微囊给药载体的制备方法
CN102626399A (zh) * 2012-04-05 2012-08-08 中国科学院化学研究所 一种海藻酸钙微胶囊及其制备方法与应用
CN103005168A (zh) * 2012-12-27 2013-04-03 上海海洋大学 一种微生物溶菌酶微胶囊及其制备方法和应用
CN103100089A (zh) * 2013-01-23 2013-05-15 四川大学 一种口服pH响应性肠靶向载体及其制备方法与应用
CN104923133A (zh) * 2015-05-07 2015-09-23 温州生物材料与工程研究所 尺寸形状独立可控的聚电解质微胶囊的制备方法
CN105543210A (zh) * 2016-02-26 2016-05-04 河北工业大学 一种制备多孔酶微球的方法
CN108486879A (zh) * 2018-06-08 2018-09-04 天津工业大学 一种天然多糖层层自组装微胶囊的制备方法
CN108685872A (zh) * 2017-04-12 2018-10-23 刘东飞 一种序列沉淀络合凝聚法制备超高载药纳米粒子的方法
CN110541099A (zh) * 2019-07-02 2019-12-06 山东大学 镁合金表面可降解复合膜层及其制备方法与应用
CN110639442A (zh) * 2019-10-09 2020-01-03 天津工业大学 一种负载双氯芬酸钠的天然多糖微胶囊的制备方法
CN111388445A (zh) * 2020-03-30 2020-07-10 杭州鹿扬科技有限公司 具有延长释放活性药物成分的微胶囊材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1308820A (en) * 1970-11-25 1973-03-07 Jointine Products Co Ltd Gaskets
CN1596880A (zh) * 2004-08-13 2005-03-23 华南理工大学 鱼精蛋白和海藻酸钠微胶囊及其制备方法
CN100348179C (zh) * 2005-11-01 2007-11-14 浙江大学 一种包埋抗癌药物的微胶囊的制备方法
CN101099727A (zh) * 2007-07-20 2008-01-09 浙江大学 一种具有与肿瘤细胞特异性结合功能的微胶囊的制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972491A (zh) * 2010-09-25 2011-02-16 上海交通大学医学院附属瑞金医院 一种葡萄串状微囊体系及其制备方法
CN101972491B (zh) * 2010-09-25 2014-01-08 上海交通大学医学院附属瑞金医院 一种葡萄串状微囊体系及其制备方法
CN102416200A (zh) * 2011-12-02 2012-04-18 四川大学 一种构建胶原基生物大分子/羟基磷灰石微球复合支架材料的制备方法
CN102416200B (zh) * 2011-12-02 2013-09-11 四川大学 一种构建胶原基生物大分子/羟基磷灰石微球复合支架材料的制备方法
CN102580106A (zh) * 2012-03-21 2012-07-18 浙江大学 一种pH敏感型聚电解质微囊给药载体的制备方法
CN102580106B (zh) * 2012-03-21 2013-07-10 浙江大学 一种pH敏感型聚电解质微囊给药载体的制备方法
CN102626399B (zh) * 2012-04-05 2014-05-07 中国科学院化学研究所 一种海藻酸钙微胶囊及其制备方法与应用
CN102626399A (zh) * 2012-04-05 2012-08-08 中国科学院化学研究所 一种海藻酸钙微胶囊及其制备方法与应用
CN103005168A (zh) * 2012-12-27 2013-04-03 上海海洋大学 一种微生物溶菌酶微胶囊及其制备方法和应用
CN103100089B (zh) * 2013-01-23 2015-02-18 四川大学 一种口服pH响应性肠靶向载体及其制备方法与应用
CN103100089A (zh) * 2013-01-23 2013-05-15 四川大学 一种口服pH响应性肠靶向载体及其制备方法与应用
CN104923133A (zh) * 2015-05-07 2015-09-23 温州生物材料与工程研究所 尺寸形状独立可控的聚电解质微胶囊的制备方法
CN105543210A (zh) * 2016-02-26 2016-05-04 河北工业大学 一种制备多孔酶微球的方法
CN108685872A (zh) * 2017-04-12 2018-10-23 刘东飞 一种序列沉淀络合凝聚法制备超高载药纳米粒子的方法
CN108685872B (zh) * 2017-04-12 2020-11-20 刘东飞 一种序列沉淀络合凝聚法制备超高载药纳米粒子的方法
CN108486879A (zh) * 2018-06-08 2018-09-04 天津工业大学 一种天然多糖层层自组装微胶囊的制备方法
CN110541099A (zh) * 2019-07-02 2019-12-06 山东大学 镁合金表面可降解复合膜层及其制备方法与应用
CN110541099B (zh) * 2019-07-02 2021-04-06 山东大学 镁合金表面可降解复合膜层及其制备方法与应用
CN110639442A (zh) * 2019-10-09 2020-01-03 天津工业大学 一种负载双氯芬酸钠的天然多糖微胶囊的制备方法
CN111388445A (zh) * 2020-03-30 2020-07-10 杭州鹿扬科技有限公司 具有延长释放活性药物成分的微胶囊材料及其制备方法

Also Published As

Publication number Publication date
CN101708450B (zh) 2011-10-19

Similar Documents

Publication Publication Date Title
CN101708450B (zh) 一种装载水溶性物质的基质型微胶囊的制备方法
Parakhonskiy et al. Colloidal micro-and nano-particles as templates for polyelectrolyte multilayer capsules
CN103619886B (zh) 氧化纤维素的溶解
Lin et al. Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres
Remuñán-López et al. Effect of formulation and process variables on the formation of chitosan-gelatin coacervates
JP4959326B2 (ja) ヒアルロン酸ナノ粒子
US8293819B2 (en) Method for producing particles and particles
CN107982239B (zh) 疏水性药物晶体为模板的蛋白基非球形微囊及制备方法
WO2004105734A1 (en) Method of preparing microcapsules
US20110020225A1 (en) Porous polymer particles immobilized with charged molecules and method for preparing the same
US20110177231A1 (en) Nano-, Micro-, Macro- Encapsulation And Release Of Materials
CN105997936B (zh) 一种羧甲基壳聚糖纳米微粒固定化多孔多层海藻酸钠胶球的制备方法
CN104624129B (zh) 基于离子液体型表面活性剂微乳液体系淀粉纳米微球的制备方法
Xiong et al. Structure and properties of hybrid biopolymer particles fabricated by co-precipitation cross-linking dissolution procedure
WO2002058672A2 (en) Microparticles of biodegradable polymer encapsulating a biologically active substance
US20220265827A1 (en) Functional microscaffold that can be magnetically actuated and manufacturing method therefor
EP1044683A1 (en) One-step dispersion method for the microencapsulation of water soluble substances
US20030075817A1 (en) Process for producing microsphere
US20180250231A1 (en) Polymeric microspheres with spontaneous pore-closing functionality and methods for preparign the same
Finbloom et al. Networks of high aspect ratio particles to direct colloidal assembly dynamics and cellular interactions
CN105534955A (zh) 一种双层缓控释纳米粒及其制备方法
JP2008088158A (ja) 親水性活性物質含有微粒子の製造方法
WO2008107729A1 (en) Sustained release bionanocomposites, a process for producing the same and use thereof
Vergaro et al. TGF-beta inihibitor-loaded polyelectrolyte multilayers capsules for sustained targeting of hepatocarcinoma cells
KR20020093059A (ko) 마이크로스피어 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant