CN101683272A - 超声敏感载药纳米泡 - Google Patents

超声敏感载药纳米泡 Download PDF

Info

Publication number
CN101683272A
CN101683272A CN200810166862A CN200810166862A CN101683272A CN 101683272 A CN101683272 A CN 101683272A CN 200810166862 A CN200810166862 A CN 200810166862A CN 200810166862 A CN200810166862 A CN 200810166862A CN 101683272 A CN101683272 A CN 101683272A
Authority
CN
China
Prior art keywords
nanometer bubble
ultrasonic sensitive
carried nanometer
ultrasonic
medicament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200810166862A
Other languages
English (en)
Inventor
金义光
杜丽娜
周文英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Radiation Medicine of CAMMS
Original Assignee
Institute of Radiation Medicine of CAMMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Radiation Medicine of CAMMS filed Critical Institute of Radiation Medicine of CAMMS
Priority to CN200810166862A priority Critical patent/CN101683272A/zh
Publication of CN101683272A publication Critical patent/CN101683272A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种超声敏感载药纳米泡,粒径为20纳米~700纳米。超声敏感载药纳米泡成膜材料为两亲性嵌段共聚物,内充氟碳类或氟硫类化合物,载有造影药物或治疗药物,其在血液循环中以纳米泡的形式稳定存在,易穿透血管内皮细胞间隙进入靶部位,通过超声作用使泡破裂,在局部释放药物。本发明集定向诊断与靶向治疗于一体,具有较大的临床应用价值。

Description

超声敏感载药纳米泡
技术领域
本发明涉及药物化学和生物医学超声领域,特别涉及一种超声敏感载药纳米泡。
背景技术
超声诊断成像是当前应用最广泛的医学成像模式,在疾病诊断方面发挥了巨大作用,据统计全世界每年有近一亿次心血管系统、腹部脏器的超声检查。而超声造影剂(Ultrasound Contrast Agent,UCA)是应超声诊断成像技术的需要发展起来的。它是一类能够显著增强医学超声检测信号的诊断试剂。通过提高背向散射回声信号,增强超声对比效果,提供改进的超声显像诊断方式。超声造影剂主要由成膜材料与成像气体两部分组成,目前临床上使用的微泡造影剂平均直径为3~5μm,可顺利通过肺循环,使左右心室腔、心肌及全身器官、组织和病变的造影增强。超声造影剂除了作为超声诊断药剂之外,近年来的研究还发现超声造影剂具有分子成像、促进血栓溶解、促进基因转染及药物体内运输定点释放等作用。
带有亲水片段的两亲性嵌段共聚物具有类似非离子表面活性剂的性质,在一定浓度和温度下能自发形成亲油基向内、亲水基向外的有序聚集体-胶束(Micelles)(粒径通常为5~100nm),具有极稳定的壳-核结构。该两亲性共聚物因具有以下优点:(1)良好的生物相容性及生物可降解性;(2)可以通过改变聚合物的组成或分子量来调节材料的柔顺性;(3)可用功能性分子(如靶向分子)修饰。
超声造影剂的成像气体以往常采用空气、氮气、氧气、二氧化碳、六氟化硫等,此类气体因分子量小、弥散度大而对成膜材料的要求较高。全氟化碳类气体因具有许多特殊的理化性质,如无毒、化学性质稳定、具有生化惰性及稳定性、高密度、高蒸汽压、高氧溶解能力而成为目前最理想的成像气体材料。目前国外已上市的微泡超声造影剂中主要用到全氟丙烷、全氟丁烷和全氟戊烷三种气体成分,全氟丙烷和全氟丁烷在常温下是气体,全氟戊烷沸点为29.5℃。29.5℃以下全氟戊烷以液态形式存在,因此被用来制备气液相变型的微泡超声造影剂,有助于增强微泡的稳定性。
叶酸(FA)对肿瘤细胞表面的叶酸受体有高度的特异性和亲合力,叶酸受体在肿瘤细胞表面高度表达,而在正常组织的表达高度保守。以叶酸介导的聚合物胶束传递系统具有聚合物胶束的优点,具有安全、高效、长效、长循环等优点。
目前超声造影剂是微米级造影剂,不能透过血管壁,仅限于血池显像,且其携带的药物或基因在肿瘤血管内释放后,只有少部分进入肿瘤细胞内,不能有效的跨越“内膜屏障”,限制了其对血管外疾病的诊断与治疗。
因此寻找新型高效、小型化、穿透力强、成像效果好、直接靶向肿瘤细胞、能进行肿瘤血管外领域定向诊断与治疗的理想靶向超声造影剂已成为肿瘤超声分子成像领域最为重要的研究方向。
发明内容
本发明公开了一种超声敏感载药纳米泡,它突出的优势包括载药量大,稳定性好,具有定向诊断与靶向治疗双重功效,不仅能实现人体正常或病变组织如肿瘤的实质成像,增强成像效果及延长成像时间,并可达到高效、快速杀死病变细胞如肿瘤细胞的目的,且避免了药物常见的毒副作用。
本发明公开的超声敏感载药纳米泡,其特征是其粒径的范围是20纳米~700纳米,优选的是50纳米~500纳米,更优选的是100纳米~300纳米。
本发明中的超声敏感载药纳米泡,其中所载药物选自心血管药物、泌尿系统药物、呼吸系统药物、消化系统药物、抗感染药物、抗癌药物,优选的是抗癌药物。
本发明中的超声敏感载药纳米泡所载的抗癌药物选自氮芥、氮甲、甘磷酰芥、卡莫司汀、洛莫司汀、司莫司汀、苯丁酸氮芥、六甲蜜胺、多潘、甲氨蝶呤、氟尿嘧啶、替加氟、阿糖胞苷、吉西他滨、卡培他滨、羟基脲、阿霉素、放线菌素D、丝裂霉素、长春瑞滨、替尼泊苷、羟喜树碱、紫杉醇、多西他赛、他莫昔芬、氨鲁米特、来曲唑、甲羟孕酮、甲地孕酮、顺铂、卡铂、奥沙利铂,优选自氮甲、甘磷酰芥、卡莫司汀、洛莫司汀、司莫司汀、苯丁酸氮芥、甲氨蝶呤、氟尿嘧啶、替加氟、阿糖胞苷、吉西他滨、卡培他滨、羟基脲、阿霉素、紫杉醇、多西他赛、他莫昔芬、顺铂、卡铂,更优选自卡莫司汀、洛莫司汀、司莫司汀、甲氨蝶呤、氟尿嘧啶、卡培他滨、阿霉素、紫杉醇、多西他赛、他莫昔芬,进一步选自阿霉素、紫杉醇、多西他赛。
本发明中的超声敏感载药纳米泡,其成膜材料是两亲性嵌段共聚物。两亲性嵌段共聚物由两嵌段或三嵌段聚合物构成,优选的是的两嵌段聚合物。两亲性嵌段共聚物的疏水段选自聚乳酸-羟基乙酸(PLGA)、聚乳酸(PLA)、聚羟基丁酸酯、聚氰基丙烯酸酯、聚己内酯(PCL)、聚酸酐、聚羟基丁酸酯-羟基戊酸酯共聚物、聚氨基甲酸酯、聚原酸酯、聚氨基酸,优选自聚乳酸-羟基乙酸(PLGA)、聚乳酸(PLA)、聚己内酯(PCL),更优选自聚乳酸-羟基乙酸(PLGA)。两亲性嵌段共聚物的亲水段选自聚乙二醇(PEG)、聚氧乙烯、聚乙烯醇、右旋糖酐、聚乙烯吡咯烷酮,优选自聚乙二醇(PEG)。
本发明所使用的两亲性嵌段共聚物部分可以从市场上购买得到,也可以自己合成。一般地,嵌段共聚物中的疏水段聚合物和亲水段聚合物分别都可以从市场购得。利用疏水段聚合物上的羧基等基团和亲水段聚合物上的羟基基团,进行缩合得酯,即为两亲性嵌段共聚物。这种反应本专业技术人员或参考文献后都可以操作。
由PLGA与PEG反应合成两亲性两嵌段共聚物的方法可参考许多已公开的文献(MallardéD,et al.Int J Pharm,2003,261:69-80;Li Y,et al.J ControlledRelease,2001,71:203-211)。但公开文献的报道是将PLGA首先用NHS活化,然后再与PEG胺连接。此方法的缺点是操作繁琐,反应条件苛刻(必须保持完全无水条件),成本较高(NHS、PEG胺均较贵)。我们采取的改进方法是首先将PLGA和二氯亚砜反应,其中二氯亚砜既作为反应物,又作为溶剂,此反应使PLGA末端酰氯化,由于酰氯非常活泼,在无水条件下与PEG的羟基直接反应。此方法操作简单,成本较低,且产物易于纯化。
由PLGA与其他亲水性聚合物反应合成两亲性两嵌段共聚物也可参考上述我们发明的新方法。疏水性可生物降解的聚合物大都具有相似的结构及性质,所以其与亲水性聚合物的反应均可参考以上我们发明的新方法。
本发明中的超声敏感载药纳米泡,采用的两亲性嵌段共聚物的亲水段末端连接有肿瘤细胞特异性靶向分子。肿瘤细胞特异性靶向分子选自乙酰氨基半乳糖、半乳糖、乳糖、表皮生长因子、低密度脂蛋白、转铁蛋白、叶酸(FA)、各种癌细胞的单克隆抗体,优选自叶酸和各种癌细胞的单克隆抗体,更优选的是叶酸。
利用两亲性嵌段共聚物的亲水段末端的活性基团,如羟基,可以共价连接有肿瘤细胞特异性靶向分子。利用靶向分子中的活泼基团,如羟基、羧基、氨基、巯基等,与亲水性聚合物末端直接连接或通过连接基连接。连接基选自2~7个碳数的双羧基脂肪酸,如草酸、丙二酸、琥珀酸、马来酸、富马酸、2-甲基-2-丁烯二酸、甲基丁二酸、羟基丁二酸、草乙酸(氧化琥珀酸)、酒石酸、天冬氨酸、谷氨酸、戊二酸、己二酸、2,2-二甲基戊二酸、庚二酸,优选的是碳数为4的双羧基脂肪酸,如琥珀酸、马来酸、富马酸。一般用常规的酰化反应就可以得到需要的连接肿瘤细胞特异性靶向分子的两亲嵌段共聚物。
接有靶向分子的两亲性两嵌段共聚物即PLGA-PEG-FA的合成可参考文献(Yoo HS,et al.J Controlled Release,2004,96:273-283)。合成PLGA-PEG-FA的过程中用到的PEG二胺参考文献制得。PEG二胺的一端胺基与NHS活化的PLGA的羧基反应,得到PLGA-PEG-NH2,PLGA-PEG-NH2的胺基与NHS活化的FA的羧基反应,最终生成接有靶向分子的两亲性两嵌段共聚物PLGA-PEG-FA。
本发明中的超声敏感载药纳米泡,其中充填成分是氟碳类化合物和氟硫类化合物,优选自全氟丙烷、全氟丁烷、全氟戊烷、六氟化硫,更优选的是全氟戊烷。
制备超声敏感载药纳米泡的方法主要是先用两亲性嵌段共聚物形成聚合物胶束,然后将充填成分和脂溶性药物增溶包裹,即得到超声敏感载药纳米泡。如果充填成分在室温下为液体,那得到的是超声敏感载药纳米泡的前体,当此前体进入血液循环时,由于温度的增加,充填成分气化,即形成超声敏感载药纳米泡。水溶性药物或不溶性药物可混悬在充填成分中一起被聚合物胶束包裹,也可以在制备聚合物胶束时直接加入。
聚合物胶束的制备可以参考相应文献(Torchilin VP.Pharm Res,2007,24:1-16;Liu J,Lee H,Allen C.Curr Pharm Des,2006,12,4685-4701)。一般地包括透析法、自组装溶剂挥发法、薄膜分散法等。选择合适的处方和工艺就可以得到较理想的聚合物胶束,其与氟碳类气体超声共振后得到超声敏感纳米泡。
例如PLGA-PEG与PLGA-PEG-FA具有类似非离子表面活性的性质,在水中能自发形成稳定的具有疏水内核与亲水外壳的聚合物胶束(粒径50纳米左右),其具有极低的CMC值(3.25×10-7mol·L-1),可将脂溶性的抗癌药通过化学键合或物理包埋的方式结合到胶束的疏水核内。因造影剂的传统载药方式大多将药物吸附在其表面,故用该两亲性嵌段共聚物作造影剂的成膜材料可大大提高超声造影剂或治疗药物的载药量。
本发明中的超声敏感载药纳米泡具有柔软且富有弹性的外壳,抗压性强,其在血液循环中以纳米泡的形式稳定存在,当到达作用部位如肿瘤部位后,在被动及主动双重靶向作用下更好地通过肿瘤血管内皮进入到肿瘤组织间隙,然后在超声辐照下聚集合并成微泡,使得成像效果大大增强,在使用较低剂量时就具有很好的声学效果,同时易于代谢和分泌。增加超声强度,微泡和纳米泡破裂,释放出药物到作用部位。
具体实施方式
实施例1.紫杉醇超声敏感纳米泡
成膜材料为PLGA-PEG-FA与PLGA-PEG的混合物。首先合成成膜材料。
(1)PLGA-PEG的合成
具体步骤如下:取PLGA(527mg,0.066mmol)于25ml圆底烧瓶中,加入3ml二氯亚砜,加热回流2h,旋蒸挥尽二氯亚砜,得凝胶状粘稠液体,加入2ml二氯甲烷(DCM)磁力搅拌溶解,得酰氯化PLGA的DCM溶液,另取PEG(250mg,0.33mmol)用1ml DCM溶解后,加入50μl吡啶,逐滴滴入到冰浴的磁力搅拌的酰氯化PLGA的DCM溶液中,冰浴反应30分后,逐渐升至室温反应6h。旋蒸尽DCM,用4ml丙酮溶解后,用截留分子量为3500的透析袋,用蒸馏水透析1天,析出团状白色沉淀。此沉淀用少许DCM溶后,甲醇沉淀,过滤,真空干燥,得白色晶状粉末,即为PLGA-PEG。
(2)PLGA-PEG-FA的合成
合成可以参考已公开的文献(Yoo HS,et al.Folate receptor targetedbiodegradable polymeric doxorubicin micelles,J Controlled Release,2004,96:273-283)。其中PEG胺参考文献(王孝杰,等.氨基化单甲氧基聚乙二醇的合成研究,精细化工中间体,2006,36:40-42)自行制得。
准确称取一定量的PLGA-PEG和PLGA-PEG-FA聚合物和紫杉醇,分别将它们溶于4ml、1ml的N,N-二甲基甲酰胺(DMF)中,混合后倒入透析袋中,用1升去离子水透析24h。透析后的混浊液在1000rpm条件下离心分离10min,将上清液用0.45μm微孔滤膜过滤,除去未包封药物,滤液加入适量全氟戊烷,搅拌1小时,得到紫杉醇超声敏感纳米泡前体。该前体在37℃条件下可气化成纳米泡。
实施例2.5-氟尿嘧啶(5-Fu)超声敏感纳米泡
成膜材料为聚谷氨酸苄酯(PBLG)-PEG与FA-PEG-PBLG的混合物。
用实施例1中类似的方法合成得到成膜材料PBLG-PEG与PBLG-PEG-FA。
分别称取70mg PBLG-PEG与10mg PBLG-PEG-FA、20mg 5-Fu于10ml试管中,加入10ml N,N-二甲基甲酰胺(DMF)中,60℃水浴5min,溶解后置透析袋中透析,于2、5、8、12h换蒸馏水,24h后将透析袋中的混浊液过0.45μm微孔滤膜过滤,滤液与全氟化碳类气体超声共振后即形成载5-氟尿嘧啶超声敏感纳米泡。
实施例3.多西他赛超声敏感纳米泡
成膜材料为PLA-PEG与PLA-PEG-FA的混合物。
用实施例1中类似的方法合成得到成膜材料PLA-PEG与PLA-PEG-FA。
将10mg PLA-PEG-FA、70mg PLA-PEG与20mg多西他赛在磁力搅拌条件下溶解于40mL二甲基甲酰胺(DMF)中,将混合溶液转移至截留分子量为3500的透析袋中,于4L蒸馏水中透析48h,期间每隔12h更换新鲜蒸馏水.透析完成后,取出透析袋内的溶液,以3000r/min离心30min,除去底部沉淀,上清液经由0.45μm滤膜过滤,滤液与全氟化碳类气体超声共振后即得到载多西他赛超声敏感纳米泡。
实施例4.甘磷酰芥超声敏感纳米泡
成膜材料为PCL-PEG。
用实施例1中类似的方法合成得到成膜材料PCL-PEG。
将70mg PCL-PEG、20mg甘磷酰芥溶于5ml丙酮中,然后逐滴滴入50ml缓慢磁力搅拌的蒸馏水中,缓慢磁力搅拌24h,使丙酮充分挥发,所得溶液以3000r/min离心30min,除去底部沉淀,上清液经由0.45μm滤膜过滤,滤液与全氟化碳类气体超声共振后即得到载甘磷酰芥超声敏感纳米泡。

Claims (10)

1.一种超声敏感载药纳米泡,其特征是其粒径的范围是20纳米~700纳米。
2.如权利要求1的超声敏感载药纳米泡,其中所载药物选自心血管药物、泌尿系统药物、呼吸系统药物、消化系统药物、抗感染药物、抗癌药物。
3.如权利要求1的超声敏感载药纳米泡,其中所载药物是抗癌药物。
4.如权利要求3的超声敏感载药纳米泡,其中所载的抗癌药物选自氮芥、氮甲、甘磷酰芥、卡莫司汀、洛莫司汀、司莫司汀、苯丁酸氮芥、六甲蜜胺、多潘、甲氨蝶呤、氟尿嘧啶、替加氟、阿糖胞苷、吉西他滨、卡培他滨、羟基脲、阿霉素、放线菌素D、丝裂霉素、长春瑞滨、替尼泊苷、羟喜树碱、紫杉醇、多西他赛、他莫昔芬、氨鲁米特、来曲唑、甲羟孕酮、甲地孕酮、顺铂、卡铂、奥沙利铂。
5.如权利要求1的超声敏感载药纳米泡,其成膜材料是两亲性嵌段共聚物。
6.如权利要求5的超声敏感载药纳米泡,采用的两亲性嵌段共聚物的疏水段选自聚乳酸-羟基乙酸、聚乳酸、聚羟基丁酸酯、聚氰基丙烯酸酯、聚己内酯、聚酸酐、聚羟基丁酸酯-羟基戊酸酯共聚物、聚氨基甲酸酯、聚原酸酯、聚氨基酸;亲水段选自聚乙二醇、聚氧乙烯、聚乙烯醇、右旋糖酐、聚乙烯吡咯烷酮。
7.如权利要求5的超声敏感载药纳米泡,采用的两亲性嵌段共聚物的亲水段末端连接有肿瘤细胞特异性靶向分子。
8.如权利要求7的超声敏感载药纳米泡,采用的肿瘤细胞特异性靶向分子为叶酸。
9.如权利要求1的超声敏感载药纳米泡,其中充填成分是氟碳类化合物和氟硫类化合物。
10.如权利要求1的超声敏感载药纳米泡,其中充填成分选自全氟丙烷、全氟丁烷、全氟戊烷、六氟化硫。
CN200810166862A 2008-09-27 2008-09-27 超声敏感载药纳米泡 Pending CN101683272A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810166862A CN101683272A (zh) 2008-09-27 2008-09-27 超声敏感载药纳米泡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810166862A CN101683272A (zh) 2008-09-27 2008-09-27 超声敏感载药纳米泡

Publications (1)

Publication Number Publication Date
CN101683272A true CN101683272A (zh) 2010-03-31

Family

ID=42046827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810166862A Pending CN101683272A (zh) 2008-09-27 2008-09-27 超声敏感载药纳米泡

Country Status (1)

Country Link
CN (1) CN101683272A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008731A (zh) * 2010-12-14 2011-04-13 上海纳米技术及应用国家工程研究中心有限公司 以嵌段共聚物为载体的氟碳化合物纳米载药制剂的制备方法
CN102836446A (zh) * 2012-05-21 2012-12-26 华中科技大学 体内相转变肿瘤靶向纳米泡及其制备方法和用途
CN103432601A (zh) * 2013-08-26 2013-12-11 福建医科大学附属协和医院 包裹液态氟碳的嵌段聚合物超声微泡造影剂及其制备方法
CN104225633A (zh) * 2014-09-05 2014-12-24 电子科技大学 一种基因与药物共输送的plga超声纳米泡及其制备方法和应用
CN109568268A (zh) * 2017-09-28 2019-04-05 中国科学院深圳先进技术研究院 胎盘靶向递送系统及其制备方法和应用
US20190247526A1 (en) * 2011-07-19 2019-08-15 Nuvox Pharma Llc Microbubble Compositions, Method of Making Same, and Method Using Same
CN111973762A (zh) * 2020-08-04 2020-11-24 新乡医学院 一种载药多功能磁性纳米气泡及其制备方法和应用
CN115006555A (zh) * 2022-05-07 2022-09-06 湖北科技学院 一种纳米级超声/磁共振双模态造影剂和其制备方法及应用

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008731A (zh) * 2010-12-14 2011-04-13 上海纳米技术及应用国家工程研究中心有限公司 以嵌段共聚物为载体的氟碳化合物纳米载药制剂的制备方法
US20190247526A1 (en) * 2011-07-19 2019-08-15 Nuvox Pharma Llc Microbubble Compositions, Method of Making Same, and Method Using Same
CN102836446A (zh) * 2012-05-21 2012-12-26 华中科技大学 体内相转变肿瘤靶向纳米泡及其制备方法和用途
CN102836446B (zh) * 2012-05-21 2014-08-27 华中科技大学 体内相转变肿瘤靶向纳米泡及其制备方法和用途
CN103432601A (zh) * 2013-08-26 2013-12-11 福建医科大学附属协和医院 包裹液态氟碳的嵌段聚合物超声微泡造影剂及其制备方法
CN103432601B (zh) * 2013-08-26 2015-01-07 福建医科大学附属协和医院 包裹液态氟碳的嵌段聚合物超声微泡造影剂及其制备方法
CN104225633A (zh) * 2014-09-05 2014-12-24 电子科技大学 一种基因与药物共输送的plga超声纳米泡及其制备方法和应用
CN109568268A (zh) * 2017-09-28 2019-04-05 中国科学院深圳先进技术研究院 胎盘靶向递送系统及其制备方法和应用
CN111973762A (zh) * 2020-08-04 2020-11-24 新乡医学院 一种载药多功能磁性纳米气泡及其制备方法和应用
CN115006555A (zh) * 2022-05-07 2022-09-06 湖北科技学院 一种纳米级超声/磁共振双模态造影剂和其制备方法及应用
CN115006555B (zh) * 2022-05-07 2024-01-12 湖北科技学院 一种纳米级超声/磁共振双模态造影剂和其制备方法及应用

Similar Documents

Publication Publication Date Title
CN101683272A (zh) 超声敏感载药纳米泡
TWI306869B (en) Amphiphilic block copolymers and nano particles comprising the same
ES2375715T3 (es) Sistema de liberación para agentes bioactivos sobre la base de un portador polimérico de f�?rmacos que comprende un pol�?mero de bloques anf�?filo y un derivado de poli(�?cido l�?ctico).
Pearson et al. Dendritic nanoparticles: the next generation of nanocarriers?
CN107789632A (zh) 一种t7肽修饰的主动脑靶向纳米递药系统及其制备方法
CA3016655C (en) Ovarian cancer specifically targeted biodegradable amphiphilic polymer, polymer vesicle prepared thereby and use thereof
Grayson et al. The role of macromolecular architecture in passively targeted polymeric carriers for drug and gene delivery
Min et al. Gas-generating polymeric microspheres for long-term and continuous in vivo ultrasound imaging
CN101787119A (zh) 一种具有肿瘤组织pH响应性的聚合物及其胶束
CN103429267A (zh) 疏水分子诱导的支化聚合物集合体及其用途
Tebaldi et al. Biomedical nanoparticle carriers with combined thermal and magnetic response: Current preclinical investigations
US20090252803A1 (en) Glycyrrhetinic acid-mediated nanoparticles of hepatic targeted drug delivery system, process for preparing the same and use thereof
Wang et al. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery
CN106474060B (zh) 具有pH和还原双重敏感的两亲三嵌段共聚物及其制备和应用
Li et al. Ultrasonically assisted preparation of poly (acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers
CN102319436A (zh) 叶酸修饰的o-羧甲基壳聚糖-脱氧胆酸复合物及其制备方法与应用
Chandrasiri et al. Self-assembling PCL–PAMAM Linear Dendritic Block Copolymers (LDBCs) for bioimaging and phototherapeutic applications
CN104162169B (zh) 一种药物组合物的制备方法
JP2019501261A (ja) 生分解性両親媒性ポリマー、それにより製造されるポリマーベシクル、及び肺がん標的治療薬の製造における使用
Imran et al. Amphiphilic block copolymers–based micelles for drug delivery
Guo et al. Pepetide dendron-functionalized mesoporous silica nanoparticle-based nanohybrid: biocompatibility and its potential as imaging probe
CN104116710A (zh) 靶向肿瘤的pH敏感聚合物胶束组合物
CN111632154A (zh) 一种相转变纳米泡、其制备方法及用途
Huang et al. Smart responsive-calcium carbonate nanoparticles for dual-model cancer imaging and treatment
CN104116709A (zh) 靶向肿瘤的抗肿瘤耐药的pH敏感聚合物胶束组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20100331