CN101610982A - 利用来自水纯化处理的废水生产油和气的方法 - Google Patents

利用来自水纯化处理的废水生产油和气的方法 Download PDF

Info

Publication number
CN101610982A
CN101610982A CNA2007800516649A CN200780051664A CN101610982A CN 101610982 A CN101610982 A CN 101610982A CN A2007800516649 A CNA2007800516649 A CN A2007800516649A CN 200780051664 A CN200780051664 A CN 200780051664A CN 101610982 A CN101610982 A CN 101610982A
Authority
CN
China
Prior art keywords
water
salt
oil
combination
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800516649A
Other languages
English (en)
Inventor
杰拉尔德·J·格罗特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN101610982A publication Critical patent/CN101610982A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

对来自水纯化的废水的进一步处理产生了用于油井和气井钻探和生产中的产物。

Description

利用来自水纯化处理的废水生产油和气的方法
发明背景
本发明涉及利用来自水纯化处理的废水生产油和气的方法。
水纯化处理一般生成“相对洁净的水”的第一流出液和包含不需要的污染物的“废水”的第二流出液。例如,通过去除钙和镁对硬水软化对于工业和家庭的使用而言都是必需的。
已知的水软化处理是通过离子交换、膜软化或沉淀的方法进行的。在离子交换处理中,二价的钙和镁离子与一价的钠交换,并且通过大量过量的氯化钠实现了离子交换树脂的再生。该处理产生再生流出液,该流出液通常为不得不被丢弃的相对浓的钠、钙和镁的氯化物的水溶液。可选择地,能够利用将氢离子与钙和镁离子交换的弱酸性树脂,并且可以使用矿物酸再生失去效力的树脂。尽管该方法产生较少的废水,但是它比较昂贵并且产生具有腐蚀性的酸性较强的软水。膜软化将钙、镁的盐和其它二价离子的盐浓缩,生成需要高成本处理的废水。传统的沉淀处理通过“石灰-苏打”法来进行,其中将石灰加到硬水中以将水溶性碳酸氢钙转化为不溶于水的碳酸钙。该处理也会产生难于过滤并需要笨重设备的废水。
因此,废水的处理对于社会而言已经成为昂贵的问题。例如,仅仅在加利福尼亚州,水处理的操作和油田就产生了含有大约800,000吨混合的钠、钙、镁的氯化物和硫酸盐的大约16.1亿加仑的废水。这些废水的处理每年要花费数百万美元。在世界的其他地方,废水的处理甚至已经更成问题,并且为处理付出的努力每年要花费数十亿美元。以回收和利用盐成分的方式对含盐废水进行经济利用是非常有利的,由此可以为社会带来利益。
农田与灌溉用水通常不能接受含量高的钠。含有相对于钙盐和/或镁盐更大量的钠盐的灌溉用水能够在土壤中形成钠盐的积累。这种钠过量的土壤导致土壤胶状颗粒的分散以及土壤pH的升高。当干燥时,胶状颗粒的分散导致土壤变硬,并且对水的渗透和浸透的抵抗能力提高。当湿润时,由于土壤膨胀,富含钠的土壤也会阻止水的渗透。土壤和灌溉用水的总盐度也是受到关注的。盐度指的是水中的总盐量,盐度中重要的正离子(阳离子)为钙、镁和钠离子,以及重要的负离子(阴离子)为氯、硫酸根和碳酸氢根离子。
所有的灌溉用水都含有一些溶解的盐。当土壤具有高含量的溶解盐,或灌溉用水具有足够的盐以提高土壤的盐度时,土壤就倾向于保持水分,而非借助渗透压通过植物的根吸收来释放水。即使土壤含有大量的水分,植物也将会由于不能吸收必需的水分而枯萎。
发明简述
简言之,根据本发明,本发明人改进了油井或气井的钻探或生产。这些改进提供了之前只能被丢弃的水的有益且经济的用途。
在一个实施方案中,改进包括以下步骤的组合:收集含有以重量计为0.15%或更多的Na、Ca、Mg、K、Cl、SO4或CO3的盐或其组合的被污染的水,对被污染的水进行分离处理以生成基本上是固体的或液体的第一分离产物和基本上是固体的或液体的第二分离产物,并且将这些产物之一作为增重剂加到钻井液中。
在本发明的另一个实施方案中,改进包括以下步骤的组合:收集含有以重量计为0.15%或更多的Na、Ca、Mg、K、Cl、SO4或CO3的盐或其组合的被污染的水,对被污染的水进行分离处理以生成基本上是固体的或液体的第一分离产物和基本上是固体的或液体的第二分离产物,与收集的水相比,第一分离产物中氯化钠增加,氯化镁和氯化钙减少或其组合,第二分离产物中氯化钠减少,氯化镁和氯化钙增加或其组合,将第一分离产物用于混合盐饱和的水泥,并且将水泥用于钻孔套管。
在本发明的又一个实施方案中,改进包括以下步骤的组合:收集含有以重量计为0.15%或更多的Na、Ca、Mg、K、Cl、SO4或CO3的盐或其组合的被污染的水,对被污染的水进行分离处理以生成基本上是固体的或液体的第一分离产物和基本上是固体的或液体的第二分离产物,与收集的水相比,第一分离产物中氯化钠增加,氯化镁和氯化钙减少或其组合,第二分离产物中氯化钠减少,氯化镁和氯化钙增加或其组合,并且将第一废产物注入到油井或气井的地层中以改善生产。
本发明所用的废水为由水纯化过程产生的任何水,特别是油田产生的经纯化的废水,及经纯化的灌溉排水。这种纯化或“分离”过程产生洁净水的第一流出液和通常必需被丢弃的废水的第二流出液。这样的分离过程的例子包括反渗透、电透析、蒸馏、蒸发、离子交换和石灰软化。这些过程产生具有各种盐含量水平的废水产物。对于本发明的目的而言,本发明人将“废水”定义为含有以重量计为大约0.15%或更多的Na、K、Ca、Mg、Fe、Cl、SO4和CO3的盐或其组合的水。在本发明出现以前,由任何这些过程处理废水都很昂贵。
本发明包括处理废水以生成在石油工业中有用的产物,改进油/气钻探/生产的经济性,而且同时降低废水处理的经济和环境成本。
特别地,本发明人已经发现对产生于油田操作的废水进行软化生成两种流出液,它们都可以用于油田应用。对于实施本发明的这个实施方案而言,油田废水为“软化的水”,生成钠和钾增加的第一“洁净”流出液和钙和镁增加的第二再生流出液。
由于油田废水倾向于具有基本上高的盐含量,甚至“洁净”流出液通常具有以重量计为0.15%或更多的盐的盐含量。于是,洁净水通常由于含盐量太高无法利用而不得不被丢弃。然而,根据本发明,将来自油田水的分离处理(水软化)的第一流出液用作:1)钻井泥浆的增重剂,2)用于制造油井套管的水泥的添加剂,以及3)用于注入到油井钻孔位置的地层中,以在所谓的“水驱法”过程中保持流体压力。通常具有3.0%或更高盐含量的再生盐水也可用于钻井泥浆的增重剂。
附图简述
图1为描述本发明的一个优选方法的流程图,其涉及来自石油工业的水纯化处理的产物的用途,包括用作强化采油液;
图2为本发明另一个优选方法的流程图,其涉及来自石油工业的水纯化处理的产物的用途,包括用作强化采油液;
图3为本发明另一个优选方法的流程图,其涉及来自石油工业的水纯化处理的产物的用途,包括用强化采油液;
图4为本发明另一个优选方法的流程图,其涉及来自水纯化处理的产物的用途,包括用在石油工业中的多个热交换器中的用途;和
图5为本发明另一个优选方法的流程图,其涉及来自石油工业的水纯化处理的产物的用途,包括在发电厂的涡轮机中的用途,作为乳化剂且重新开启关闭的石油工业中的井。
优选实施方案的详述
水软化去除水的“硬度”,主要是指从水中去除或改变钙离子和镁离子。这些钙离子和镁离子与碳酸根、硫酸根、油和脂肪结合生成浴缸浮渣、盘子上的斑点、使被单发灰等。此外,已经发现未软化的水造成工业水加热器和商用锅炉积垢,由于热传递减弱导致实质上的能量损失较早出现,以及为去除积垢而较早停工。已知有几种用于实现水软化的方法。
已知的软化水的最佳方法是“离子交换”。离子交换必然伴有引入水中的钠与钙、镁、铁和其他二价矿物离子的交换,使它们从水中转移出来并进入树脂。当树脂被这些“硬”离子接近饱和时,最常见的是将树脂利用氯化钠溶液来再生,产生含有3-25%的钠、钙和镁盐的必须被丢弃的流出液。流出液的确切浓度取决于工艺操作,并且特别地,取决于包括在流出液中的漂洗水的量(如果有的话)。不太常用地,将矿物酸如硫酸或盐酸用于水的软化,并且它们也生成流出液。相反地,“反相”水软化包括离子交换,其中将钙和镁引入水中以分离钠。
近来,膜系统已经成为商业上可行的。这些如电透析和反渗透的系统包括膜的应用,同样产生含盐的流出液。对于要求严格的应用,如电子业,且特别是用于计算机芯片的制造,洁净水的第一产物可以通过双床或混合床离子交换处理来进一步纯化。这种“抛光处理”也产生包含被除去的盐的流出液。这些水纯化工艺都产生洁净水流出液和丢弃起来昂贵且困难的废水流出液。
对于本申请的目的而言,“废水”被定义为含有足够的盐以至于由于成本或污染的水平,而不可利用的任何水。通常,含有以重量计为大约0.15%或更多的Na、K、Ca、Mg、Fe、Cl、SO4和CO的盐或其组合的废水被认为是不可利用的,并且必须被丢弃。
水分离处理被认为是对油和气钻探特别有用的,于是接下来的描述特别强调油和气的钻探。然而,本发明的水分离处理在各种钻探工业中都具有广泛的应用,包括用于水、二氧化碳、氮气、天然气和油井的钻探。
在其他废水中平常不被发现的污染物在产自油井和气井的水中很普遍。最常见地,油井和气井的废水含有比其他来源的废水更大量的金属。大量使用水,如水驱法以及为提高油和/或气的采收使用配制的溶液,对于如钙和镁的这些阳离子和如碳酸氢根、碳酸根和硫酸根的这些阴离子有进一步的限制,这些阳离子和阴离子可以组合而形成固体,阻碍油和/或气的采收,特别是在300°F或更高的温度下。
对再循环的挑战使得来自the Department of Petroleum Engineering,Taxas A&M的报告指出:帕米亚盆地(帕米亚盆地)每天过量产生3亿9千万加仑的水,仅有1%被再利用,而其余的350,000,000加仑每天使用再注入井来进行处理。如果可以从这些水中回收有用的水产物和矿物,则将是非常有益的。
尽管存在上述挑战,来自废水纯化的产物,包括产自油井和气井自身的废水,在采油工业中具有广泛的应用。还已经发现,在产生油和天然气的更深地层处,通常有足够的来自产生的水、油、和/或天然气的可利用的热,与将废水当作废物处理相比,可以本质上改进再循环的效率和经济性。
此外,在具有油和气资源的很多偏远地区,通过使材料运输到钻井位置或者生产区域的能耗和时间消耗,以及与废水处理且不损害生态环境有关的成本最小化,给当地的再循环带来额外的价值。根据地理状况再循环的一个例子是使用位于中心的钻井区和钻井平台,其中即使在其他井正在钻探的时候,第一钻井可能正在产生废水。除了来自生产井的废水以外,还有来自对当地有盐味的水或海水纯化产生的废水,纯化是为了饮用及最终应用,除了有危险的废物,多数甚至全部这些含盐的废水都被循环利用而不是被丢弃进行废物处理。
参照附图10-14,用通常的术语描述,本发明的实施方案包括收集含有以重量计为0.15%或更多的Na、Ca、K、Mg、Fe、Cl、SO4、CO2的盐及其组合的初始被污染的水。对废水进行分离处理,其中流出液中盐的量不变,但将一价氯化物盐从多价氯化物盐中分离出来。优选地在检测有害物质之后,将废水分离以生成两种流出液。
当初始被污染的水具有相对低的钠含量时,将该水用于饮用用途是可能的。当被污染的水具有过高的钠含量或总盐含量时,这在产自于采油的废水中很常见,第一流出液通常具有如0.15%或高得多的含盐量,这对于用作饮用水而言是不可接受的。然而,已发现这种处在其初始液体状态,或进一步被浓缩至甚至基本上是固体盐状态的第一流出液,可以用于石油工业中的各种应用。
产自油井和气井中的水通常具有高含量的钠、钙和镁的氯化物盐和较少量的钾盐和硫酸盐。氯化物盐在油井和气井的钻探中具有广泛的用途,而碳酸根和硫酸根阴离子可以与钙和/或镁形成难以处理的沉淀物。在测试并除去了危险物质及其他有害物质之后,选择一种或多种分离方法优选地将作为盐水或固体的钠和钾的氯化物从钙和镁的氯化物或其他多价盐中分离出来。
本发明人已经发现混合的钙和镁的氯化物适合用作钻井液中的增重剂。本发明人还发现在利用石灰通过沉淀去除镁之后,氯化钙在被用于加速水泥的硬化时是有效的。本发明人还已发现混合的钠和钾的氯化物适合用作钻井液中的增重剂。
此外,当有钻通含盐地层的可能性时,钠和/或钾的氯化物可以被用于饱和钻井液中的水,以避免从地层中溶解盐并且由此保持对孔直径的控制。
当需要盐饱和的水泥在套管穿过含有钠盐和钾盐的地层处粘合套管时,产自分离处理的混合的钠-钾溶液可以用于混合水泥中。在操作中,通过利用来自分离处理的钠-钾氯化物制备的盐饱和水泥来完成密封。计算将井套管与钻孔壁之间的环面完全填满所需的盐饱和水泥的体积,并且通常在没有砂子和沙砾的情况下,混合15-30%额外体积的水泥。然后,将全部水泥泵入井套管的顶部。在该点处,大量的盐饱和水泥已经穿过套管并且已在环面中从底部升上来。此后,将直径大于套管内直径的橡胶塞插到套管的顶部,并且将阀和配件安装于套管的顶部。在足够的压力下将水泵入橡胶塞的上部,以驱使橡胶塞靠近套管的底部。水泥继续从套管的底部流出并向上流至钻孔和套管间的环面。再次计算水的体积使得塞不被迫使从套管的底部出来,从而在套管中留下足够的水泥,从而在套管帽移开以及钻井或完井重新开始的时候阻挡地层压力。随着盐饱和水泥在环面中向上移动,其驱使“钻井泥浆”在其前方并在水平地面处的环面顶部被挤出。水泥自身的体积使其有足够的量在表面处跟随钻井泥浆流出,作为水泥流通完成的证据。水泥能够固化并将在套管中任何过量的水泥钻出。
产自分离废水的水的第一产物在石油工业中具有其它用途。例如,已发现富含钠和/或钾的流出液可用于注入油井地层以保持流体压力。将水注入油井地层以保持流体压力也被称为“水驱法”,并且被称为第二采收工艺。该长期的实践已经普遍使用在组成上具有微小改变的(如果存在的话)产自油井和气井的水。已发现产自油井和气井的水以及其他也用于“水驱法”的废水的作用可以在本质上被改进。为此,收集废水并进行测试以确定其是否基本上不含危险物质。然后,通过传统方法处理废水,将废水分离成含有钠盐和钾盐(如果存在的话)且基本上不含钙和镁的第一流出液。第二流出液含有非常少量的钠盐,但含有原始废水中基本上全部的钙和镁。当产自油井的水主要含有氯化物盐时,而使用其他来源且特别是来自脱盐作用的膜浓缩物的废水能够堵塞地层和减少石油采收,因为这些废水非常经常地含有足够的硫酸根离子,其与原始地层水中的钙结合形成浆状沉淀。在基本上去除所有钙和镁之后,现在的“分离的水”比原始的“硬”废水具有改进的润湿力。
当具有少量硫酸根离子的第一流出液用于“水驱法”时,其也可以同时有效地去除地层中的钙和镁。这已被发现对于油的三次采收有很大帮助,通常被称为“强化的采油”。通常有成本效益的水驱法结束之后,残留在适当位置的油量占地层原油量的45%到65%,从地层中采收更多的油是理想的。
一种类型的三次采收使用“化学驱油”,其中注入含有一种或多种表面活性剂的流体以去除地层的孔和表面的油,通常形成乳液。注入流体的氯化钠含量通常保持在0.9%以上,用以仅用氯化钠就实现最低表面张力。可选择性地,富含氯化钠的盐水的作用是作为为强化采油而添加的化学物的基础,化学物如表面活性剂和/或聚合物。在又一个优选的实施方案中,在注入油井地层中之前,通过电解来处理大约0.01%-25%的氯化钠,将部分氯化钠转化为次氯酸钠。次氯酸钠具有更大的润湿力,用以被引入并穿过多孔含油地层。更大的润湿力减少了泵入地层所需的能量,从而需要较少的能量。此外,次氯酸钠本身是一种表面活性剂,且降低了用于经济地提高采油所需的更高成本的表面活性剂的量。
以上描述了产自废水分离处理的第一流出液在石油工业中的各种用途。然而,也已发现具有低钠盐和钾盐含量以及高钙和镁含量的来自分离处理的废水,包括产自油井和气井的水也可以用于石油工业。通常,主要含有氯化钙和氯化镁的第二流出液的盐含量以重量计为1%或更高。另外,该含盐的盐水可以通过蒸发来进一步浓缩。
参照图1-5,第二产物可以为液体,或如果受到充分的蒸发,则基本上为固体盐产物,并且与没经处理的被污染的水相比具有高钙和镁含量。然而,该含有钙和/或镁的第二产物对于作为增重剂而加到钻井泥浆中是非常有用的。当镁的含量高于需要时,镁可以作为氧化镁被沉淀,优选地通过加入石灰,形成比氯化镁分子量大的额外的氯化钙。收集氯化镁并用于处理废水以将其澄清,并且降低重金属的含量(如果存在的话)。
现今,油田的操作产生的基本不需要的废水通常含有以重量计为0.15%或更多的Na、Ca、K、Mg、Fe、Cl、SO4、CO2的盐或其组合物。以前,不得不以高成本来处理这种废水。这种高成本将通过提高油价的方式来使消费者承担。现在,可以对废水进行“原位”水分离,用于原钻井油田中。通常,油田废水的盐含量远远大于0.15%,这形成了水分离的流出液以及以前不能使用的再生盐水。确实,根据预期,从油田工地收集的废水的水分离通常将产生含有以重量计为大于0.15%的盐,并且含有更高含量的钠和钾的第一流出液,以及通常含有以重量计为大于3.0%的盐和具有高钙和镁含量的第二再生盐溶液。然而,上述的这些产物仍然具有作为石油工业中的增重剂、水泥添加剂和溢流水的用处。
产自油井和气井的废水的用途已经被大概地描述了。然而,产自油井和气井的废水含有包括各种盐和金属的很多种废产物。该多样性的一个例子是产自美国大平原(Great Plains)地区的煤床甲烷井的水。如美国地质调查局(Geological Survey)所报道的,仅在福特联盟(Fort Union)煤床中,来自煤床甲烷井的碱水中溶解的总固体(TDS)量在270-2400mg./l之间变化。第二个例子为均来自产自北墨西哥地区三个分开的生产区之一的三个天然气井的水。气体生产率下降,将产自油井和气井的水重新注入生产地层以保持或提高将产物移至表面的地层压力是常见的。一个评价这些井的重新注入的报道指出:“...该研究主要关注的是在井孔中以及生产设备中形成固体(积垢)的潜力。”该研究需要根据地层温度进行化学分析和计算积垢指数以确定可行性。来自一个井中的水的温度被报道为275°F,并具有30,597mg/l的盐度和pH 8.9的碱度,以及1039mg/l碳酸氢根碱度,高的积垢因子。测量来自最高盐度井的水具有282°F,69,534mg/lTDS,pH7.6,66mg/l碳酸氢根碱度,以及较低的积垢因子,但仍然会积垢。
降低用于重新注入的水的积垢潜力的传统实践已经使用了石灰-苏打处理中的一种或两种,和/或加入许多专有的抗密封化学物中的一种。明显地,这些实践在北墨西哥地区被认为是不可行的。进行计算机模拟来发现混合废水是否会使得注入盐水具有可接受的结垢指数,但没有找到会避免不可接受的结垢的混合比率。尽管对再注入法的关注下降,同时对产生的水进行处理而用于再注入是不经济的,但是钻探和操作其他井时使用的有价值的水,盐水与盐可以在这些产品缺乏的地区加以回收利用。
废水成分的这些变化需要使用各种纯化水的方法以及可以根据针对于地方条件的图1-5所示的流程图来进行选择和实施。优选地,通过对油、悬浮固体、金属以及更常见的钠、钾、钙、镁和铁的氯化物、硫酸盐、碳酸盐和碳酸氢盐进行化学和/或机械分离而进行测试,用于选择水纯化处理以及它们的使用顺序,从而确定流程图中的最佳点用来将污染物去除至用于预期用途的安全水平。
例如,图1说明了处理和使用产自油田的废水的一种优选方法,其说明了用于分析当地废水的条件以选择本发明的最佳实施方式的本发明的方法的一般例子。处理的第一步可以包括测试废水中的油、危险物质和盐含量。根据这样的分析结果,可以如图1中所示的路径之一去除污染物。然而,在第一阶段的分离中,主要是从多价阳离子盐,主要是钙和镁中分离单价阳离子盐,主要是钠和钾。因此,钙和镁的氯化物被浓缩于小体积溶液中。这使得通过加入高pH的氢氧化物形成沉淀来去除金属,高pH的氢氧化物优选为石灰,其为氧化钙或氢氧化钙,和/或氢氧化钠或氢氧化钾。
熟知沉淀的氢氧化镁絮状物有助于共沉淀的金属氢氧化物和其它颗粒的沉淀。优选使用石灰,因为其成本低于氢氧化钠或氢氧化钾,并且使用石灰产生的氯化钙的重量大于氯化镁的重量减少。
已经注意到可以进行大范围的分析和制造多种的再循环产物,图1显示了一般的流程图。通常这些处理比蒸发至大约15,000mg/l TDS在成本上更具有竞争力,但是当地的条件也是决定因素。
图2说明了本发明的优选实施的另一个实施方案,其中废水含有的成分不同于图1中处理的那些。在图2中,来自帕米亚盆地(Permian Basin)的盐水被用作例子。在太阳池中蒸发后,单价钠和钾的氯化物结晶并且将它们的含量优选地降低至大约1%或更少,这里描述为第一流出液的回收的氯化钠总计大约62,500吨/年。这里描述为第二流出液的剩余的盐水含有浓度为37-39%的5,160钙-镁氯化物加上大约500吨的氯化钠。该浓度接近最高实际工作浓度,由于钙和镁的氯化物溶解度受温度的影响,其中甚至低于60°F的温度的微小下降造成水合物的形成,并沉淀在泵、管、阀和容器中。在运输需要减轻重量的情况下,可以进行另外的蒸发以去除基本上全部的氯化钠以及生成含有高达80%氯化钙的氯化钙水合物。
结晶的氯化钠适用于普通天然蒸馏盐的所有用途,包括钻井液的增重,制备用于钻透含盐地层的盐饱和盐水,以及制备用于安全地密封穿透含盐地层的套管的盐饱和水泥。当该盐被纯化时,优选地根据本发明人的第5,300,123号美国专利,钙和镁含量低的经纯化的盐特别适用于转化成含有优选浓度的次氯酸钠,即大于0.1%且高达12-15%的次氯酸钠,以降低注入流体的表面张力,使得流体进入对于较高表面张力的液体的穿透而言太小的地层通道,并且由地层表面释放额外的油,以及降低泵送所需的能量。钙和镁含量低的这种盐在具有高达10,000ppm至低至10ppm硬度的钠分离水中有特别用途,并且适合用于在将表面活性剂和/或聚合物用于需要氯化钠的强化采油中之前,预冲洗地层中的钙和镁。
图3为说明产自例如在北墨西哥发现的那些天然气井的水的处理和使用的流程图。报道的气产量为1.66MM立方英尺/天,生产的水为2646bbl/天(111,00加仑/天)。来自三个井的气体以及生成水流出井口时的温度被记录为275°F、282°F和282°F,这对在进入管道前降低气体的温度和浓缩水都是有益的。在天然气以及在井口或管线前生成的水中的潜热是足够的,当生成水已被收集以维持工作储备时,从这点上说,通过生成的气和水中的潜热蒸发生成水足以蒸发大量的纯化水,用于收集作为适用于饮用或在缺水区域用于灌溉的冷凝水。该蒸发利用废热同时增加了日晒蒸发前的盐水中盐的浓度。在蒸发槽中冷却的盐水还可以被用于冷却气-水混合物。回收的氯化钠和氯化钙盐水将代替以巨大能量消耗从远距离输入的产品,并且需要处理的废物体积大大减小。
图3说明了与图11所示基本相似的方法。然而,图3所示的方法提供了有关使用蒸发从单价阳离子盐中分离多价阳离子盐的较大特异性。该方法开发了在冷却井口流体中的废弃盐水的同步且有益的用途,而同时使用来自井口液体的热用于槽或其他蒸发器中的蒸发。
图4说明了为使用井口流体废热而使用本发明的水处理中的热交换器的另一个实例。同时地,利用相继热交换对冷却的井口流体进行脱水(去除液体水)以再生吸收材料。优选使用氯化钙吸收水。对于275°F到282°F之间的温度,可以将乙二醇用作吸收剂。在图4中,热交换器在油井或气井的井口温度更高的情况下,如220°F以上是特别有用,其可以用于蒸发废水以浓缩氯化钙。然后部分冷却的井口流体穿过图4所示的第二热交换器(蒸发器)以进行第二阶段的冷却,伴随蒸发的相应增加。图4还说明了用于天然气或其它石油产品脱水的氯化钙水合物或无水盐的生产。虽然没有显示在图4中,可以将来自第一蒸发器的水蒸气冷凝用于进一步的使用。
图5说明来自通过离子交换去离子化的流出液的处理和使用。电子和医药领域生产商使用去离子化已经是熟知的并且迅速增多。通常,利用昂贵的盐酸和氢氧化钠来进行再生。仅仅消耗了一部分这些材料,而剩余的造成了处理上的问题。因此,通常的操作是,将这两种材料混合以相互中和。根据需要,加入额外的酸或氢氧化钠以调节废盐溶液的pH,以使其对于排放到下水道或盐水管线是可接受的。这形成了通常含有与原始的盐酸和氢氧化钠的一半一样多的盐酸和氢氧化钠废材料。同时,大量的盐酸被用于从油井设备上除去积垢以及用于生产地层,并且特别是当油井或气井已被关停一段时间。许多油井和气井在后来的生产阶段具有大量的生成水,其具有高水/油或水/气比率的形式。经常处理生成水的成本使得生产无利可图,并且能源价格低的时期造成许多井要被关停。
参照图5中的产物B,对地层中的水的最通常的分析对于沉积为“积垢”的钙和/或镁化合物的沉淀是有利的。当积垢沉积继续时,随着时间的推移,地层、管道和泵设备丧失承载油和水的能力。关停井的重开启常需要除去积垢,而最常用的材料为溶解积垢的盐酸溶液。但是许多地层含有会膨胀并阻塞地层的粘土,除非将酸与防止粘土膨胀的材料混合,如磷酸或过量的钠盐。来自用于通过去离子化去除阳离子的强酸型阳离子树脂的再生盐水就是这样一种溶液且通常仅需要在使用前用水稀释。
参照图5中的产物C,用于在去离子化期间除去阴离子的强碱型树脂的再生盐水最通常为氢氧化钠,虽然其可以是如本发明人在于2006年7月28日提交的第11/495,979号未决的美国专利系列申请所述的氢氧化钾或甚至是氢氧化铝,该申请在此引入作为参考。在失去作用的再生盐水中,残余的氢氧化物当用作增重剂加到水驱法时,能更好地穿过地层,和/或当以通过乳化从地层表面提出原油的强度使用时,是非常有效的。软化水的适用性是非常重要的,因为在加利福尼亚州最单一的盐的用途是用于软化水,用于蒸汽辅助的重油生产。这样的“蒸汽辅助”用在高于145,000,000桶/年的生产中,几乎是加利福尼亚州岸上油产量的一半。使用用于强化采油的表面活性剂和乳液也需要使用软化水以使表面活性剂的使用最小化。油价的增长使得蒸汽辅助的方法更经济,并且废盐的回收进一步降低了增加的回收的成本。
已经如此详细地公开了本发明,使得本领域技术人员能够理解并实施它,并且已经确定了其现今优选的实施方案,本发明人的权利要求如下。

Claims (4)

1.油井或气井的钻探和生产中的改进,其包括以下步骤的组合:
收集含有以重量计为0.15%或更多的Na、Ca、Mg、K、Cl、SO4或CO3的盐或其组合的被污染的水,
对所述被污染的水进行分离处理以生成基本上是固体的或液体的第一分离产物和基本上是固体的或液体的第二分离产物,以及
将所述产物之一用于油井或气井的钻探和生产。
2.油井或气井的钻探中的改进,其包括以下步骤的组合:
收集含有以重量计为0.15%或更多的Na、Ca、Mg、K、Cl、SO4或CO3的盐或其组合的被污染的水,
对所述被污染的水进行分离处理以生成基本上是固体的或液体的第一分离产物和基本上是固体的或液体的第二分离产物,以及
将所述产物之一作为增重剂加到钻井液中。
3.油或气井的钻探中的改进,其包括以下步骤的组合:
(a)收集含有以重量计为0.15%或更多的Na、Ca、Mg、K、Cl、SO4或CO3的盐或其组合的被污染的水;
(b)对所述被污染的水进行分离处理,以生成与收集的水相比氯化钠增加和氯化镁和氯化钙减少或其组合的基本上是固体的或液体的第一分离产物
以及
与收集的水相比氯化钠减少和氯化镁和氯化钙增加或其组合的基本上是固体的或液体的第二分离产物,
(c)将所述的第一分离产物用于混合盐饱和的水泥;以及
(d)将所述水泥用于钻孔的套管。
4.油井或气井的生产中的改进,其包括以下步骤的组合:
(a)收集含有以重量计为0.15%或更多的Na、Ca、Mg、K、Cl、SO4或CO3的盐或其组合的被污染的水;
(b)对所述被污染的水进行分离处理以生成基本上是固体的或液体的第一分离产物,所述的第一分离产物与收集的水相比氯化钠增加和氯化镁和氯化钙减少或其组合
以及
(c)将所述第一废产物注入到油井或气井的地层中以改进生产。
CNA2007800516649A 2006-12-21 2007-12-17 利用来自水纯化处理的废水生产油和气的方法 Pending CN101610982A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/643,477 US7717173B2 (en) 1998-07-06 2006-12-21 Methods of improving oil or gas production with recycled, increased sodium water
US11/643,477 2006-12-21

Publications (1)

Publication Number Publication Date
CN101610982A true CN101610982A (zh) 2009-12-23

Family

ID=39562829

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800516649A Pending CN101610982A (zh) 2006-12-21 2007-12-17 利用来自水纯化处理的废水生产油和气的方法

Country Status (4)

Country Link
US (3) US7717173B2 (zh)
CN (1) CN101610982A (zh)
CA (1) CA2681907A1 (zh)
WO (1) WO2008079217A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647393A (zh) * 2020-06-29 2020-09-11 内蒙古恒盛环保科技工程有限公司 一种低成本环保盐水钻井液

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7717173B2 (en) * 1998-07-06 2010-05-18 Ecycling, LLC Methods of improving oil or gas production with recycled, increased sodium water
US8192633B2 (en) * 1998-07-06 2012-06-05 Grott Gerald J Methods of energy storage and transfer
US7987613B2 (en) * 2004-10-12 2011-08-02 Great River Energy Control system for particulate material drying apparatus and process
US7950452B2 (en) * 2005-11-02 2011-05-31 S & N Pump Company Anti-fouling system for offshore drilling structures
US20080210291A1 (en) * 2007-03-02 2008-09-04 Grimm Charles M Solar collector and photovoltaic converter
US10005678B2 (en) 2007-03-13 2018-06-26 Heartland Technology Partners Llc Method of cleaning a compact wastewater concentrator
US8679291B2 (en) 2007-03-13 2014-03-25 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US8790496B2 (en) 2007-03-13 2014-07-29 Heartland Technology Partners Llc Compact wastewater concentrator and pollutant scrubber
CA2715186C (en) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
EP2276559A4 (en) 2008-03-28 2017-10-18 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
AU2009201397A1 (en) * 2008-04-10 2009-10-29 Gainfoot Pty Limited Formation water disposal system
US20100051556A1 (en) * 2008-08-29 2010-03-04 Grott Gerald J Methods of purifiying water using waste brines to regenerate ion-exchange resins
CN102131888A (zh) * 2008-08-29 2011-07-20 Pt绿科印度尼西亚公司 用于提高完井液密度且作为高温且易于使用的石油和天然气工业用完井液的专门配制的磷酸盐组合物
AU2009303735B2 (en) 2008-10-14 2014-06-26 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
US20100147767A1 (en) * 2008-12-15 2010-06-17 Grott Gerald J Method for purifying waste saline waters without reagent waste
RU2530045C2 (ru) 2009-02-12 2014-10-10 Хартлэнд Текнолоджи Партнерс Ллк Компактный концентратор сточных вод, работающий на отбросном тепле
CN102574022B (zh) * 2009-06-25 2015-06-10 弗拉克普尔控股有限责任公司 从压裂水/废水制备纯盐的方法
US8486271B2 (en) * 2009-06-26 2013-07-16 James Hardie Technology Limited Environmentally-friendly cementitious articles, formulations, methods of making and uses
AU2010318595C1 (en) 2009-11-12 2016-10-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
AU2011219469A1 (en) * 2010-02-24 2012-10-18 Ockert Tobias Van Niekerk Water desalination and treatment system and method
CN102947227A (zh) 2010-06-21 2013-02-27 太平洋水泥株式会社 钙的除去方法
WO2012003077A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
WO2012003080A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Low emission power generation systems and methods
CA2801492C (en) 2010-07-02 2017-09-26 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
CN102959203B (zh) 2010-07-02 2018-10-09 埃克森美孚上游研究公司 通过排气再循环的浓缩空气的化学计量燃烧
CA2813982C (en) * 2010-10-08 2014-02-11 Veolia Water Solutions & Technologies North America, Inc. Process for solidifying organic and inorganic constituents contained in produced water from heavy oil operations
US8999172B1 (en) 2010-12-16 2015-04-07 Global Water Advisors, Inc. Selective removal of dissolved substances from aqueous solutions
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
US20120326948A1 (en) * 2011-06-22 2012-12-27 Microsoft Corporation Environmental-light filter for see-through head-mounted display device
US9580343B2 (en) 2011-08-31 2017-02-28 Prochemtech International, Inc. Treatment of gas well production wastewaters
US8877690B2 (en) * 2011-08-31 2014-11-04 Prochemtech International, Inc. Treatment of gas well production wastewaters
MY185053A (en) * 2011-09-29 2021-04-30 Evoqua Water Tech Pte Ltd Electrochemical desalination for oil recovery
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
CN102585793B (zh) * 2011-12-31 2014-01-22 中国海洋大学 一种基于膜软化技术制备驱油聚合物溶液的方法
US9284830B2 (en) * 2012-03-22 2016-03-15 E I Du Pont De Nemours And Company Method for recovering hydrocarbon fluids using a hydraulic fracturing process
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US20130332130A1 (en) * 2012-06-09 2013-12-12 Halliburton Energy Services, Inc. Method for Analyzing Water and Preparing Oilfield Fluids Therefrom
CA2820629C (en) 2012-06-21 2019-05-14 Eureka Resources Llc Method and system for treating wastewater
US8926792B1 (en) * 2012-10-31 2015-01-06 Kelly K. Houston System and method for disposing of leachate and wastewater
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
TWI510436B (zh) * 2012-12-18 2015-12-01 Invista Tech Sarl 以經處理之天然氣作爲含甲烷原料之來源的氰化氫製造方法
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
EP2964735A1 (en) 2013-03-08 2016-01-13 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
RU2551560C2 (ru) * 2013-06-24 2015-05-27 Станислав Сергеевич Заболоцкий Дорожно-строительный композиционный материал
RU2551564C2 (ru) * 2013-06-24 2015-05-27 Станислав Сергеевич Заболоцкий Способ переработки буровых отходов на территории кустовой площадки
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US9890057B2 (en) 2013-10-24 2018-02-13 Kelly K. Houston System and method for on site aerial dissemination and atmospheric disposal of all leachates and wastewaters
WO2015069622A1 (en) * 2013-11-05 2015-05-14 Heartland Technology Partners Llc Method and device for concentrating dissolved solids in flowback and produced water from natural gas wells
CN103523839B (zh) * 2013-11-13 2014-11-19 任步海 高效空化处理油、气井开采污水的装置及方法
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US10202286B2 (en) * 2015-06-22 2019-02-12 Eureka Resources, Llc Method and system for treating wastewater
MX2018003486A (es) * 2015-10-02 2018-09-06 Halliburton Energy Services Inc Uso de silicatos de metales alcalinos durante la formulacion de fluidos de perforacion.
US20170342328A1 (en) * 2016-05-26 2017-11-30 Google Inc. Chemical extraction from an aqueous solution
US10919781B1 (en) * 2019-10-11 2021-02-16 Halliburton Energy Services, Inc. Coated porous substrates for fracking water treatment
US20220220362A1 (en) * 2021-01-11 2022-07-14 Nissan Chemical Corporation Chemical fluid containing an antioxidant for underground treatment of oil and gas reservoirs
CN113426495A (zh) * 2021-06-11 2021-09-24 河海大学 一种利用离子交换混合床增强脱盐电池性能的装置及方法
US12066012B2 (en) 2022-08-31 2024-08-20 Conocophillips Company Heat harvesting of end-of-life wells
WO2024159165A1 (en) * 2023-01-27 2024-08-02 University Of Wyoming Preparation of magnesium oxide and carbon dioxide capture using magnesium: oxide

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1899310A (en) * 1930-05-26 1933-02-28 Burnham Chemical Company Process of obtaining a double salt from a single salt
US1947248A (en) * 1930-06-19 1934-02-13 Standard Oil Co Method of regenerating and washing a zeolite bed
US2375019A (en) * 1940-10-18 1945-05-01 Hercules Powder Co Ltd Stabilization of soils
US2387898A (en) * 1942-02-02 1945-10-30 Dow Chemical Co Magnesium salts from sea water
US2552775A (en) * 1948-03-20 1951-05-15 Union Oil Co Drilling fluid
US2624654A (en) * 1949-06-03 1953-01-06 Diamond Alkali Co Method of making purified brine
US2687358A (en) * 1949-12-23 1954-08-24 Ici Ltd Stabilized soil and a process of stabilizing it
US2671714A (en) * 1952-04-10 1954-03-09 Dow Chemical Co Continuous method for concentrating ions in solutions
US2897051A (en) * 1955-05-02 1959-07-28 Dow Chemical Co Treatment of solutions comprising similarly charged monovalent and polyvalent ions to concentrate the polyvalent ions
US2919898A (en) * 1957-08-16 1960-01-05 Phillips Petroleum Co Treatment of well drilling mud
US2927010A (en) * 1957-12-30 1960-03-01 Int Minerals & Chem Corp Process for the beneficiation of sylvite ores
US2968572A (en) * 1958-07-21 1961-01-17 Diamond Alkali Co Chemical composition and process for soil stabilization
US3022824A (en) * 1958-09-08 1962-02-27 Jersey Prod Res Co Method and composition for cementing wells
US3077054A (en) * 1959-06-22 1963-02-12 Scholten Chemische Fab Erosion control
US3071481A (en) * 1959-11-27 1963-01-01 Gulf Oil Corp Cement composition
US3174623A (en) * 1961-04-06 1965-03-23 Charles H Sloan Water softener
US3224867A (en) * 1962-06-29 1965-12-21 American Maize Prod Co Method of treating and conditioning soil with a heat reaction product of starch granules and an alkali metal phosphate
US3329595A (en) * 1963-02-27 1967-07-04 Diamond Alkali Co Electrolysis of concentrated sea water
US3331207A (en) * 1963-12-26 1967-07-18 William A Mcgrew Method and system for collecting and distributing water
US3427795A (en) * 1966-10-03 1969-02-18 Lloyd Gilbert Machine for picking asparagus
US3528914A (en) * 1966-12-14 1970-09-15 Shell Oil Co Drilling fluid and method for increasing drilling rate
US3490241A (en) * 1967-04-20 1970-01-20 Edward D Graf Stabilization of soil by diffusion of cations
US3456368A (en) * 1967-05-05 1969-07-22 Lucien Gerard Jacques Snow removing and melting machine
US3467190A (en) * 1967-10-09 1969-09-16 Mobil Oil Corp Adjusting salinity to achieve low interfacial tension between aqueous and hydrocarbon phases
US3578432A (en) * 1968-03-22 1971-05-11 Vernon E Stiles Method of irrigation
US3627479A (en) * 1968-10-10 1971-12-14 Atomic Energy Commission Chemical-electro-chemical cycle for desalination of water
US3754953A (en) * 1970-06-01 1973-08-28 Dow Chemical Co Aqueous hydraulic cement composition having improved r etardation to set and use thereof in high temperature environments
US3617554A (en) * 1970-06-02 1971-11-02 Gulf Degremont Inc Desalting and purifying water by continuous ion exchange
US3928654A (en) * 1972-12-13 1975-12-23 Anthony J Bonnanzio Method and formulation for preventing snow and ice accumulation
US3826311A (en) * 1973-06-13 1974-07-30 Calgon Corp Producing well treatment
US4160738A (en) * 1977-05-16 1979-07-10 Guter Gerald A Water purification device and system
US4161446A (en) * 1977-11-23 1979-07-17 Coillet Dudley W Process for the treatment of ground water
US4159944A (en) * 1978-02-13 1979-07-03 Erickson Lennart G Wastewater energy recycling method
US4179347A (en) * 1978-02-28 1979-12-18 Omnipure, Inc. System for electrocatalytic treatment of waste water streams
US4248601A (en) * 1979-07-12 1981-02-03 Kerr-Mcgee Chemical Corporation Process for reducing the sodium chloride content of a potassium salt
US4230244A (en) * 1979-08-30 1980-10-28 Baxter Travenol Laboratories, Inc. Fluid-flow limiting apparatus for use with intravenous-solution administering equipment
US4267038A (en) * 1979-11-20 1981-05-12 Thompson Worthington J Controlled natural purification system for advanced wastewater treatment and protein conversion and recovery
US4455169A (en) * 1980-07-14 1984-06-19 Halliburton Company Salt water cement slurries and water loss reducing additives therefor
US4366063A (en) * 1981-06-17 1982-12-28 Romec Environmental Research & Development, Inc. Process and apparatus for recovering usable water and other materials from oil field mud/waste pits
US4525202A (en) * 1981-08-24 1985-06-25 Stauffer Chemical Co. Phosphonium salts of N-phosphonomethylglycine and their use as herbicides and plant growth regulants
IT1157938B (it) * 1982-05-11 1987-02-18 Italkali Procedimento per la produzione di cloruro di sodio ad elevato grado di purezza partendo da sterili di flottazione di minerali potassici
US4422940A (en) * 1982-05-17 1983-12-27 Bofors Nobel, Incorporated Method of neutralizing and detoxifying wastes containing organic compounds
US4592931A (en) * 1983-07-28 1986-06-03 Exxon Research & Engineering Co. Method for soil stabilization and fugitive dust control
US5712224A (en) * 1983-11-02 1998-01-27 Sotac Corporation Pesticide comprising soil desalinating agents
US4523998A (en) * 1983-12-05 1985-06-18 General Electric Company Continuous ion exchange process using thermally regenerable liquid ion exchangers
CA1271275A (en) * 1985-05-17 1990-07-03 James Thomas Mcnulty Sodium-selective cation exchange resins for ammonia- cycle condensate polishing
US4996065A (en) * 1986-01-16 1991-02-26 Martin Marietta Magnesia Specialties Inc. Molasses-free chemically reactive binder for animal feed
US4828726A (en) * 1987-09-11 1989-05-09 Halliburton Company Stabilizing clayey formations
WO1989003364A1 (en) * 1987-10-07 1989-04-20 Grott Gerald J Method of reforming soluble salts to effect purification and increase crystal size thereof
US5082813B1 (en) * 1989-01-06 1998-06-02 Petr Taborsky Aluminiosilicates with modified cation affinity
US5039439A (en) * 1989-03-17 1991-08-13 Massachusetts Institute Of Technology Optically indicating surface de-icing fluids
NL8902484A (nl) * 1989-10-06 1991-05-01 Avebe Coop Verkoop Prod Werkwijze voor het stabiliseren van de bodem en het tegengaan van erosie.
JPH04114988A (ja) 1990-09-03 1992-04-15 Hamada Seisakusho:Kk 紋羽病の防除に施用する有機質資材
US5121708A (en) * 1991-02-14 1992-06-16 Nuttle David A Hydroculture crop production system
US5147532A (en) * 1991-02-21 1992-09-15 Leek Jr Kenneth F Domestic grey water purifier using diverter and UV filter treater with preheater
IL97543A (en) * 1991-03-14 1994-11-11 Yeda Res & Dev Electrodialysis reversal process and apparatus with bipolar membranes for hard-water softening
US5337516A (en) * 1991-05-08 1994-08-16 Hondulas John L Treatment of polluted water using wetland plants in a floating habitat
US5192426A (en) * 1991-05-16 1993-03-09 Decoster Marc Water reclamation system for landscape irrigation
DE4121608A1 (de) * 1991-06-29 1993-01-07 Cts Consulting Gmbh Verfahren und einrichtung zum enteisen von fahrbahnen
US5491157A (en) * 1993-05-10 1996-02-13 Eastman Kodak Company Method and composition for the prevention, control and amelioration of soilborne fungi and disease caused thereby
DE4414520C1 (de) * 1994-04-26 1995-09-28 Bts Beratung Und Technik Fuer Verfahren und Einrichtung zum Enteisen von Fahrbahnen unter Wiederverwendung rückgewonnener Auftaulösungen
US5589603A (en) * 1994-08-22 1996-12-31 Newpark Resources, Inc. Method and apparatus for the injection disposal of solid and liquid waste materials from the drilling and production of oil and gas wells
US5587083A (en) * 1995-04-17 1996-12-24 Chemetics International Company Ltd. Nanofiltration of concentrated aqueous salt solutions
US5670038A (en) * 1995-09-06 1997-09-23 Mckinney; Jerry L. Liquid filter system
US5972689A (en) * 1996-02-05 1999-10-26 The United States Of America As Represented By The Secretary Of Agriculture Methods and compositions for the simultaneous control of the root diseases caused by gaeumannomyces graminis, rhizoctonia, and pythium
TW404847B (en) 1996-08-12 2000-09-11 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
DE19648860C1 (de) 1996-11-26 1998-02-05 Jan Kai Dobelmann Verfahren zur Reinigung von Abwasser
HU225517B1 (en) * 1997-06-04 2007-01-29 Ulrich Braun Method and device for sewage treatment
US6063737A (en) * 1997-06-12 2000-05-16 Shell Oil Company Aqueous displacement fluid compositions for use in wellbores
US6409788B1 (en) * 1998-01-23 2002-06-25 Crystal Peak Farms Methods for producing fertilizers and feed supplements from agricultural and industrial wastes
US6156226A (en) * 1998-06-10 2000-12-05 Thermo Fibergen, Inc. Liquid and solid de-icing and anti-icing compositions and methods for making same
JP3767841B2 (ja) * 1998-07-01 2006-04-19 財団法人国際超電導産業技術研究センター 臨界電流密度の高い酸化物超電導体
DE19829673C2 (de) * 1998-07-03 2003-02-27 Michael Knobloch Verfahren und Anlage zur Behandlung von Abwasser aus der Ölfrüchte- und Getreideverarbeitung
US7514003B2 (en) * 1998-07-06 2009-04-07 Grott Gerald J Methods for producing useful water products with reduced sodium content
US7947185B2 (en) * 1998-07-06 2011-05-24 Grott Gerald J Water sanitation methods
US6071411A (en) * 1998-07-06 2000-06-06 Grott; Gerald J. Method of treating soil for controlling dust and for effecting soil stabilization through the application of waste water
US7622044B2 (en) * 1998-07-06 2009-11-24 Ecycling, LLC Methods of sealing ponds and increasing water catchment with purified waste water
US7866916B2 (en) * 1998-07-06 2011-01-11 Ecycling, LLC Methods for deicing roads
US6374539B1 (en) * 1998-07-06 2002-04-23 Gerald J. Grott Methods of utilizing waste waters produced by water purification processing
US6651383B2 (en) * 1998-07-06 2003-11-25 Gerald J. Grott Methods of utilizing waste waters produced by water purification processing
US7717173B2 (en) * 1998-07-06 2010-05-18 Ecycling, LLC Methods of improving oil or gas production with recycled, increased sodium water
US6666971B2 (en) * 1999-04-02 2003-12-23 Petreco International Inc. Method for utilizing regenerated waste from water softeners used for steam flood operations
IL131848A0 (en) * 1999-09-09 2001-03-19 Argad Eyal Ltd Water treatment method and apparatus
US6308457B1 (en) * 1999-10-12 2001-10-30 C. Neal Howell Solution and method of treatment for golden pine syndrome
US6706195B2 (en) * 2000-10-25 2004-03-16 Peter L. Jensen High efficiency ion exchange system for removing arsenic from water
US6521132B2 (en) * 2001-02-15 2003-02-18 Gilles Hughes Ion exchange water softener and method
US6923901B2 (en) * 2001-03-26 2005-08-02 Marine Environmental Partners, Inc. Non-chemical water treatment method and apparatus employing ionized air purification technologies for marine application
US8062532B2 (en) * 2003-11-11 2011-11-22 Grott Gerald J Process for electrolytic production of chlorine products and byproducts
GB0416310D0 (en) * 2004-07-21 2004-08-25 Bp Exploration Operating Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647393A (zh) * 2020-06-29 2020-09-11 内蒙古恒盛环保科技工程有限公司 一种低成本环保盐水钻井液

Also Published As

Publication number Publication date
US20070102154A1 (en) 2007-05-10
CA2681907A1 (en) 2008-07-03
US20090065201A1 (en) 2009-03-12
US8091653B2 (en) 2012-01-10
US7717173B2 (en) 2010-05-18
WO2008079217A1 (en) 2008-07-03
US20090065259A1 (en) 2009-03-12
US7823641B2 (en) 2010-11-02

Similar Documents

Publication Publication Date Title
CN101610982A (zh) 利用来自水纯化处理的废水生产油和气的方法
Arthur et al. Technical summary of oil & gas produced water treatment technologies
Millar et al. Strategies for the management and treatment of coal seam gas associated water
CN1902437B (zh) 石油回收用蒸汽溢流工艺中用于井下注入蒸汽的制备方法
CA2751598C (en) Water softener regeneration
CA2663820C (en) Process for separating a liquid component from a liquid mixture
AU2006227707B2 (en) Methods for producing useful water products with reduced sodium content
Brady et al. Inland desalination: challenges and research needs
Onishi et al. Desalination of shale gas wastewater: Thermal and membrane applications for zero-liquid discharge
Heins et al. Achieving zero liquid discharge in SAGD heavy oil recovery
Elsaid et al. Inland desalination: Potentials and challenges
Gamwo et al. Produced Water Treatment Technologies: An Overview
Bujakowski et al. Geothermal water desalination–preliminary studies
Abdullayeva WAYS OF RATIONAL USE OF WATER RESOURCES IN THE OIL INDUSTRY
Ge et al. Characteristics and utilizations of high salt water that comes from CBM development in western mining
Hoek et al. Produced Water Treatment by Production Type
Ahmed et al. Brine disposal from inland desalination plants: current status, problems, and opportunities
Brady et al. Future expectations
Gamwo et al. 1 Produced Water
Odud EXPANDED POLYSTYRENE IN WATER SOFTENING TECHNOLOGIES
Donaldson et al. Reuse and Subsurface Injection of Municipal Sewage Effluent: Two Case Histories
Sajtar Toolbox to evaluate treatment technologies for PRB CBM water
Mickley Overview of global inland desalination concentrate management: Solutions, challenges, and technologies
Zhang Treatment of Shale Oil and Gas Produced Water Using Membrane Distillation Combined with Effective Pretreatment
Arthur et al. TECHNI CAL SUMMARY OF OI L & GAS PRODUCED WATER TREATMENT TECHNOLOGI ES

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20091223