CN101636823A - 多晶硅太阳能电池 - Google Patents

多晶硅太阳能电池 Download PDF

Info

Publication number
CN101636823A
CN101636823A CN200780044783A CN200780044783A CN101636823A CN 101636823 A CN101636823 A CN 101636823A CN 200780044783 A CN200780044783 A CN 200780044783A CN 200780044783 A CN200780044783 A CN 200780044783A CN 101636823 A CN101636823 A CN 101636823A
Authority
CN
China
Prior art keywords
wafer
phosphorus
polycrystalline
temperature
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200780044783A
Other languages
English (en)
Other versions
CN101636823B (zh
Inventor
E·厄尼巴克
K·彼得
B·拉比
R·特朗斯塔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norway Solar Energy Co
Original Assignee
Elkem Solar AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem Solar AS filed Critical Elkem Solar AS
Publication of CN101636823A publication Critical patent/CN101636823A/zh
Application granted granted Critical
Publication of CN101636823B publication Critical patent/CN101636823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及到具有高寿命的多晶P型硅晶片。硅晶片含有0.2-2.8ppma的硼和0.06-2.8ppma的磷和/或砷且已经在高于925℃的温度下进行了磷扩散和磷吸杂。本发明还涉及到这种多晶硅晶片的制造方法和包括这种硅晶片的太阳能电池。

Description

多晶硅太阳能电池
背景技术
在基于常规多晶硅的太阳能电池制造中,在将硅晶片制成最终太阳能电池之前对其进行多次热处理步骤。这些热处理步骤之一是扩散/包括扩散工艺的吸杂工艺(gettering process),这里,通过扩散将所施加的磷源推入到晶片表面中达数微米,以在晶片表面中产生pn结。磷源可以是溶解在添加了例如SiO2的有机溶剂中的气态POCl3或P2C5。在气化了可能的溶剂之后,通过热处理完成将磷扩散到晶片表面中。扩散工艺相对较快且通常能在900℃在数分钟的时间内发生。根据人们希望在晶片表面中实现的电特性来选择温度和时间。之后,进行磷吸杂(phosphorous gettering),其中不希望的溶解的且可移动的金属杂质元素被传输到已经扩散到晶片表面中的磷层且被该磷层捕获。该工艺通常在1至2小时的时间内在600-850℃实施。该本体钝化(bulk passivation)公知为磷吸杂或P-吸杂。
晶片中占少数地位的载流子(the minority carrier)的寿命被定为从由于太阳光照射产生电子和空穴直到其重组所花费的时间。寿命通常以微秒测量。如果占少数地位的载流子的寿命过短以至于其不能移动到晶片的pn结,则其将不会有助于在太阳能电池中产生电流。通过在晶片中溶解的金属杂质诸如Fe、Zn、Ni和Cu,尤其是寿命降低了。因此对于太阳能电池产生电流的能力而言,重要的是能够降低溶解的金属杂质量。相信的是,例如,在常规多晶硅晶片中Fe以溶解的Fe和FeSi2相的形式存在。在热处理期间FeSi2相将溶解并增加晶片中溶解的Fe含量,引起寿命减少。吸杂工艺将去除一部分溶解的铁和其它金属杂质,但是,如果对于溶解的Fe来说吸杂速率低于FeSi2溶解的速率,则溶解的铁的净含量将增加且太阳能电池的寿命将降低。
当在高温(>900℃)对常规多晶晶片实施扩散/磷吸杂时,已经发现这通常会导致晶片中占少数地位的载流子寿命的降低且由此增加制造成本。为此,现今常规多晶太阳能电池通过使用600至850℃范围内的中等温度制造以防止溶解金属量不会过高。在常规多晶晶片中,因此通常不可能利用在例如950℃的高温扩散和磷吸杂。
在W.Jooss等人的论文“Large Area Buried Contact Solar Cells andMulticrystalline Silicon with Mechanical Surface Texturation and Bulk Passivating”,Proceedings of the 16th European Photovoltaic Solar Energy Conference,2000年5月1-5日,第1169-1172页,公开了能够由常规多晶硅晶片制造具有埋入接触的太阳能电池,这里在高达950℃的温度下实施磷吸杂。所使用的两种类型多晶晶片确定为来自Eurosolare和Bayer的晶片,声称在来自Eurosolare的晶片的处理过程中发生问题。根据Jooss的论文得到的最高的本体扩散长度对于来自Bayer的晶片为La=180μm,和对于来自Eurosolare的晶片为La=195μm。这与分别为27μs和36μs的寿命相对应,这些寿命相对较低且低于已经使用600和850℃之间的常规温度实施磷吸杂的常规多晶晶片的正常寿命。因此,有理由相信这些常规多晶晶片的高温磷吸杂不会导致增加晶片寿命。即使在Jooss等人的论文中,描述了由常规多晶晶片制造的太阳能电池能够制造有埋入的接触,但是没有获得与已经在低温下完成磷吸杂的常规多晶晶片相比寿命增加的晶片。这也通过该论文中陈述的太阳能电池的电池效率得以证实。对于由常规多晶晶片制造的太阳能电池(其中,磷吸杂已经在600和850℃之间的温度下实施,且其中太阳能电池因此也不具有埋入的接触)而言,正常也实现15.9%和15.6%以及更高的效率。
在制造具有埋入接触的太阳能电池过程中的步骤之一包括在其中应该制备埋入接触的区域中进行高温扩散。在晶片中的沟槽中施加磷且在典型温度950℃和30分钟的时间周期中扩散到表面中。埋入的接触,应该理解为在晶片的沟槽中埋入的电接触。这样极大的优点是,与接触位于晶片表面上的晶片相比,晶片的可用于产生能量的表面面积部分增加了。
单晶晶片纯度高于多晶晶片,且晶粒边界的缺乏导致上述热处理步骤不会影响单晶晶片至与常规多晶晶片相同的程度。这使得能够使用新的、更高效的太阳能电池概念诸如制造埋入接触,这需要在比通常用于多晶晶片的温度高的温度下的热处理步骤。然而,单晶晶片基本上较多晶晶片成本更高。
常规多晶晶片由电子级硅(EG-Si)及电子工业废弃的硅制成。这种质量的硅有极高纯度,尤其是当考虑磷和硼时。这种质量的硅中磷和硼含量实际上是可忽略的。当由该材料制造晶片时,首先通过定向固化产生锭,之后将锭切成晶片。在锭制造过程中,用硼或磷掺杂硅以产生p型材料或n型材料。当用这两种掺杂剂中的一种掺杂时,假设另一种掺杂剂的含量是可忽略的。除了一些例外,当今多晶太阳能电池是用硼掺杂材料制造的。
近年来,已经研究出用于太阳能电池的所谓补偿多晶硅。这种硅中含有磷和硼两者,而且正常情况下较电子级硅有更高含量的其它杂质元素尤其是铁。补偿多晶硅是通过对冶金硅进行精炼、清洁和定向固化来制造,诸如WO2005/063621中描述的。由补偿多晶硅制造的晶片由此含有硼和磷两者以及任选的砷和分散在本体材料中的其它元素诸如铁,其主要集中在晶粒边界中。由基于冶金硅的补偿多晶硅制造并通过在用于常规多晶晶片的磷吸杂相同的温度下进行磷吸杂的晶片,具有适当的寿命,但是通常该寿命稍低于由常规多晶晶片制造的晶片的寿命。
因此,需要由补偿多晶硅(compensated multicrystalline silicon)制得的具有增加的寿命的硅晶片,且具有埋入接触(buried contact)的太阳能电池可由该材料制造。
发明内容
本发明涉及具有高寿命的多晶p型硅晶片,该硅晶片含有0.2-2.8ppma的硼和0.06-2.8ppma的磷和/或0.6-2.8ppma的砷,并且已经在高于925℃的温度对其进行了磷扩散和磷吸杂。
根据优选实施方案,硅晶片已经在至少950℃的温度进行了磷扩散和磷吸杂。
根据另一优选实施方案,多晶硅晶片含有0.3-0.75ppma的硼和0.1-0.75ppma的磷。为得到最佳结果,优选ppma磷和ppma硼之间的比率在0.2-1。
本发明还涉及到用于高温下p型多晶晶片的磷扩散和磷吸杂的方法,该方法特征在于在高于925℃的温度对含有0.2-2.8ppma的硼、0.06-2.8ppma的磷和/或0.06-2.8ppma的砷的p型多晶硅晶片进行磷扩散和磷吸杂。
根据优选实施方案,硅晶片在至少950℃的温度进行磷扩散和磷吸杂。
优选地,多晶晶片含有0.3-0.75ppma的硼和0.1至0.75ppma的磷。根据特别优选实施方案,ppma磷和ppma硼之间的比率是0.2-1。
最后,本发明涉及到包括具有高寿命的p型多晶硅晶片的太阳能板,该硅晶片含有0.2-2.8ppma的硼和0.06-2.8ppma的磷和/或砷,并且已经在高于925℃的温度进行了磷扩散和磷吸杂。
太阳能电池板优选由硅晶片制成,所述硅晶片已经在至少950℃的温度进行了磷扩散和磷吸杂。
令人惊讶地发现,在高于925℃的温度对以上述数量含有硼和磷两者和/或砷的晶片实施高温扩散和吸杂导致了晶片寿命的实质增加。由此已经获得了100-200μs的寿命。还发现根据本发明的硅晶片的边缘效应被消除或者很大程度降低。此外,在高于925℃的温度下实施磷吸杂的本发明方法使得可以在增加晶片寿命的同时制造具有埋入接触的多晶晶片。本发明还使得可以在升高的温度下在明显较短的时间内对补偿多晶晶片实施磷扩散和磷吸杂工艺而不降低质量。该生产速率的增加导致制造太阳能电池成本的实质降低。
人们观测到由于含有硼、磷和/或砷的硅晶片的高温处理导致寿命的该惊人增加的原因还未完全理解,但是相信原因之一是,在这些硅晶片中存在较低含量的铁和其它金属元素,以易溶解的FeSi2或者其他容易溶解的金属间相的形式,就象在仅含有硼的常规多晶硅晶片中的情况一样。相信在含有硼和磷和/或砷的硅晶片中的Fe大部分都是Fe-P相和/或Fe-As相以及其他金属-P相或金属-As相的形式存在,其在高温下比FeSi2和其他金属-硅酸盐相更稳定。甚至在极高温度下的磷和磷吸杂期间,以金属-P相或金属-As相存在的铁和其它金属元素将不会溶解或者较低程度地溶解,从而导致在磷吸杂工艺期间溶解的金属元素的净含量被快速去除。
实施例1
现有技术
含有1-5×1014Fe原子每cm3的常规商用p型硼掺杂多晶晶片的高温处理。
磷通过POCl3-扩散施加在商用p型晶片的表面中直到chee.电阻为100欧姆cm2。通过氮化硅CVD沉积将抗反射涂层施加到晶片的前侧上。在晶片表面中制造用于埋入接触的沟槽,和在950℃的温度通过POCl3-扩散将磷施加在沟槽中数分钟。在扩散工艺之后,薄片电阻为10欧姆cm2。Al的背接触(back contact)被合金化到晶片的背面中。通过MIRHP进行氢钝化,和通过使用Ni/Cu电镀在晶片前侧上的沟槽中施加金属前接触。在上述每个工艺步骤之后测量晶片寿命。与未处理的晶片相比,在第一扩散步骤和氮化硅沉积步骤之后寿命增加了。但是,在950℃扩散步骤之后,寿命被降低至不能被测量的低水平。对于常规多晶晶片而言,这正是所预期的。在950℃扩散工艺之后的工艺步骤导致寿命的小幅增加,但是不能获得对于根据仅包括低或中温热处理步骤的常规丝网印刷方法处理的常规多晶太阳能电池而言典型的寿命。
实施例2
具有相对高的磷含量的硅晶片的高温处理(埋入接触)。
磷通过POCl3扩散施加到含有1ppma B、0.8ppma P和1-5.1014Fe原子每cm3的p型晶片中直到薄片电阻为100欧姆cm2。通过氮化硅CVD沉积将抗反射涂层施加到晶片前侧。在晶片表面中制造用于接触的沟槽,通过在950℃温度POCl3-扩散将磷扩散到沟槽中数分钟。扩散工艺之后,薄片电阻为10欧姆cm3。Al背接触被合金化到晶片的背面中。通过MIRHP进行氢钝化和通过Ni/Cu电镀将金属前接触施加到在晶片前侧上的沟槽中。在上述每个工艺步骤之后测量晶片寿命。与未处理晶片相比,在第一扩散步骤之后和施加氮化硅层之后寿命增加了。在950℃扩散之后,寿命增加至远远高于未处理晶片寿命的水平。这与对于实例2中常规多晶晶片所观测的情况是相反的。在高温扩散之后的工艺步骤导致寿命的小幅增加且最终获得微秒级的寿命,其是标准丝网印刷工艺之后处理的常规多晶太阳能电池的寿命的3倍多好,所述标准丝网印刷工艺仅包括在较低或中等温度下的热处理。
该结果显示出,已经在高温下进行了磷扩散和磷吸杂的根据本发明由补偿硅制得的多晶晶片与在较低温度下处理的常规多晶晶片的寿命相比,具有惊人的高寿命,而根据实例1的结果显示出当对常规多晶晶片进行高温处理时寿命降低。

Claims (10)

1.具有高寿命的多晶p型硅晶片,特征在于所述硅晶片含有0.2-2.8ppma的硼和0.06-2.8ppma的磷和/或0.06-2.8ppma的砷且已经在高于925℃的温度进行了磷扩散和磷吸杂。
2.如权利要求1的多晶p型硅晶片,特征在于所述硅晶片已经在至少950℃的温度进行磷扩散和磷吸杂。
3.如权利要求1和2的多晶p型硅晶片,特征在于所述多晶硅晶片含有0.3-0.75ppma的硼和0.1-0.75ppma的磷。
4.如权利要求1-3的多晶p型硅晶片,特征在于ppma磷和ppma硼之间的比率为0.2-1。
5.用于在高温对p型多晶晶片进行磷扩散和磷吸杂的方法,特征在于含有0.2-2.8ppma的硼、0.06-2.8ppma的磷和/或0.06-2.8ppma的砷的p型多晶硅晶片在高于925℃的温度进行磷扩散和磷吸杂。
6.如权利要求5的方法,特征在于所述硅晶片在至少950℃的温度进行磷扩散和磷吸杂。
7.如权利要求5或6的方法,特征在于所述多晶晶片含有0.3-0.75ppma的硼和0.1至0.75ppma的磷。
8.如权利要求5-7的方法,特征在于ppma磷和ppma硼之间的比率是0.2-1。
9.包含具有高寿命的p型多晶硅晶片的太阳能电池板,特征在于硅晶片含有0.2-2.8ppma硼和0.06-2.8ppma磷和/或砷且已经在高于925℃的温度进行了磷扩散和磷吸杂。
10.如权利要求9的太阳能电池板,特征在于所述板由硅晶片制得,所述硅晶片已经在至少950℃的温度进行了磷扩散和磷吸杂。
CN2007800447831A 2006-12-04 2007-11-28 多晶p型硅晶片、其磷扩散磷吸杂方法及含其的太阳能板 Active CN101636823B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20065586 2006-12-04
NO20065586A NO333757B1 (no) 2006-12-04 2006-12-04 Solceller
PCT/NO2007/000422 WO2008069675A2 (en) 2006-12-04 2007-11-28 Multicrystalline silicon solar cells

Publications (2)

Publication Number Publication Date
CN101636823A true CN101636823A (zh) 2010-01-27
CN101636823B CN101636823B (zh) 2012-09-05

Family

ID=39492751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800447831A Active CN101636823B (zh) 2006-12-04 2007-11-28 多晶p型硅晶片、其磷扩散磷吸杂方法及含其的太阳能板

Country Status (10)

Country Link
US (1) US8735203B2 (zh)
EP (1) EP2095405B1 (zh)
JP (1) JP5401322B2 (zh)
CN (1) CN101636823B (zh)
BR (1) BRPI0719420A2 (zh)
CA (1) CA2670527C (zh)
EA (1) EA015668B1 (zh)
ES (1) ES2882152T3 (zh)
NO (1) NO333757B1 (zh)
WO (1) WO2008069675A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104120494A (zh) * 2014-06-25 2014-10-29 上饶光电高科技有限公司 一种适用于提升晶体硅太阳能电池转换效率的扩散工艺
TWI506807B (zh) * 2012-02-03 2015-11-01 Chia Gee Wang 太陽能電池製造方法
CN113013296A (zh) * 2021-03-05 2021-06-22 赛维Ldk太阳能高科技(新余)有限公司 铸造单晶硅片黑丝的去除方法、hit异质结太阳能电池及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009055685A1 (de) * 2009-11-25 2011-05-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Qualitätsverbesserung von Wafern sowie Verwendung des Verfahrens
US8071418B2 (en) * 2010-06-03 2011-12-06 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
RU2485631C1 (ru) * 2012-01-19 2013-06-20 Учреждение Российской академии наук Институт автоматики и процессов управления Дальневосточного отделения РАН (ИАПУ ДВО РАН) Способ создания светоизлучающего элемента
RU2485632C1 (ru) * 2012-01-19 2013-06-20 Учреждение Российской академии наук Институт автоматики и процессов управления Дальневосточного отделения РАН (ИАПУ ДВО РАН) Способ создания светоизлучающего элемента
RU2680606C1 (ru) * 2018-01-23 2019-02-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ изготовления полупроводниковых структур
CA3004436C (en) 2018-05-09 2021-06-01 Paige Whitehead Biodegradable light wand

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416051A (en) * 1979-01-22 1983-11-22 Westinghouse Electric Corp. Restoration of high infrared sensitivity in extrinsic silicon detectors
GB8808658D0 (en) 1988-04-13 1988-05-18 Lepetit Spa Aglycons of a/16686 antibiotics
DK170189B1 (da) * 1990-05-30 1995-06-06 Yakov Safir Fremgangsmåde til fremstilling af halvlederkomponenter, samt solcelle fremstillet deraf
JPH05218464A (ja) * 1992-01-31 1993-08-27 Canon Inc 半導体基体と太陽電池の製造方法及びこれらの方法により得られた半導体基体と太陽電池
US5627081A (en) * 1994-11-29 1997-05-06 Midwest Research Institute Method for processing silicon solar cells
CN1083396C (zh) * 1995-07-14 2002-04-24 昭和电工株式会社 高纯度硅的制造方法
JPH10251010A (ja) * 1997-03-14 1998-09-22 Kawasaki Steel Corp 太陽電池用シリコン
US6013872A (en) * 1997-04-25 2000-01-11 Bayer Ag Directionally solidified, multicrystalline silicon, a process for the production thereof and its use, and solar cells containing this silicon and a process for the production thereof
GB0114896D0 (en) * 2001-06-19 2001-08-08 Bp Solar Ltd Process for manufacturing a solar cell
JP2004119867A (ja) * 2002-09-27 2004-04-15 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP4319006B2 (ja) * 2003-10-23 2009-08-26 シャープ株式会社 太陽電池セルの製造方法
JP4761706B2 (ja) * 2003-12-25 2011-08-31 京セラ株式会社 光電変換装置の製造方法
NO333319B1 (no) * 2003-12-29 2013-05-06 Elkem As Silisiummateriale for fremstilling av solceller
WO2005083799A1 (en) * 2004-02-24 2005-09-09 Bp Corporation North America Inc Process for manufacturing photovoltaic cells
JP4328303B2 (ja) * 2004-09-16 2009-09-09 株式会社サンリック 太陽光発電用多結晶シリコン原料および太陽光発電用シリコンウェーハ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506807B (zh) * 2012-02-03 2015-11-01 Chia Gee Wang 太陽能電池製造方法
CN104120494A (zh) * 2014-06-25 2014-10-29 上饶光电高科技有限公司 一种适用于提升晶体硅太阳能电池转换效率的扩散工艺
CN113013296A (zh) * 2021-03-05 2021-06-22 赛维Ldk太阳能高科技(新余)有限公司 铸造单晶硅片黑丝的去除方法、hit异质结太阳能电池及其制备方法
CN113013296B (zh) * 2021-03-05 2023-07-28 赛维Ldk太阳能高科技(新余)有限公司 铸造单晶硅片黑丝的去除方法、hit异质结太阳能电池及其制备方法

Also Published As

Publication number Publication date
BRPI0719420A2 (pt) 2014-02-11
US8735203B2 (en) 2014-05-27
NO333757B1 (no) 2013-09-09
EA015668B1 (ru) 2011-10-31
CA2670527A1 (en) 2008-06-12
EP2095405B1 (en) 2021-07-07
US20100212738A1 (en) 2010-08-26
JP2010512022A (ja) 2010-04-15
CA2670527C (en) 2014-02-04
CN101636823B (zh) 2012-09-05
NO20065586L (no) 2008-06-05
ES2882152T3 (es) 2021-12-01
JP5401322B2 (ja) 2014-01-29
EA200970541A1 (ru) 2009-10-30
AU2007328538A1 (en) 2008-06-12
WO2008069675A2 (en) 2008-06-12
EP2095405A2 (en) 2009-09-02
WO2008069675A3 (en) 2008-11-20
EP2095405A4 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
CN101636823B (zh) 多晶p型硅晶片、其磷扩散磷吸杂方法及含其的太阳能板
US20050207960A1 (en) Method for producing a polycrystalline silicon, polycrystalline silicon and solar cell
TW201210052A (en) Back junction solar cell with selective front surface field
JP2002539625A (ja) アルミニウム合金背面接合太陽電池およびその製造プロセス
CN103238220A (zh) 具有原位表面钝化的离子注入选择发射极太阳能电池
CN103201857A (zh) 用于生产衰减lid现象的太阳能电池的方法
MacDonald The emergence of n-type silicon for solar cell manufacture
US9431552B2 (en) Metallization paste for solar cells
Peter et al. Future potential for SoG-Si feedstock from the metallurgical process route
CN106784049B (zh) 一种局部掺杂晶体硅太阳能电池的制备方法及其制得的电池
Wenham et al. Defect passivation on cast-mono crystalline screen-printed cells
CN106653895B (zh) 一种局部掺杂晶体硅太阳能电池及其制备方法
JP2007137756A (ja) 太陽電池用シリコン単結晶基板および太陽電池素子、並びにその製造方法
Zanesco et al. Influence of the aluminum paste surface density on the electrical parameters of silicon solar cells
AU2007328538B2 (en) Solar Cells
Jeong et al. Lifetime enhancement in EFG multicrystalline silicon [solar cells]
Kohler et al. Upgraded metallurgical grade silicon solar cells: A detailed material analysis
CN109643741A (zh) 一种制造光伏器件的方法
Sheoran et al. A comparison of bulk lifetime, efficiency, and light-induced degradation in boron-and gallium-doped cast mc-Si solar cells
Upadhyaya et al. High-efficiency screen-printed belt co-fired solar cells on cast multicrystalline silicon
US20180240671A1 (en) Liquid phase epitaxy doping and silicon pn junction photovoltaic devices
Seren et al. Ribbon Growth on Substrate and Molded Wafer-Two low cost silicon ribbon materials for PV
Recart et al. Large area thin BSF solar cells with simultaneously diffused boron and phosphorus screen printed emitters
Bazer-Bachi et al. Assessing the potential of TOPCon solar cells architecture using industrial n-type cast-mono silicon material
Werner et al. Impact of High-Temperature Processes on Carrier Lifetime of n-Type Cz Silicon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: Kristiansand

Patentee after: Norway solar energy company

Address before: Oslo

Patentee before: Elkem Solar AS

CP03 Change of name, title or address