RU2485631C1 - Способ создания светоизлучающего элемента - Google Patents

Способ создания светоизлучающего элемента Download PDF

Info

Publication number
RU2485631C1
RU2485631C1 RU2012101900/28A RU2012101900A RU2485631C1 RU 2485631 C1 RU2485631 C1 RU 2485631C1 RU 2012101900/28 A RU2012101900/28 A RU 2012101900/28A RU 2012101900 A RU2012101900 A RU 2012101900A RU 2485631 C1 RU2485631 C1 RU 2485631C1
Authority
RU
Russia
Prior art keywords
silicon
substrate
layer
fesi
emitting element
Prior art date
Application number
RU2012101900/28A
Other languages
English (en)
Inventor
Николай Геннадьевич Галкин
Дмитрий Львович Горошко
Евгений Анатольевич Чусовитин
Original Assignee
Учреждение Российской академии наук Институт автоматики и процессов управления Дальневосточного отделения РАН (ИАПУ ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт автоматики и процессов управления Дальневосточного отделения РАН (ИАПУ ДВО РАН) filed Critical Учреждение Российской академии наук Институт автоматики и процессов управления Дальневосточного отделения РАН (ИАПУ ДВО РАН)
Priority to RU2012101900/28A priority Critical patent/RU2485631C1/ru
Application granted granted Critical
Publication of RU2485631C1 publication Critical patent/RU2485631C1/ru

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента представляет собой наноразмерные кристаллиты (нанокристаллиты) полупроводникового дисилицида железа, упруго встроенные в монокристаллический эпитаксиальный кремний. Перед формированием активной зоны на подложку наносится слой нелегированного кремния для ее пространственного отделения от подложки (буферный слой). Нанокристаллиты образуются при эпитаксиальном заращивании предварительно сформированных на буферном слое методом молекулярно-лучевой эпитаксии наноостровков полупроводникового дисилицида железа. Применение особых режимных параметров обеспечивает высокую концентрацию нанокристаллитов в активной зоне. Изобретение обеспечивает повышение эффективности светоизлучающего элемента за счет обеспечения возможности уменьшения размеров кристаллитов полупроводникового дисилицида железа β-FeSi2 (до 20-40 нм) с высокой плотностью (количеством кристаллитов в единице объема кремниевой матрицы) и в силу этого упругого их встраивания в кремниевую матрицу и большей напряженности внутренней структуры. 1 з.п. ф-лы, 8 ил.

Description

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра.
Известен способ создания светоизлучающих приборов на основе кремния, включающий формирование в непосредственной близости от р-n-перехода излучающей зоны, легированной примесями редкоземельных элементов, на основе того же полупроводникового материала, что и активные слои n- и p-типа проводимости (см. US №6828598, H01S 3/16, H01S 5/30, H01S 5/32, 2004). В зависимости от уровня легирования активных слоев в приборах реализуется механизм туннельного, лавинного либо смешанного пробоев. Основным ограничивающим фактором практического применения приборов, создаваемых известным способом, несмотря на их простоту и интегрируемость в схемы микроэлектроники является их низкая излучающая способность и, следовательно, низкая выходная мощность прибора.
Известен также способ создания светоизлучающего элемента, включающий формирование слоя железа осаждением в условиях сверхвысокого вакуума атомов железа на кремниевую подложку первого типа проводимости, агрегацию этого слоя в островки β-FeSi2 и последующее осаждение эпитаксиального слоя кремния второго типа проводимости при нагреве подложки (см. US №6368889, H01L 33/26; H01L 21/00; H01L 33/00, 2002).
Недостаток этого технического решения - значительный (около 100 нм) размер зерен дисилицида железа, что не позволяет обеспечить высокую эффективность светоизлучающего элемента в силу недостаточно хорошего встраивания кристаллов в кремниевую матрицу и релаксированной внутренней структуры.
Задача, на решение которой направлено заявленное изобретение, выражается в повышении эффективности светоизлучающего элемента.
Технический результат - повышение эффективности светоизлучающего элемента за счет возможности уменьшения размеров кристаллитов полупроводникового дисилицида железа β-FeSi2 (до 20-40 нм) и обеспечения их высокой плотности (количества кристаллитов в единице объема кремниевой матрицы) и в силу этого упругого встраивания в кремниевую матрицу и значительной напряженности внутренней структуры кристаллитов.
Решение поставленной задачи обеспечивается тем, что способ создания светоизлучающего элемента, включающий формирование островков дисилицида железа β-FeSi2 путем осаждения в условиях сверхвысокого вакуума атомов железа на нагретую кремниевую подложку первого типа проводимости и последующее осаждение эпитаксиального слоя кремния второго типа проводимости при нагреве подложки не выше 800°C, отличается тем, что на кремниевую подложку первого типа проводимости осаждают слой нелегированного кремния толщиной 100-200 нм, при скорости осаждения 5×10-2-3.3×10-1 нм/с и нагреве подложки до 700-750°C, на поверхность которого при нагреве подложки до 375°C осаждают железо в количестве, достаточном для формирования слоя толщиной 0,2-0,8 нм, со скоростью осаждения 1,7×10-3-1,7×10-2 нм/с, после чего подложку охлаждают до комнатной температуры, при которой на слой железа осаждают слой нелегированного кремния толщиной 0,2-0,8 нм, со скоростью осаждения 1,7×10-3-1,7×10-2 нм/с, при этом агрегацию осажденного железа и кремния в наноостровки β-FeSi2 осуществляют отжигом при температуре подложки 475°C в течение 2 минут, после чего осуществляют агрегацию наноостровков β-FeSi2 в нанокристаллиты β-FeSi2 с размерами 20-40 нм, упруго встроенных в кремниевую матрицу, для чего осаждают слой нелегированного кремния толщиной 100-200 нм при скорости осаждения 5×10-2-3,3×10-1 нм/с при нагреве подложки до 600-800°C, после чего осаждают слой кремния второго типа проводимости толщиной 100-200 нм, при скорости осаждения 5×10-2-3,3×10-1 нм/с и нагреве подложки до 700-750°C. Кроме того, в качестве подложки используют кремний с ориентацией поверхности (100) или (111).
Сопоставительный анализ признаков заявляемого и известных технических решений свидетельствует о его соответствии критерию «новизна».
Признаки отличительной части формулы изобретения решают следующие функциональные задачи.
Признаки «на кремниевую подложку первого типа проводимости осаждают слой нелегированного кремния толщиной 100-200 нм» обеспечивают отделение нанокристаллитов β-FeSi2 от подложки, что обеспечивает их расположение вне границы p-n-перехода и эффективную инжекцию носителей заряда.
Признаки, указывающие, что осаждение слоя нелегированного кремния ведут «при скорости осаждения 5×10-2-3.3×10-1 нм/с и нагреве подложки до 700-750°C», обеспечивают эпитаксиальное формирование буферного слоя нелегированного кремния на подложке.
Признаки, указывающие, что на поверхность слоя нелегированного кремния «при нагреве подложки до 375°C осаждают железо в количестве, достаточном для формирования слоя толщиной 0,2-0,8 нм, со скоростью осаждения 1,7×10-3-1,7×10-2 нм/с», обеспечивают формирование на буферном слое нелегированного кремния слоя моносилицида железа FeSi.
Признаки, указывающие, что "подложку охлаждают до комнатной температуры, при которой на слой железа осаждают слой нелегированного кремния толщиной 0,2-0,8 нм со скоростью осаждения 1,7×10-3-1,7×10-2 нм/с", обеспечивает формирование слоя кремния для упрощения образования силицида нужной стехиометрии.
Признаки, указывающие, что «агрегацию осажденного железа в наноостровки β-FeSi2 осуществляют отжигом при температуре подложки 475°C в течение 2 минут», обеспечивают формирование на буферном слое нелегированного кремния наноостровков β-FeSi2, при этом заданные режимные параметры процесса осаждения железа и толщины его слоя обеспечивают возможность минимизировать размеры наноостровков β-FeSi2 и получить их в необходимом количестве.
Признаки, указывающие, что «агрегацию наноостровков β-FeSi2 в нанокристаллиты β-FeSi2 с размерами 20-40 нм, упруго встроенные в кремниевую матрицу, осуществляют осаждением нелегированного кремния толщиной 100-200 нм», обеспечивают возможность формирования кремниевой матрицы толщиной, существенно большей размеров нанокристаллитов β-FeSi2, заключенных в ней. Кроме того, обеспечивается отделение нанокристаллитов β-FeSi2 от верхнего слоя кремния второго типа, что обеспечивает их расположение вне границы p-n-перехода и эффективную инжекцию носителей заряда. Кроме того, обеспечивается трансформация наноостровков в нанокристаллиты заданной крупности и обладающие напряженной внутренней структурой.
Признаки, указывающие, что осаждение покрывающего слоя нелегированного кремния ведут «при скорости осаждения 5×10-2-3,3×10-1 нм/с при нагреве подложки до 600-800°C», задают режимные параметры процесса осаждения нелегированного кремния, обеспечивающие «запуск» и «протекание» процесса агрегации наноостровков в нанокристаллиты β-FeSi2.
Признаки, указывающие, что процесс формирования структуры светоизлучающего элемента завершают осаждением слоя «кремния второго типа проводимости толщиной 100-200 нм, при скорости осаждения 5×10-2-3,3×10-1 нм/с и нагреве подложки до 700-750°C», обеспечивают формирование p-n-перехода в структуре светоизлучающего элемента.
Признаки, указывающие, что «в качестве подложки используют кремний с ориентацией поверхности (100) или (111)», обеспечивают возможность варьирования кристаллографической ориентации подложки и варьирования свойств формируемого полупроводникового материала на подложке кремния.
На фиг.1 схематически показан этап формирования слоя нелегированного кремния на подложке кремния первого типа проводимости для пространственного отделения сформирующихся впоследствии нанокристаллитов β-FeSi2 и подложки; на фиг.2 схематически показан этап формирования массива наноостровков β-FeSi2; на фиг.3 схематически показан этап агрегации наноостровков β-FeSi2 в нанокристаллиты β-FeSi2 при осаждении на подложку нелегированного кремния; на фиг.4 показано завершение этапа осаждения нелегированного кремния; на фиг.5 показан этап осаждения кремния второго типа проводимости; на фиг.6 схематически показан общий вид светоизлучающего элемента, на фиг.7 схематически показана установка, обеспечивающая реализацию способа; на фиг.8 показано изображение поверхности кремния, на которой сформированы наноостровки дисилицида железа, полученное методом сканирующей атомно-силовой микроскопии.
На чертежах схематически показаны составные части светоизлучающего элемента, формируемого при реализации способа: подложка 1 кремния первого типа проводимости, например n-типа, слой нелегированного кремния 2 для отделения наноостровков 3 дисилицида железа (β-FeSi2) от подложки, нанокристаллиты 4 дисилицида железа (β-FeSi2), образующие активный слой, заращенные слоем нелегированного кремния 5, слой кремния 6 второго типа проводимости (в данном случае p-типа), положительный 7 и отрицательный 8 электроды. Кроме того, показаны узлы и оборудование установки, обеспечивающей реализацию способа.
Для реализации способа используют известный комплект лабораторного оборудования (см. фиг.7), включающий в себя, кроме сверхвысоковакуумной камеры 9 (базовое давление в камере - 5×10-10 Topp и менее), электронный спектрометр 10 (например, фирмы Percin Elmer), манипулятор 11 образца (т.е. подложки) с электрическими вводами, имеющий четыре степени свободы, соединенный с образцом-подложкой 1, обеспечивающий возможность ее удержания в заданном положении и подвод к ней электрического тока для отжига.
Кроме того, комплект включает в себя блок испарителей 12 на три источника: источник 13 атомов железа, 14 нелегированного кремния и кремния первого или второго типа проводимости (не показан), а также сверхвысоковакуумный насос (не показан), обеспечивающий необходимый вакуум в камере 9. Обычно манипулятор 11 сгруппирован на одном фланце с тепло- и электрически изолированными вводами (на чертежах не показаны), через которые к ней подводится электрический ток для ее нагрева. Источник атомов железа 13 должен обеспечить достаточную для формирования наноостровков скорость осаждения (≥1,7×10-3 нм/с). Источник атомов кремния (нелегированного, первого и второго типов) должен обеспечить достаточную для формирования эпитаксиального слоя скорость осаждения (≥5×10-2 нм/с). Давление паров материала адсорбата в потоке, исходящем из блока испарителей, должно быть не менее чем на 2-3 порядка выше остаточного давления в камере 9. Экспозицию испаряемой порции адсорбата задают путем пропускания тока соответствующей величины через электрические вводы 15 в течение нужного времени.
Заявленный способ реализуется следующим образом. Перед загрузкой в камеру выбирают подложку 1 со срезом вдоль кристаллической плоскости (100) или (111). Затем подложку очищают известным образом, например с помощью органических растворителей (например, кипячением в толуоле). После размещения образца-подложки 1 на манипуляторе 11 сверхвысоковакуумной камеры 9 и установки в ней подготовленных источников в блок испарителей 12 камеру 9 известным образом герметично закрывают. Далее камеру вакуумируют с помощью насоса, понижая величину давления в ней до заданного значения (обычно ≤5×10-7 Торр). Далее камеру 9 и всю ее внутреннюю оснастку обезгаживают наружным нагревом камеры до температуры 120-150°C. При этом в процессе и после нагрева камеру 9 непрерывно вакуумируют. Обезгаживание обычно проводят в течение суток, после чего камеру 9 охлаждают. Температуру обезгаживания определяют опытным путем из расчета обеспечения после охлаждения камеры заданного рабочего вакуума (≤5×10-10 Торр).
После загрузки образца-подложки 1 и получения заданного вакуума подложку, перед напылением, очищают термическим отжигом в течение времени, достаточного для испарения окисной пленки с ее поверхности, например для подложки из кремния - в течение 2-3 мин при температуре 1250°C.
Затем на подложке формируют эпитаксиальный слой нелегированного кремния при нагреве подложки до 700-750°C (путем пропускания через нее постоянного стабилизированного тока через термо- и электрически изолированные от камеры вводы) толщиной от 100 до 200 нм со скоростью осаждения 5×10-2-3.3×10-1 нм/с, что обеспечивает формирование на поверхности буферного слоя нелегированного кремния 2. Затем температуру подложки устанавливают на уровне 375°C, которая обеспечивает формирование поверхности слоя нелегированного кремния слоя моносилицида железа, при этом поддерживают скорость осаждения железа на уровне 1,7×10-3-1,7×10-2 нм/с. В случае использования сублимационного источника атомов железа заданная скорость обеспечивается его прогревом путем пропускания через него постоянного стабилизированного тока. Величина тока подбирается экспериментально так, чтобы скорость сублимации атомов железа из него находилась в указанных пределах. Осаждение железа на разогретую до 375°C подложку ведут до появления на подложке такого количества железа, которое эквивалентно объему сформированной на подложке сплошной пленки железа толщиной от 0,2 до 0,8 нм. После этого подложку охлаждают до комнатной температуры, при которой на слой железа осаждают слой нелегированного кремния толщиной 0,2-0,8 нм со скоростью осаждения 1,7×10-3-1,7×10-2 нм/с.
Далее проводят агрегацию осажденного железа в наноостровки β-FeSi2, для чего осуществляют отжиг при температуре подложки 475°C в течение 2 минут (см. фиг.2).
Последующую агрегацию наноостровков β-FeSi2 в нанокристаллиты β-FeSi2 с размерами 20-40 нм, упруго встроенные в кремниевую матрицу, осуществляют осаждением слоя нелегированного кремния толщиной 100-200 нм (покрывающего поверхность подложки со сформированными на ней наноостровками β-FeSi2) при скорости осаждения 5×10-2-3,3×10-1 нм/с и при нагреве подложки до 600-800°C (см. фиг.3, 4). В процессе такого заращивания нанокристаллиты распределяются в объеме кремния, двигаясь в направлении фронта эпитаксиального роста кремния.
После этого формируют слой кремния второго типа проводимости, для чего осаждают кремний второго типа проводимости толщиной 100-200 нм при скорости осаждения 5×10-2-3,3×10-1 нм/с и при нагреве подложки до 700-750°C.
Поскольку в качестве подложки выбран кремний первого типа проводимости (в данном случае, например, n-типа), эпитаксиальный слой кремния второго типа проводимости должен быть представлен кремнием p-типа для обеспечения возможности формирования области p-n-перехода (при использовании подложки из кремния p-типа эпитаксиальный слой кремния должен быть n-типа, т.е. фразы «первого типа» и «второго типа» говорят только о необходимости использования кремния различных типов проводимости).
По завершении этого процесса на внешних поверхностях кремния (соответственно, свободная поверхность эпитаксиального слоя кремния второго типа проводимости и свободная поверхность подложки) известным образом формируют положительный 7 и отрицательный 8 электроды, завершая процесс формирования светоизлучающего элемента (см. фиг.6).
Заявленный способ (на промежуточном этапе) обеспечивает формирование на поверхности кремния наноостровков дисилицида железа, изображение которых, полученное методом сканирующей атомно-силовой микроскопии, приведено на фиг.8. Этот образец был получен осаждением 0,2 нм железа со скоростью 6×10-2 нм/с. Большая часть поверхности занята небольшими островками с латеральными размерами 45-77 нм, высотой 1-3 нм. Островки имеют округлую форму, располагаются отдельно друг от друга и образуют на поверхности равномерно распределенный высокоплотный массив с концентрацией 1,2×1010 см-2.

Claims (2)

1. Способ создания светоизлучающего элемента, включающий осаждение на кремниевую подложку первого типа проводимости слоя нелегированного кремния толщиной 100-200 нм, при скорости осаждения 5·10-2-3,3·10-1 нм/с и нагреве подложки до 700-750°С, на поверхность которого при нагреве подложки до 375°С осаждают железо в количестве, достаточном для формирования слоя толщиной 0,2-0,8 нм, со скоростью осаждения 1,7·10-3-1,7·10-2 нм/с, после чего подложку охлаждают до комнатной температуры, при которой на слой железа осаждают слой нелегированного кремния толщиной 0,2-0,8 нм, со скоростью осаждения 1,7·10-3-1,7·10-2 нм/с, при этом агрегацию осажденного железа и кремния в наноостровки β-FeSi2 осуществляют отжигом при температуре подложки 475°С в течение 2 мин, после чего осуществляют агрегацию наноостровков β-FeSi2 в нанокристаллиты β-FeSi2 с размерами 20-40 нм, упруго встроенных в кремниевую матрицу, для чего осаждают слой нелегированного кремния толщиной 100-200 нм при скорости осаждения 5·10-2-3,3·10-1 нм/с при нагреве подложки до 600-800°С, после чего осаждают слой кремния второго типа проводимости толщиной 100-200 нм, при скорости осаждения 5·10-2-3,3·10-1 нм/с и нагреве подложки до 700-750°С.
2. Способ создания светоизлучающего элемента по п.1, отличающийся тем, что в качестве подложки используют кремний с ориентацией поверхности (100) или (111).
RU2012101900/28A 2012-01-19 2012-01-19 Способ создания светоизлучающего элемента RU2485631C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012101900/28A RU2485631C1 (ru) 2012-01-19 2012-01-19 Способ создания светоизлучающего элемента

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012101900/28A RU2485631C1 (ru) 2012-01-19 2012-01-19 Способ создания светоизлучающего элемента

Publications (1)

Publication Number Publication Date
RU2485631C1 true RU2485631C1 (ru) 2013-06-20

Family

ID=48786520

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012101900/28A RU2485631C1 (ru) 2012-01-19 2012-01-19 Способ создания светоизлучающего элемента

Country Status (1)

Country Link
RU (1) RU2485631C1 (ru)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018167A1 (en) * 1996-10-24 1998-04-30 University Of Surrey Optoelectronic semiconductor devices
JPH10317086A (ja) * 1997-05-15 1998-12-02 Hitachi Ltd β−FeSi2材料およびその作製方法
EP1045459A1 (en) * 1998-10-22 2000-10-18 Japan Science and Technology Corporation Variable-wavelength light-emitting device and method of manufacture
US20010032982A1 (en) * 2000-03-24 2001-10-25 Mitsubishi Materials Corporation Optical material and optical element using the same
US20050186435A1 (en) * 2002-08-30 2005-08-25 Hamamatsu Photonics K.K. Light emitting device and method for manufacturing the same
JP2006019426A (ja) * 2004-06-30 2006-01-19 Hamamatsu Photonics Kk 発光素子およびその製造方法
JP2006019648A (ja) * 2004-07-05 2006-01-19 Takashi Suemasu 鉄シリサイド発光素子及びその製造方法
JP4129528B2 (ja) * 2003-01-29 2008-08-06 独立行政法人産業技術総合研究所 β−FeSi2結晶粒子を含む薄膜及びこれを用いた発光材料
CN101339906A (zh) * 2008-08-12 2009-01-07 贵州大学 新型环境半导体光电子材料β-FeSi2薄膜的制备工艺
EA015668B1 (ru) * 2006-12-04 2011-10-31 Элкем Солар Ас ПОЛИКРИСТАЛЛИЧЕСКАЯ КРЕМНИЕВАЯ ПЛАСТИНА p-ТИПА, ИМЕЮЩАЯ БОЛЬШОЕ ВРЕМЯ ЖИЗНИ НЕОСНОВНЫХ НОСИТЕЛЕЙ ЗАРЯДА, И СПОСОБ ЕЁ ПОЛУЧЕНИЯ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018167A1 (en) * 1996-10-24 1998-04-30 University Of Surrey Optoelectronic semiconductor devices
JPH10317086A (ja) * 1997-05-15 1998-12-02 Hitachi Ltd β−FeSi2材料およびその作製方法
EP1045459A1 (en) * 1998-10-22 2000-10-18 Japan Science and Technology Corporation Variable-wavelength light-emitting device and method of manufacture
US20010032982A1 (en) * 2000-03-24 2001-10-25 Mitsubishi Materials Corporation Optical material and optical element using the same
US20050186435A1 (en) * 2002-08-30 2005-08-25 Hamamatsu Photonics K.K. Light emitting device and method for manufacturing the same
JP4129528B2 (ja) * 2003-01-29 2008-08-06 独立行政法人産業技術総合研究所 β−FeSi2結晶粒子を含む薄膜及びこれを用いた発光材料
JP2006019426A (ja) * 2004-06-30 2006-01-19 Hamamatsu Photonics Kk 発光素子およびその製造方法
JP2006019648A (ja) * 2004-07-05 2006-01-19 Takashi Suemasu 鉄シリサイド発光素子及びその製造方法
EA015668B1 (ru) * 2006-12-04 2011-10-31 Элкем Солар Ас ПОЛИКРИСТАЛЛИЧЕСКАЯ КРЕМНИЕВАЯ ПЛАСТИНА p-ТИПА, ИМЕЮЩАЯ БОЛЬШОЕ ВРЕМЯ ЖИЗНИ НЕОСНОВНЫХ НОСИТЕЛЕЙ ЗАРЯДА, И СПОСОБ ЕЁ ПОЛУЧЕНИЯ
CN101339906A (zh) * 2008-08-12 2009-01-07 贵州大学 新型环境半导体光电子材料β-FeSi2薄膜的制备工艺

Similar Documents

Publication Publication Date Title
KR101864522B1 (ko) 태양 전지 응용을 위한 페로브스카이트 필름을 제조하기 위한 시스템 및 방법
US6410162B1 (en) Zinc oxide films containing P-type dopant and process for preparing same
JP3078611B2 (ja) Iib−via族半導体層を含む発光半導体デバイス
US8735290B2 (en) Amorphous group III-V semiconductor material and preparation thereof
US10256305B2 (en) High mobility transport layer structures for rhombohedral Si/Ge/SiGe devices
TWI672795B (zh) 鑽石半導體系統及其方法
TWI659458B (zh) 鑽石型半導體系統
KR20130122649A (ko) 반도체 적층체, 반도체 디바이스, 및 그들의 제조 방법
TW201246298A (en) Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer and method for manufacturing solid state imaging device
WO2001043165A2 (en) Oxide films containing p-type dopant and process for preparing same
CN103077963B (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
EP2862198A1 (en) Method for depositing a group iii nitride semiconductor film
JP3477855B2 (ja) 固体エレクトロルミネッセント装置及びその製造方法
Ruzyllo Semiconductor Glossary: A Resource For Semiconductor Community
EP2890835B1 (en) Method for depositing an aluminium nitride layer
RU2485631C1 (ru) Способ создания светоизлучающего элемента
RU2485632C1 (ru) Способ создания светоизлучающего элемента
CN203026510U (zh) 一种欧姆接触电极及包含该欧姆接触电极的半导体元件
RU2488917C1 (ru) Способ создания светоизлучающего элемента
RU2488919C1 (ru) Способ создания светоизлучающего элемента
RU2488918C1 (ru) Способ создания светоизлучающего элемента
US20050186435A1 (en) Light emitting device and method for manufacturing the same
RU2488920C1 (ru) Способ создания светоизлучающего элемента
KR102405011B1 (ko) ReS2 박막 형성 방법 및 이를 이용한 광 검출기 형성 방법
JP2006019648A (ja) 鉄シリサイド発光素子及びその製造方法