CN101633848B - 一种中低温煤焦油深加工方法 - Google Patents

一种中低温煤焦油深加工方法 Download PDF

Info

Publication number
CN101633848B
CN101633848B CN2009101668283A CN200910166828A CN101633848B CN 101633848 B CN101633848 B CN 101633848B CN 2009101668283 A CN2009101668283 A CN 2009101668283A CN 200910166828 A CN200910166828 A CN 200910166828A CN 101633848 B CN101633848 B CN 101633848B
Authority
CN
China
Prior art keywords
oil
reaction
processing method
deep processing
coal tar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101668283A
Other languages
English (en)
Other versions
CN101633848A (zh
Inventor
姜殿臣
秦利彬
沈和平
赵长林
韩雪冬
李增文
于寿龙
杨承强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI SPANG PETROCHEMICAL TECHNOLOGY Ltd
China Coal Heilongjiang Coal Chemical Co Ltd
Original Assignee
SHANGHAI SPANG PETROCHEMICAL TECHNOLOGY Ltd
China Coal Heilongjiang Coal Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI SPANG PETROCHEMICAL TECHNOLOGY Ltd, China Coal Heilongjiang Coal Chemical Co Ltd filed Critical SHANGHAI SPANG PETROCHEMICAL TECHNOLOGY Ltd
Priority to CN2009101668283A priority Critical patent/CN101633848B/zh
Publication of CN101633848A publication Critical patent/CN101633848A/zh
Application granted granted Critical
Publication of CN101633848B publication Critical patent/CN101633848B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开一种中低温煤焦油深加工方法,包括如下步骤:a)将煤焦油进行分馏,得到轻馏分、酚油、重馏分和脱尾沥青;b)将酚油进行脱酚处理,得到酚类产品和脱酚油;c)将脱酚油、轻馏分和重馏分共同进行加氢反应,得到干气、液化气、加氢石脑油和加氢柴油;d)将加氢石脑油进行催化重整-芳烃抽提,得到苯、甲苯、二甲苯和溶剂油。本发明所提供的中低温煤焦油深加工方法与现有技术相比,在加氢之前,将煤焦油中的脱尾沥青除去就可以延长催化剂的使用寿命,提高其催化活性。

Description

一种中低温煤焦油深加工方法
技术领域
本发明涉及煤化工工艺,具体涉及一种中低温煤焦油深加工方法,属于煤化工领域。
背景技术
煤干馏和煤气化是煤化工工艺的重要组成部分,原料多以不粘结性煤或弱粘结性煤为主。不粘结性煤或弱粘结性煤包括褐煤、长焰煤和气煤等。褐煤是煤化程度最低的煤,它的水分高、比重小、挥发分高、不粘结、化学反应性强、热稳定性差、发热量低,含有不同数量的腐殖酸,多被用作燃料、气化的原料,也可用来提取褐煤蜡和腐殖酸,制造磺化煤或活性炭。长焰煤的挥发分含量也很高,没有或只有很小的粘结性,易燃烧,燃烧时有很长的火焰,故得名长焰煤。长焰煤可以用作气化的原料,也可用作民用和动力燃料。气煤挥发分高,胶质层较厚,热稳定性差。气煤能够单独结焦,但是炼出的焦炭细长易碎,收缩率大,且纵裂纹多,抗碎和耐磨性较差。故而,气煤只能用作配煤炼焦,还可用来制造煤气、生产氮肥或者动力燃料。
褐煤、长焰煤、气煤等不粘结性煤或弱粘结性煤都含有丰富的有机质,在中低温干馏时除能生产半焦外,还可生成煤气和煤焦油,煤焦油的质量产量一般在8%~20%之间;此类煤进行气化制造煤气(民用燃料)或制合成气(CO和H2)生产其他化工产品时,也会产生煤焦油,煤焦油的质量产量一般在4%~12%之间。由于煤直接燃烧会造成较严重的粉尘污染,因此,以煤为原料生产城市煤气作为民用燃料的比例越来越高,同时伴生的中低温煤焦油量也大大增加。由于半焦是生产硅铁和电石等的主要原料,因此生产半焦的煤中低温干馏的装置也是越来越多,同时伴生的中低温煤焦油量也在大大增加。目前,上述中低温干馏生产半焦的工厂和煤气化工厂副产的中低温煤焦油的处理方法一般是经酸碱精制后作为劣质燃料油被直接燃烧,或直接乳化后作为乳化燃料燃烧。但是其中所含硫、氮等杂质在燃烧过程中变成SOx和NOx释放到大气中造成大气污染,而且酸碱精制过程中又产生大量污水。
由于中低温煤焦油来自于煤干馏和煤气化,是热裂化产物,所以中低温煤焦油的组成非常复杂。中低温煤焦油的化学组成主要是芳香族化合物和烯烃,烷烃含量较少,还含有少量含氧、含氮、含硫化合物。含氧化合物主要是具有弱酸性的各种酚类,含氮化合物主要是具有弱碱性的吡啶、喹啉及它们的衍生物,含硫化合物主要是噻吩、硫醇、硫酚、硫醚等。随着我国石油资源的不足,原油进口比例的逐年增加,以中低温煤焦油为原料油,采用较合适的加工工艺生产与石油产品相当的清洁燃料或石油产品,不仅具有显著的经济效益,同时也具有明显的社会效益。
中低温煤焦油的深加工方法,在二十世纪50、60年代曾倍受关注并投入大量资金和人力研究。但随着大庆、新疆等地发现并开采了石油,石油作为主要能源很快代替了煤焦油制取车用燃料。从二十世纪70年代起,我国对中低温煤焦油深加工技术的研究几乎停滞,直至二十世纪90年代末,由于石油资源的日益紧张,环保法规的日益严格,煤焦油的深加工又重新开始受到重视。中国专利02133072.7CN1205302C提出了一种中低温煤焦油的加工工艺:中低温煤焦油首先进行延迟焦化,生产焦炭和焦化馏分油,之后焦化馏分油进入抽提塔,在抽提塔中加入碱溶液,抽提出酚类,脱酚的馏份油进入分馏塔,再分馏出石脑油和柴油等馏分。发明人在分析之后发现该工艺专利有如下缺点和不足:
延迟焦化是属于热裂化反应,主要发生裂化和缩合反应,目的是将煤焦油中非理想的油组分变成焦炭产品,从而精制煤焦油使之变成理想馏分油。因此,不应将煤焦油全馏分进延迟焦化装置,而应先将轻馏分分离,只进行煤焦油重馏分的延迟焦化反应,防止较轻的馏分反应变成重馏分或干气,影响液体产品收率。延迟焦化虽然能脱除部分煤焦油中的硫、氮等杂质,但很大部分还是保留在焦化馏分油中,不能被大量脱除,在燃烧时仍然会造成环境污染。更重要的是,焦化后的馏分油含有较多的烯烃和胶质,会影响油品的热安稳定性,造成发动机损害。
总之,延迟焦化后的馏分油在加氢反应过程中,容易对催化剂的使用寿命造成影响。
发明内容
针对上述缺陷,本发明解决的技术问题在于,提供一种中低温煤焦油深加工方法,该加工方法能够延长加氢反应过程中的催化剂的使用寿命。
为了解决以上的技术问题,本发明提供以下的技术方案:
一种中低温煤焦油深加工方法,包括如下步骤:
a)将煤焦油进行分馏,得到轻馏分、酚油、重馏分和脱尾沥青;
b)将酚油进行脱酚处理,得到酚类产品和脱酚油;
c)将脱酚油、轻馏分和重馏分共同进行加氢反应,得到干气、液化气、加氢石脑油和加氢柴油;
d)将加氢石脑油进行催化重整-芳烃抽提,得到苯、甲苯、二甲苯和溶剂油。
发明人发现,因为煤焦油中含有较多的易结焦的物质,所以才导致在加氢过程中催化剂也被结焦包裹,所以使得催化剂的使用寿命缩短,并且催化剂的使用活性也有所降低,在加氢之前,将煤焦油中的脱尾沥青除去就可以延长催化剂的使用寿命,提高其催化活性。
下面结合具体步骤,对本发明所提供的加工方法进行说明,并且提供一些更加优选的方案。
a)将煤焦油进行分馏,得到轻馏分、酚油、重馏分和脱尾沥青
步骤a)中的中低温煤焦油优选煤中低温干馏的干馏煤焦油和/或煤气化副产的煤焦油,中低温煤焦油进行分馏前进行预处理,预处理主要脱除水分和机械杂质,具体可以采用离心过滤、电脱盐脱水等方法进行预处理。分馏采用常压分馏塔和减压分馏塔即可,常压塔顶分馏出轻馏分,常压塔侧线分馏出酚油,常压塔底馏分进入减压塔,减压塔顶和侧线分馏得到重馏分,减压塔底是煤焦油脱尾沥青。轻馏分的终馏点一般在180~230℃,重馏分的初馏点一般>270℃,减压塔底煤焦油脱尾沥青的量根据煤焦油的性质一般在10m%~30m%。
b)将酚油进行脱酚处理,得到酚类产品和脱酚油
步骤b)所述的脱酚处理采用酸碱抽提方法,具体操作方式是本领域技术人员熟知的。具体可以采用常规的煤焦油酚油精制装置,常压分馏塔分出的含酚馏分进入抽提塔,在抽提塔中加入碱溶液,抽提出的酚盐经蒸吹脱油、硫酸或CO2分解后获得酚类产品,抽提出酚类产品后得到脱酚油。得到的酚类产品一般包括苯酚、工业甲酚、邻甲酚和二甲酚等。步骤1得到的轻馏分中也可能含有部分酚类物质,也可以进行脱酚处理,获得酚类产品和脱酚油。
c)将脱酚油、轻馏分和重馏分共同进行加氢反应,得到干气、液化气、加氢石脑油和加氢柴油
本发明方法中,步骤c)中的加氢精制和加氢裂化可以采用本领域技术人员熟知的工艺过程,加氢精制流出物一般需进行分离处理,将加氢精制反应过程中脱除的杂质特别是产生的水分离出来,然后进行加氢裂化反应,避免对加氢裂化产生不利影响。一种典型方法是采用两段加氢裂化工艺,加氢精制反应产物在进入加氢裂化反应器之前,首先进入分馏塔。分馏塔为常规的常减压蒸馏装置,将加氢精制全馏分油通过分馏后可产出汽油馏分、柴油馏分和蜡油馏分,汽油馏分和柴油馏分直接出装置,而蜡油馏分则进行加氢裂化反应,进一步进行加氢裂化生产汽油馏分和柴油馏分。如果存在其它来源的原料,可以根据需要与上述加氢精制过程和加氢裂化过程共同处理。
本发明方法中,步骤c)中的加氢精制和加氢裂化可以采用本领域技术人员熟知的催化剂和工艺条件。加氢精制反应条件一般为:反应温度180~427℃、压力10.0~17.0MPa、氢油体积比500∶1~3500∶1和液时体积空速0.15~1.0h-1。加氢精制反应最优选的反应条件如下:反应温度180~420℃、压力10.0~16.0MPa、氢油体积比1500∶1~3000∶1和液时体积空速0.2~0.8h-1。加氢裂化反应条件一般为:反应温度360~427℃、压力10.0~17.0MPa、氢油体积比800∶1~2000∶1和液时体积空速0.15~1.0h-1。加氢裂化最优选的反应条件如下:反应温度380~420℃、压力10.0~16.0MPa、氢油体积比1000∶1~1500∶1和液时体积空速0.2~0.8h-1
本发明方法中,步骤c)中加氢精制和加氢裂化过程需要的氢气可以来源于本发明工艺中的催化重整副产氢气、煤干馏煤气和煤气化煤气等中的一种或几种,低浓度氢气的提浓可以采用本领域常规方法,如变压吸附提浓方法等。
d)将加氢石脑油进行催化重整-芳烃抽提,得到苯、甲苯、二甲苯和溶剂油
本发明方法中,步骤d)中所述的催化重整-芳烃抽提装置为常规的石油类催化重整-芳烃抽提装置。催化重整的反应条件一般为:反应温度450~600℃、压力1.0~4.0MPa和液时体积空速1.0~6.0h-1。催化重整最优选的反应条件如下:反应温度460~580℃、压力1.2~3.0MPa和液时体积空速1.2~3.0h-1。芳烃抽提装置为常规的石油抽提装置,溶剂一般是环丁砜,工艺过程为液液抽提和/或抽提蒸馏。液液抽提比较适合于芳烃含量≤70wt%的原料,而抽提蒸馏则适合于芳烃含量≥70wt%的原料。两种工艺相对比,液液抽提工艺适宜处理宽馏分原料,芳烃收率高,但工艺流程复杂,投资大,能耗、物耗高,而抽提蒸馏工艺适宜处理窄馏分原料,流程简单,投资省,能耗、物耗低,但芳烃收率略低,两种工艺具有优势互补性。
本发明所提供的中低温煤焦油深加工方法与现有技术相比,在加氢之前,将煤焦油中的脱尾沥青除去就可以延长催化剂的使用寿命,提高其催化活性。
具体地说,本发明方法还具有如下附加优点:
1、酚类对设备有强腐蚀作用,且具有高附加值,因此在对煤焦油深加工前先分离出酚类产品,不但增加了经济效益,同时延长了煤焦油深加工装置设备的使用寿命。
2、由于煤焦油含有较多的固体粉尘和易结焦的物质,通过减压蒸馏将上述物质分离出,使煤焦油更加适合下游的加氢技术的加工。
3、将预处理后的煤焦油再经过加氢处理,可以大大改善油品的性质,最大量地生产高品质的汽柴油馏分,在原油供应日趋紧张,轻质油品需求上涨的情况下,提供了新的轻质油品的供应来源。
4、煤气经过净化后,采用变压吸附(PSA)技术把氢气提出用于干馏煤焦油的加氢过程,属于物料循环使用,无排放污染。更重要的是原煤中的硫、氮等杂质通过干馏进入干馏煤气和干馏煤焦油中后,可以很容易地将硫、氮杂元素转化为硫磺和氨水,即增加了经济效益,又减少了燃烧干馏煤气和煤焦油生产汽柴油馏分的环境污染。
5、由于煤焦油加氢石脑油的芳潜含量均在80以上,将煤焦油加氢石脑油进入催化重整-芳烃抽提装置,可以生产更多的苯、甲苯、二甲苯等高附加值化工产品,同时也为加氢精制和加氢裂化过程提供了氢源。
附图说明
图1是实施例1~3的工艺流程图。
具体实施方式
为了本领域的技术人员能够更好地理解本发明,下面结合具体实施例进行阐述。
图1是实施例1~3的工艺流程图。
表1是干馏煤焦油主要性质,表2是本发明产品主要性质。
实施例1
依兰褐煤的低温干馏煤焦油,性质见表1,送进预处理单元脱除机械杂质和水后进入常压分馏塔,分馏出轻馏分油(塔顶油)、塔底油和酚油(侧线抽出的含酚油),酚油进入酚油抽提装置分离出酚类产品和脱酚油。常压塔底油进入减压分馏塔,由塔顶和侧线分馏出重馏分,塔底分馏出脱尾沥青。脱酚油、重馏分与常压分馏塔的轻馏分油混合后进入加氢精制装置进行加氢精制反应,加氢精制反应得到的汽油和柴油可以出装置,加氢精制反应得到的蜡油进入加氢裂化装置进行加氢裂化反应,加氢裂化反应产物分离为干气、液化气、加氢石脑油和加氢柴油,加氢精制的反应温度为256℃、压力15.8MPa、氢油体积比1380∶1和液时体积空速0.48h-1;加氢裂化的反应温度369℃、压力14.9MPa、氢油体积比1320∶1和液时体积空速0.3h-1。加氢石脑油进入催化重整-芳烃抽提装置,生产出苯、甲苯、二甲苯和汽油等产品。催化重整的操作条件:反应温度550℃、压力1.5MPa和液进体积空速1.5h-1。芳烃抽提装置的溶剂为环丁砜,工艺为液液抽提工艺。加氢精制催化剂以氧化铝载体,氧化钼重量含量为15%,氧化钨重量含量为12%,氧化镍重量含量为5%,比表面积为185m2/g,孔容为0.35ml/g。加氢裂化催化剂以Y型分子筛(氧化硅/氧化铝分子比为12,晶胞常为0.2426nm)和无定形硅铝(二氧化硅重量含量为27%,红外酸度为0.4mmol/g)为裂化组分,Y型分子筛重量含量为15%,无定形硅铝重量含量为35%,氧化钨重量含量为28%,氧化镍重量含量为8%,余量为氧化铝,比表面积为270m2/g,孔容为0.42ml/g。加氢精制催化剂和加氢裂化催化剂在使用前进行常规预硫化处理。催化重整催化剂以氧化铝载载体,铂重量含量为0.5%,铼(Re)/铂(Pt)重量比为2.0。
实施例2
依兰褐煤的低温干馏煤焦油,性质见表1,送进预处理单元脱除机械杂质和水后进入常压分馏塔,分馏出轻馏分油(塔顶油)、塔底油和酚油(侧线抽出的含酚油),酚油进入酚油抽提装置分离出酚类产品和脱酚油。常压塔底油进入减压分馏塔,由塔顶和侧线分馏出重馏分,塔底分馏出脱尾沥青。脱酚油、重馏分与常压分馏塔的轻馏分油混合后进入加氢精制装置进行加氢精制反应,加氢精制反应得到的汽油和柴油可以出装置,加氢精制反应得到的蜡油进入加氢裂化装置进行加氢裂化反应,加氢裂化反应产物分离为干气、液化气、加氢石脑油和加氢柴油,加氢精制的反应温度为330℃、压力14.1MPa、氢油体积比1550∶1和液时体积空速0.25h-1;加氢裂化的反应温度390℃、压力14.0MPa、氢油体积比1100∶1和液时体积空速0.38h-1。加氢石脑油进入催化重整-芳烃抽提装置,生产出苯、甲苯、二甲苯和汽油等产品。催化重整的操作条件:反应温度510℃、压力1.7MPa和液进体积空速2.0h-1。芳烃抽提装置的溶剂为环丁砜,工艺为液液抽提-抽提蒸馏组合工艺。加氢精制催化剂以氧化铝载体,氧化钼重量含量为15%,氧化钨重量含量为12%,氧化镍重量含量为5%,比表面积为185m2/g,孔容为0.35ml/g。加氢裂化催化剂以Y型分子筛(氧化硅/氧化铝分子比为12,晶胞常为0.2426nm)和无定形硅铝(二氧化硅重量含量为27%,红外酸度为0.4mmol/g)为裂化组分,Y型分子筛重量含量为15%,无定形硅铝重量含量为35%,氧化钨重量含量为28%,氧化镍重量含量为8%,余量为氧化铝,比表面积为270m2/g,孔容为0.42ml/g。加氢精制催化剂和加氢裂化催化剂在使用前进行常规预硫化处理。催化重整催化剂以氧化铝载载体,铂重量含量为0.5%,铼(Re)/铂(Pt)重量比为2.0。
实施例3
依兰褐煤的低温干馏煤焦油,性质见表1,送进预处理单元脱除机械杂质和水后进入常压分馏塔,分馏出轻馏分油(塔顶油)、塔底油和酚油(侧线抽出的含酚油),酚油进入酚油抽提装置分离出酚类产品和脱酚油。常压塔底油进入减压分馏塔,由塔顶和侧线分馏出重馏分,塔底分馏出脱尾沥青。脱酚油、重馏分与常压分馏塔的轻馏分油混合后进入加氢精制装置进行加氢精制反应,加氢精制反应得到的汽油和柴油可以出装置,加氢精制反应得到的蜡油进入加氢裂化装置进行加氢裂化反应,加氢裂化反应产物分离为干气、液化气、加氢石脑油和加氢柴油,加氢精制的反应温度为400℃、压力12.3MPa、氢油体积比2000∶1和液时体积空速0.46h-1;加氢裂化的反应温度406℃、压力11.0MPa、氢油体积比1430∶1和液时体积空速0.55h-1。加氢石脑油进入催化重整-芳烃抽提装置,生产出苯、甲苯、二甲苯和汽油等产品。催化重整的操作条件:反应温度500℃、压力2.3MPa和液进体积空速3h-1。芳烃抽提装置的溶剂为环丁砜,工艺为抽提蒸馏工艺。加氢精制催化剂以氧化铝载体,氧化钼重量含量为15%,氧化钨重量含量为12%,氧化镍重量含量为5%,比表面积为185m2/g,孔容为0.35ml/g。加氢裂化催化剂以Y型分子筛(氧化硅/氧化铝分子比为12,晶胞常为0.2426nm)和无定形硅铝(二氧化硅重量含量为27%,红外酸度为0.4mmol/g)为裂化组分,Y型分子筛重量含量为15%,无定形硅铝重量含量为35%,氧化钨重量含量为28%,氧化镍重量含量为8%,余量为氧化铝,比表面积为270m2/g,孔容为0.42ml/g。加氢精制催化剂和加氢裂化催化剂在使用前进行常规预硫化处理。催化重整催化剂以氧化铝载载体,铂重量含量为0.5%,铼(Re)/铂(Pt)重量比为2.0。
表1  干馏煤焦油主要性质
  原料   中低温煤焦油
  密度(20℃),g/cm3   0.9812
  馏程,℃
  IBP/10%   60.8/185.8
  30%/50%   236.2/279.0
  70%/90%   336.0/436.2
  95%/FBP   481.0/566.6
  S,wt%   0.28
  N,μg·g-1   8976
  馏程分布(重量%)
  <160℃   4.84
  160℃~380℃   62.53
  >380℃   16.31
  380℃~450℃   10.1
  >450℃   6.22
表2  本发明方法加氢精制汽油馏分主要性质
  密度(20℃),g·cm-3   0.7565
  馏程,℃
  IBP/10%   83/102
  30%/50%   109/115
  70%/90%   130/152
  EBP   177
  S,μg·g-1   <0.5
  N,μg·g-1   <0.5
  组成分析,wt%
  烷烃   6.1
  C4/C5   0.2/0.8
  C6/C7   1.9/1.7
  C8/C9   0.9/0.5
  C10   0.1
  环烷烃   88.7
  C5/C6   0.2/18.6
  C7/C8   23.5/17.7
  C9/C10   14.2/13.8
  C11   1.3
  芳烃   4.2
  C6/C7   1.4/0.9
  C8/C9   0.7/1.0
  C10   0.2
  芳潜,%   88.2
续表2  本发明方法加氢精制柴油和加氢裂化柴油混
  密度(20℃),g·cm-3   0.8619
  馏程,℃
  IBP/10%   167/209
  30%/50%   221/237
  70%/90%   259/294
  95%/EBP   308/332
  粘度(20℃),mm2·s-1
  酸度,mgKOH·(100mL)-1   1.52
  10%蒸余物残炭,%   <0.01
  折光(20℃)
  闪点,℃   56
  凝点,℃   <-50
  冷滤点,℃   <-41
  十六烷值   43.2
  S,μg·g-1   <5
  N,μg·g-1   <1.0
续表2 本发明方法几种主要低沸点酚的物理性质
  酚类名称   苯酚   邻甲酚   间甲酚   对甲酚
  沸点,℃(101.3kPa)   181.8   191   202   201.9
  熔点,℃   40.91   30.99   12.22   34.69
  相对密度(50℃)   1.050   1.0222   1.0105   1.0116
  粘度,MPa·S(50℃)   3.49   3.06   4.17   4.48
  折射率nD 50   1.5372   1.5310   1.5271   1.5269
  汽化热,KJ·mol-1   49.76   45.222   47.429   47.581
  闪点,℃   79.5   81   86   86
  着火点,℃   595   555   555   555
本发明的酚类产品中:工业苯酚结晶点不少于31℃,中性油不大于0.5%,水分不大于1.5%,吡啶碱0.3%;
邻位甲酚不低于96%,苯酚含量不大于2%,二甲酚不大于2%,水分不大于0.5%;
三混甲酚190℃前流出量不大于3%,210℃前流出不小于96%;
间位甲酚不小于41%,中性油含量不大于1%,水分不大于0.5%;
工业二甲酚205℃前流出量不大于0.5%,225℃前不小于90%,中性油不大于1.8%,水分不大于1.2%。
续表2  本发明方法苯产品主要性质
  项目   理化性质   方法
  博士实验   通过   UOP-41-74
  色度(Pt-Co计)   最大20   ASTMD-1209
  非芳烃,μg·g-1   最大500   ASTMD-2360
  甲苯,μg·g-1   最大300   ASTMD-2360
  C8芳烃,μg·g-1   最大500   ASTMD-2360
  酸洗色度   最大2.0   ASTMD-848
  总硫,μg·g-1   最大0.5   ASTMD-4045
  比重(15.6/15.6℃)   0.869-0.873   ASTMD-4045
  酸度   无游离酸   ASTMD-847
  铜蚀   通过   ASTMD-849
  蒸馏残余物,mg/100mL   不大于5
续表2  本发明方法甲苯产品主要性质
  项目   理化性质   方法
外观   澄清液体,不含沉淀及浮尘(18-25℃)
  色度(Pt-Co计)   最大20   ASTMD-1209
  比重(15.6/15.6℃)   0.882~0.886   ASTMD-4052
  酸洗色度   最大1   ASTMD-848
  酸度   无游离酸   ASTMD-847
  Pt凝固点,℃   最低5.40(无水)   ASTMD-852
  总硫量,μg·g-1   最大0.5   ASTMD-4045
  非芳烃含量,μg·g-1   最大200   ASTMD-4492
  苯含量,μg·g-1   最大150   ASTMD-4492
  Cl含量   max  1μg·g-1
  蒸馏残余物,mg/100ml   不大于5
  铜蚀   通过   ASTMD-849
续表2  本发明混二甲苯产品主要性质
  项目   理化性质   试验方法
外观   清晰透明,无不溶水及机械杂质 目测
  颜色(铂钴比色号)不深于   20   GB3143
  密度(20℃),kg/m3   860-870   GB2013
  馏程,℃初馏点 不低于终馏点 不高于总馏程范围 不大于 1371435 GB3146
  总硫含量,mg/kg 不大于   3   SH/T0253
  酸洗比色        不大于   0.7   GB2012
  铜片腐蚀(100℃,0.5h)   合格   SH/T0174
  中性试验   中性   GB1816
  蒸发残余物,mg/100ml不大于 5 GB3209
本发明所提供的中低温煤焦油深加工方法与现有技术相比,在加氢之前,将煤焦油中的脱尾沥青除去就可以延长催化剂的使用寿命,提高其催化活性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种中低温煤焦油深加工方法,包括如下步骤:
a)将煤焦油进行分馏,得到轻馏分、酚油、重馏分和脱尾沥青,轻馏分的终馏点为180℃~230℃,重馏分的初馏点大于270℃;
b)将酚油进行脱酚处理,得到酚类产品和脱酚油;
c)将脱酚油、轻馏分和重馏分共同进行加氢反应,得到干气、液化气、加氢石脑油和加氢柴油;
d)将加氢石脑油进行催化重整-芳烃抽提,得到苯、甲苯、二甲苯和溶剂油。
2.根据权利要求1所述的中低温煤焦油深加工方法,其特征在于,步骤a)的具体实现为:煤焦油进入常压分馏塔分别得到酚油、轻馏分和塔底油,所述塔底油经过减压分馏塔得到重馏分和脱尾沥青。
3.根据权利要求1所述的中低温煤焦油深加工方法,其特征在于,步骤b)中所述的脱酚处理为酸碱抽提法。
4.根据权利要求1所述的中低温煤焦油深加工方法,其特征在于,步骤c)中,所述加氢反应的反应装置包括加氢精制单元和加氢裂化单元。
5.根据权利要求4所述的中低温煤焦油深加工方法,其特征在于,所述加氢精制单元中的反应温度为180℃~427℃,反应压力为10MPa~17MPa,氢油体积比为500:1~3500:1,液时体积空速为0.15h-1~1h-1
6.根据权利要求5所述的中低温煤焦油深加工方法,其特征在于,所述加氢精制单元中的反应温度为180℃~420℃,反应压力为10MPa~16MPa,氢油体积比为1500:1~3000:1,液时体积空速为0.2h-1~0.8h-1
7.根据权利要求4所述的中低温煤焦油深加工方法,其特征在于,加氢精制单元出来的油品进入加氢裂化单元,所述加氢裂化单元中的反应温度为360℃~427℃,反应压力为10MPa~17MPa,氢油体积比为800:1~2000:1,液时体积空速为0.15h-1~1h-1
8.根据权利要求7所述的中低温煤焦油深加工方法,其特征在于,所述加氢裂化单元中的反应温度为380℃~420℃,反应压力为10MPa~16MPa,氢油体积比为1000:1~1500:1,液时体积空速为0.2h-1~0.8h-1
9.根据权利要求1所述的中低温煤焦油深加工方法,其特征在于,步骤d)中催化重整的反应条件为:反应温度450℃~600℃,反应压力为1MPa~4MPa,液时体积空速为1h-1~6h-1
10.根据权利要求9所述的中低温煤焦油深加工方法,其特征在于,步骤d)中催化重整的反应条件为:反应温度460℃~580℃,反应压力为1.2MPa~3MPa,液时体积空速为1.2h-1~3h-1
CN2009101668283A 2009-08-31 2009-08-31 一种中低温煤焦油深加工方法 Expired - Fee Related CN101633848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101668283A CN101633848B (zh) 2009-08-31 2009-08-31 一种中低温煤焦油深加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101668283A CN101633848B (zh) 2009-08-31 2009-08-31 一种中低温煤焦油深加工方法

Publications (2)

Publication Number Publication Date
CN101633848A CN101633848A (zh) 2010-01-27
CN101633848B true CN101633848B (zh) 2012-11-21

Family

ID=41593189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101668283A Expired - Fee Related CN101633848B (zh) 2009-08-31 2009-08-31 一种中低温煤焦油深加工方法

Country Status (1)

Country Link
CN (1) CN101633848B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465033B (zh) * 2010-11-04 2015-02-18 中国石油化工股份有限公司 一种中低温煤焦油的加工方法
CN102899088A (zh) * 2012-09-19 2013-01-30 王小英 中低温煤焦油的加氢方法
CN104059691B (zh) * 2014-06-26 2016-01-20 太原理工大学 一种炼焦副产物制汽油高辛烷值调和组分的方法
CN104893750B (zh) * 2015-04-27 2017-12-15 陕西煤业化工集团神木天元化工有限公司 一种煤焦油提取吡啶类化合物的方法
CN105018140B (zh) * 2015-07-14 2016-08-17 程志宇 一种高温煤焦油洗油馏分组合加工方法
CN107603671B (zh) * 2017-09-15 2019-03-01 王树宽 一种基于中低温煤焦油加氢制取中间相沥青和油品的系统及方法
CN112725024B (zh) * 2020-12-04 2022-08-23 太原理工大学 一种煤直接转化液体生产环烷基油品和酚类化合物系统及生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683218A2 (en) * 1994-05-19 1995-11-22 Shell Internationale Researchmaatschappij B.V. Process for the conversion of a residual hydrocarbon oil
CN1727441A (zh) * 2005-07-27 2006-02-01 中钢集团鞍山热能研究院 低温焦油加工工艺
CN1986735A (zh) * 2006-12-13 2007-06-27 上海奥韦通工程技术有限公司 一种中低温焦油的加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683218A2 (en) * 1994-05-19 1995-11-22 Shell Internationale Researchmaatschappij B.V. Process for the conversion of a residual hydrocarbon oil
CN1727441A (zh) * 2005-07-27 2006-02-01 中钢集团鞍山热能研究院 低温焦油加工工艺
CN1986735A (zh) * 2006-12-13 2007-06-27 上海奥韦通工程技术有限公司 一种中低温焦油的加工方法

Also Published As

Publication number Publication date
CN101633848A (zh) 2010-01-27

Similar Documents

Publication Publication Date Title
CN101538482B (zh) 一种中低温煤焦油深加工方法
CN102899087B (zh) 中低温煤焦油深加工工艺方法
CN101633848B (zh) 一种中低温煤焦油深加工方法
CN101580728B (zh) 一种不粘结性煤或弱粘结性煤的加工工艺
CN100532509C (zh) 一种煤焦油加氢改质生产燃料油的方法
AU2018222933B2 (en) Combined hydrogenation process method for producing high-quality fuel by medium-low-temperature coal tar
CN101538473B (zh) 不粘结性或弱粘结性煤深加工方法
CN103789034B (zh) 中低温煤焦油加氢生产大比重航空煤油方法
CN107254330B (zh) 一种废润滑油全氢法生产低凝润滑油基础油的再生工艺
CN102899088A (zh) 中低温煤焦油的加氢方法
CN1243814C (zh) 中高温煤焦油加氢裂化工艺
CN101712889A (zh) 煤焦油制取轻质芳烃的方法
CN1752188A (zh) 一种燃料油的生产方法
CN101429456A (zh) 一种煤焦油延迟焦化加氢组合工艺方法
CN101250432A (zh) 一种煤焦油加氢改质生产燃料油的方法
CN103555359A (zh) 一种催化裂化汽油的深度脱硫方法
CN102851073A (zh) 中低温煤焦油的组合加工方法
CN1326609C (zh) 煤焦油加氢制柴油用催化剂及利用该催化剂制备柴油的工艺
CN104004541B (zh) 一种煤基高芳烃潜含量原料油的制备方法
CN102863988B (zh) 一种煤焦油组合加工方法
CN101643654B (zh) 一种不粘结性煤或弱粘结性煤的加工工艺
CN105400537A (zh) 一种采用混合炼制工艺加工油和煤炭的方法
CN103205275A (zh) 一种煤焦油制酚类化合物和清洁燃料油的方法
CN105296002A (zh) 煤焦油清洁提酚后加氢生产燃料油品的方法及系统
CN103450938B (zh) 一种减排二氧化碳的劣质重油加工组合工艺方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121121

Termination date: 20180831