CN101594145A - 自偏置锁相环 - Google Patents

自偏置锁相环 Download PDF

Info

Publication number
CN101594145A
CN101594145A CNA2008100382104A CN200810038210A CN101594145A CN 101594145 A CN101594145 A CN 101594145A CN A2008100382104 A CNA2008100382104 A CN A2008100382104A CN 200810038210 A CN200810038210 A CN 200810038210A CN 101594145 A CN101594145 A CN 101594145A
Authority
CN
China
Prior art keywords
output
voltage
current
charge pump
controlled oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100382104A
Other languages
English (en)
Inventor
彭进忠
符志岗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CNA2008100382104A priority Critical patent/CN101594145A/zh
Priority to US12/464,687 priority patent/US7986191B2/en
Publication of CN101594145A publication Critical patent/CN101594145A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0893Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump the up-down pulses controlling at least two source current generators or at least two sink current generators connected to different points in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0895Details of the current generators
    • H03L7/0898Details of the current generators the source or sink current values being variable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator

Abstract

一种自偏置锁相环,包括第一电荷泵、第二电荷泵,所述第一电荷泵的输出端与充放电电容连接,输出控制电压,所述第一电荷泵输出的电流等于第一常数和压控振荡器的偏置电流的乘积与分频器的分频数的比值;所述第二电荷泵的输出端与偏置生成器的第一偏置电压输出端连接,所述第一偏置电压等于所述控制电压,所述第二电荷泵输出的电流等于压控振荡器的偏置电流与第二常数的比值;所述偏置生成器的输出电阻与压控振荡器的差分缓冲延时级的等效电阻成倍数关系。所述自偏置锁相环可以简化参数设定和电路设计。

Description

自偏置锁相环
技术领域
本发明涉及锁相环技术,特别是涉及一种自偏置锁相环。
背景技术
锁相环(PLL,Phase Locked Loop)被广泛应用于系统级芯片(SOC,Systemon Chip)中,以构成频率合成器、时钟发生器等。图1为一种锁相环的基本结构,鉴频鉴相器(PFD,Phase Frequency Detector)10检测输入信号Fref和反馈信号Ffb的频差和相差,产生脉冲控制信号UP、DN送入电荷泵(CP,chargepump)20;在电荷泵20中脉冲控制信号UP、DN被转换成电流Ip对环路滤波器(LP,Loop Filter)30的电容Cp进行充放电,环路滤波器30产生控制电压Vctrl送入压控振荡器(VCO,Voltage Control Oscillator)40;压控振荡器40在控制电压Vctrl升高时加快振荡频率,在控制电压Vctrl降低时减慢振荡频率。压控振荡器40的输出信号Fout经过分频器50产生反馈信号Ffb,整个系统形成一个反馈系统,输出信号Fout的频率和相位被锁定到固定频率和相位。
图1所示的锁相环的环路带宽ωn由公式(1)表示,环路的阻尼因子(damping factor)ξ由公式(2)表示:
ω n = K v I p NC p - - - ( 1 )
ξ = R p 2 I p K v C p N - - - ( 2 )
其中,Cp为环路滤波器30的电容,Rp为环路滤波器30的电阻,Ip为对电容Cp进行充电或放电的电流(即电荷泵20输出的充电或放电电流),Kv为压控振荡器40的增益,N为分频器(Divider)50的分频数。
高性能、低抖动的锁相环是不易受工艺、电压和温度(PVT)变化的影响,其环路带宽ωn与输入信号的角频率ωref(以下简称为输入频率,ωret=2πFref,Fref为输入信号的频率)的比值、环路的阻尼因子ξ应为固定值,这样,输入频率的范围就可以不受限制,锁相环的环路带宽能够跟踪锁相环的输入频率。图1所示的锁相环,在电荷泵20输出的电流Ip、环路滤波器30的电容Cp、压控振荡器40的增益Kv确定的情况下,改变环路滤波器30的电阻Rp、分频器50的分频数N,环路带宽ωn与输入频率ωref的比值、环路的阻尼因子ξ就不再是固定值,这样就限制了锁相环的设计。
自偏置锁相环(Self-Biased PLL)可以解决上述问题,即使环路滤波器的电阻、分频器的分频数变化,其环路带宽ωn与输入频率ωref的比值、环路的阻尼因子ξ能够保持固定值。文献“Low-Jitter Process-Independent DLL and PLLBased on Self-Biased Techniques”(John G.Maneatis,IEEE JOURNAL OFSOLID-STATE CIRCUITS,VOL.31,NO.11,NOVEMBER 1996)公开了一种自偏置锁相环的基本结构,如图2所示,电容C1和偏置生成器(Bias Gen.)60构成环路滤波器31,也就是说,由偏置生成器60建立环路滤波器31的电阻,在偏置生成器60的偏置电压VBP的输出端加上一个额外的电荷泵21输出的电流,这样,电荷泵20对电容C1进行充放电,电荷泵21对偏置生成器60建立的电阻进行充放电。
偏置生成器60用于从控制电压VCTRL生成偏置电压VBP和VBN,以提供压控振荡器41的输入电压。如图3所示,偏置生成器60包括偏置初始化(Bias Init.)电路601、放大器偏置(Amplifier Bias)电路602、差分放大(Diff.Amplifier)电路603、半缓冲复制(Half-Buffer Replica)电路604、控制电压缓冲(VCTRLBuffer)电路605。放大器偏置电路602为差分放大电路603提供偏置,差分放大电路603调节偏置电压VBN,使得半缓冲复制电路604和控制电压缓冲电路605将控制电压VCTRL复制到输出端的偏置电压VBP,即VBP=VCTRL
压控振荡器41由n个(n≥3)缓冲级构成,例如图4所示的3个带对称负载的差分缓冲延时级410构成的压控振荡器41。偏置电压VBN为对称负载411、412提供偏置电流2ID(ID为流过对称负载411或412的电流),对称负载411、412的偏置电压VBP等于控制电压VCTRL,对称负载411、412的等效电阻等于1/2gm,gm为对称负载中一个晶体管的跨导,随着控制电压VCTRL的变化,对称负载411、412的电阻发生变化,缓冲级的延时也发生变化,压控振荡器41的输出信号(CK+或CK-)的频率发生变化。
设电荷泵20、21输出的电流Ip为压控振荡器41的偏置电流2ID的x倍,即Ip=x·2ID,偏置生成器60中对称负载606建立的环路滤波器31的电阻Rp为压控振荡器41的缓冲级410的等效电阻Ro的y倍,即Rp=yRo=y/2gm,因此,图2所示的自偏置锁相环的环路带宽ωn与输入频率ωref的比值由公式(3)表示,环路的阻尼因子ξ由公式(4)表示:
ω n ω ref = xN 2 π C B C 1 - - - ( 3 )
ξ = y 4 x N C 1 C B - - - ( 4 )
其中,CB是压控振荡器41的寄生电容。因此,通过电路设计使参数x、y与分频数N满足一定的比例关系,消去分频数N,就可以使锁相环的阻尼因子ξ以及环路带宽与输入频率的比值ωnref仅由制造工艺中电容CB、C1的相对值决定。
在上述自偏置锁相环的基本结构的基础上,John G.Maneatis等人提出了一种自偏置锁相环的具体实现方式(参考文献“Self-Biased High-BandwidthLow-Jitter 1-to-4096 Multiplier Clock Generator PLL”,IEEE JOURNAL OFSOLID-STATE CIRCUITS,VOL.38,NO.11,NOVEMBER 2003),以得到公式(3)、(4)中的参数x和y。如图5所示,通过可编程1/N电流镜(Prog.1/NCurrentMirror)70,将电荷泵20、21输出的电流Ip设为压控振荡器41的偏置电流的1/N倍,即x=1/N;通过增加电容C2、平衡开关S等转换电路,将环路滤波器32的电阻Rp设为压控振荡器41的缓冲级的等效电阻1/2gm的N·CB/C2倍,即y=N·CB/C2,由此得到:
ω n ω ref = xN 2 π C B C 1 ′ = 1 N N 2 π C B C 1 ′ = 1 2 π C B C 1 ′ - - - ( 5 )
ξ = y 4 x N C 1 ′ C B = NC B C 2 4 1 N N C 1 ′ C B = 1 4 C 2 C B C 1 ′ - - - ( 6 )
其中,C1′=C1+C2,环路带宽ωn与输入频率ωref的比值、环路的阻尼因子ξ仅由制造工艺中电容CB、C1和C2决定,而与环路滤波器的电阻Rp、分频器的分频数N无关。
然而,图5所示的自偏置锁相环为了使参数x、y与分频数N满足一定的比例关系,以达到环路带宽ωn与输入频率ωref的比值、环路的阻尼因子ξ与环路滤波器的电阻Rp、分频器的分频数N无关的目的,又引入了一个新的参数,即电容C2,并且,为了平衡电容C1和C2上的电压,又增加了包含有电容C2、平衡开关S等电路元件的转换电路,这样也就增加了电路设计的复杂度。
发明内容
本发明解决的问题是,提供一种自偏置锁相环,以简化参数设定和电路设计。
为解决上述问题,本发明提供一种自偏置锁相环,包括第一电荷泵、第二电荷泵,所述第一电荷泵的输出端与充放电电容连接,输出控制电压,所述第一电荷泵输出的电流等于第一常数和压控振荡器的偏置电流的乘积与分频器的分频数的比值;所述第二电荷泵的输出端与偏置生成器的第一偏置电压输出端连接,所述第一偏置电压等于所述控制电压,所述第二电荷泵输出的电流等于压控振荡器的偏置电流与第二常数的比值;所述偏置生成器的输出电阻与压控振荡器的差分缓冲延时级的等效电阻成倍数关系。
可选的,所述第一电荷泵输出的电流由第一电流镜提供,所述第一电流镜的输入端连接偏置生成器的第二偏置电压输出端,所述第二偏置电压输出端为压控振荡器提供偏置电流,所述第一电流镜的输出端连接第一电荷泵,所述第一电流镜的输出电流为输入电流的K1/N倍,其中,K1是第一常数,N是分频器的分频数;所述第二电荷泵输出的电流由第二电流镜提供,所述第二电流镜的输入端连接偏置生成器的第二偏置电压输出端,所述第二电流镜的输出端连接第二电荷泵,所述第二电流镜的输出电流为输入电流的1/K2倍,其中,K2是第二常数。
可选的,所述第一常数等于1,所述第二常数等于4,所述偏置生成器的输出电阻等于压控振荡器的差分缓冲延时级的等效电阻。
可选的,所述第一常数等于1,所述第二常数等于40,所述偏置生成器的输出电阻为压控振荡器的差分缓冲延时级的等效电阻的10倍。
可选的,所述偏置生成器包括:放大器偏置电路、差分放大电路、半缓冲复制电路和控制电压缓冲电路,所述放大器偏置电路为差分放大电路提供偏置,所述差分放大电路根据电源电压和控制电压调节第二偏置电压,所述半缓冲复制电路和控制电压缓冲电路将控制电压复制到第一偏置电压。
可选的,所述控制电压缓冲电路包括两个栅极、漏极与所述第二电荷泵的输出端连接的PMOS管,所述两个PMOS管构成所述偏置生成器的输出电阻。
与现有技术相比,上述技术方案将两个电荷泵输出的电流设定为不同,其中,对电容进行充放电的第一电荷泵输出的电流正比于压控振荡器的偏置电压且反比于分频器的分频数,对电阻进行充放电的第二电荷泵输出的电流正比于压控振荡器的偏置电压而与分频器的分频数无关,这样,第二电荷泵可以直接给电阻充放电,并且不需要引入新的参数就可以消去公式中的分频数,使得环路带宽与输入频率的比值以及环路的阻尼因子与分频器的分频数无关。由于上述技术方案省去了现有技术中引入的新参数,因而简化了自偏置锁相环的参数设定;并且,上述技术方案也不需要包含有新参数的转换电路,因而简化了自偏置锁相环的电路设计。
附图说明
图1是一种锁相环的基本结构示意图;
图2是一种自偏置锁相环的基本结构示意图;
图3是图2所示的自偏置锁相环的偏置生成器的电路图;
图4是图2所示的自偏置锁相环的压控振荡器的电路图;
图5是现有的一种自偏置锁相环的实现方式的结构示意图;
图6是本发明实施方式的自偏置锁相环的结构示意图;
图7是图6所示的自偏置锁相环的偏置生成器的电路图。
具体实施方式
本发明实施方式通过设定两个电荷泵输出不同的电流,使公式(3)、(4)中的参数x与分频数N成反比,参数y与分频数N成正比,从而不需要引入新的参数就可以消去公式中的分频数N,因此得到了与分频器的分频数N无关的环路带宽ωn与输入频率ωref的比值以及环路的阻尼因子ξ。
上述“设定两个电荷泵输出不同的电流可以消去公式(3)、(4)中的分频数N”的结论是通过下面的推导得出的:
Δ V ctrl = Δφ × I p 2 π × ( R p + 1 s C p ) - - - ( 5 )
公式(5)是现有的电荷泵型锁相环的环路滤波器上形成的控制电压的计算公式,其中,ΔVctrl是电荷泵输出的电流Ip在环路滤波器上形成的控制电压,Δφ是输出信号的相位变化,Rp是环路滤波器的电阻,Cp是环路滤波器的电容,s是拉普拉斯(laplace)变换的复变量。将公式(5)变换为
Δ V ctrl = Δφ × I p 2 π × R p + Δφ × I p 2 π × 1 sC p - - - ( 5 - 1 )
这样,就把给电容Cp和电阻Rp充放电的电流分开,也就是用2个电荷泵分别对电容Cp和电阻Rp进行充放电,从等号右边的第二项
Figure A20081003821000102
可以看到,对电容Cp进行充放电的电荷泵输出的电流为Ip。对于自偏置锁相环,为了消去公式(3)、(4)中的分频数N,如果设定参数x与分频数N成反比(例如,x=1/N,Ip=2ID/N),则参数y应与分频数N成正比(即y=N/K),因此,自偏置锁相环的偏置生成器建立的环路滤波器的等效电阻Rp=yRo=NRo/K,将公式(5-1)的等号右边的第一项
Figure A20081003821000103
变换为
Δφ × I p 2 π × R p = Δφ × 2 I D 2 πN × N K R o = Δφ × 2 I D 2 πK × R o - - - ( 5 - 2 )
从公式(5-2)可以看到,用输出的电流为IR=2ID/K的电荷泵对电阻Ro进行充放电,可以等效于用电流为Ip=2ID/N对偏置生成器建立的等效电阻Rp=NRo/K进行充放电。
本发明实施方式的自偏置锁相环,包括:鉴频鉴相器、第一电荷泵、第二电荷泵、充放电电容、偏置生成器、压控振荡器和分频器,其中,所述第一电荷泵的输出端与充放电电容连接,输出控制电压,所述第一电荷泵输出的电流等于第一常数和压控振荡器的偏置电流的乘积与分频器的分频数的比值;所述第二电荷泵的输出端与偏置生成器的第一偏置电压输出端连接,所述第一偏置电压等于所述控制电压,所述第二电荷泵输出的电流等于压控振荡器的偏置电流与第二常数的比值;所述偏置生成器的输出电阻与压控振荡器的差分缓冲延时级的等效电阻成倍数关系。
下面结合附图对本发明具体实施方式做详细的说明。图6为本发明实施方式的自偏置锁相环的结构示意图,所述的自偏置锁相环包括:鉴频鉴相器10、第一电荷泵22、第二电荷泵23、充放电电容Cp、偏置生成器62、压控振荡器41和分频器50。
鉴频鉴相器10,检测输入信号Fref和反馈信号Ffb的频差和相差,产生脉冲控制信号UP、DN。例如,在反馈信号Ffb的相位滞后于输入信号Fref时,脉冲控制信号UP的脉冲宽度大于脉冲控制信号DN的脉冲宽度;在反馈信号Ffb的相位超前于输入信号Fref时,脉冲控制信号UP的脉冲宽度小于脉冲控制信号DN的脉冲宽度。
第一电荷泵22,将鉴频鉴相器10输出的脉冲控制信号UP、DN转换成充电或放电电流IC,第一电荷泵22的输出端与充放电电容Cp连接,其连接端输出控制电压Vctrl。其中,在反馈信号Ffb的相位滞后于输入信号Fref时,脉冲控制信号UP的脉冲宽度大于脉冲控制信号DN的脉冲宽度,第一电荷泵22输出与输入端VC相等的充电电流IC对电容Cp进行充电,电容Cp一端(即第一电荷泵22的输出)的控制电压Vctrl升高;在反馈信号Ffb的相位超前于输入信号Fref时,脉冲控制信号UP的脉冲宽度小于脉冲控制信号DN的脉冲宽度,第一电荷泵22输出与输入端VC相等的放电电流IC使电容Cp进行放电,电容Cp一端的控制电压Vctrl降低。
第二电荷泵23,将鉴频鉴相器10输出的脉冲控制信号UP、DN转换成充电或放电电流IR,第二电荷泵23的输出端与偏置生成器62的第一偏置电压VBP输出端连接。其中,在反馈信号Ffb的相位滞后于输入信号Fref时,脉冲控制信号UP的脉冲宽度大于脉冲控制信号DN的脉冲宽度,第二电荷泵23输出与输入端VR相等的充电电流IR对偏置生成器62的输出电阻Ro进行充电;在反馈信号Ffb的相位超前于输入信号Fref时,脉冲控制信号UP的脉冲宽度小于脉冲控制信号DN的脉冲宽度,第二电荷泵23输出与输入端VR相等的放电电流IR使偏置生成器62的输出电阻Ro进行放电。
偏置生成器62,包括控制电压VCTRL输入端、输出第一偏置电压VBP的第一偏置电压输出端和输出第二偏置电压VBN的第二偏置电压输出端。偏置生成器62从控制电压VCTRL生成第一偏置电压VBP和第二偏置电压VBN,其中,控制电压VCTRL被复制到输出端的第一偏置电压VBP
压控振荡器41,输入第一偏置电压VBP和第二偏置电压VBN,在第一偏置电压VBP升高时加快输出信号Fout的振荡频率,在第一偏置电压VBP降低时减慢输出信号Fout的振荡频率,第二偏置电压VBN为压控振荡器41提供偏置电流2ID
压控振荡器41的输出信号Fout经过分频器50产生反馈信号Ffb,即Ffb=Fout/N,N为分频器50的分频数,整个系统形成一个反馈系统,输出信号Fout的频率和相位被锁定到固定频率和相位。
根据上述(5-1)、(5-2)的推导结论,第一电荷泵22和第二电荷泵23输出的电流IC和IR是不相等的,其中,给电容Cp充放电的第一电荷泵22输出的电流IC等于第一常数K1和压控振荡器41的偏置电流2ID的乘积与分频器50的分频数N的比值;给电阻Ro充放电的第二电荷泵23输出的电流IR等于压控振荡器41的偏置电流2ID与第二常数K2的比值,即:
I C = K 1 N · 2 I D , I R = 1 K 2 · 2 I D
上述第一电荷泵22、第二电荷泵23输出的电流正比于压控振荡器41的偏置电流2ID可以通过电流镜(Current Mirror)来实现,电流镜的输出电流与输入电流成倍数关系,由于电流镜的具体电路结构为本领域技术人员所熟知,例如文献“Self-Biased High-Bandwidth Low-Jitter 1-to-4096Multiplier ClockGenerator PLL”所述的电流镜,在此不再展开说明。如图6所示,第一电流镜72、第二电流镜73的输入端与偏置生成器62的第二偏置电压输出端连接(即输入偏置电流2ID);第一电流镜72的输出端VC连接第一电荷泵22的输入端VC,为第一电荷泵22提供电流,第一电流镜72的输出电流为输入电流的K1/N倍,使得第一电荷泵22输出的电流IC等于第一常数K1和压控振荡器41的偏置电流2ID的乘积与分频器50的分频数N的比值;第二电流镜73的输出端VR连接第二电荷泵23的输入端VR,为第二电荷泵23提供电流,第二电流镜73的输出电流为输入电流的1/K2倍,使得第二电荷泵23输出的电流IR等于压控振荡器41的偏置电流2ID与第二常数K2的比值。
图7为本实施方式的偏置生成器62的一种具体电路图,偏置生成器62包括:放大器偏置电路622、差分放大电路623、半缓冲复制电路624和控制电压缓冲电路625。
放大器偏置电路622为差分放大电路623提供偏置,包括第一PMOS管MP1和第一NMOS管MN1。其中,第一PMOS管MP1的栅极(Gate)与漏极(Drain)连接,第一PMOS管MP1的源极(Source)输入电压为第一电压VCC(通常为电源电压,即工作电压);第一NMOS管MN1的漏极与第一PMOS管MP1的漏极连接,第一NMOS管MN1的源极输入电压为第二电压VSS(通常为接地)。
差分放大电路623根据电源电压、控制电压VCTRL调节第二偏置电压VBN,包括第二PMOS管MP2、第三PMOS管MP3、第四PMOS管MP4、第二NMOS管MN2和第三NMOS管MN3。其中,第二PMOS管MP2的源极输入电压为第一电压VCC,第二PMOS管MP2的栅极与第一PMOS管MP1的漏极连接;第三PMOS管MP3的栅极输入电压为控制电压VCTRL,第三PMOS管MP3的漏极与第一NMOS管MN1的栅极连接;第三PMOS管MP3的源极、第四PMOS管MP4的源极与第二PMOS管MP2的漏极连接;第二NMOS管MN2的漏极与第三PMOS管MP3的漏极连接,第三NMOS管MN3的漏极、栅极与第四PMOS管MP4的漏极连接;第二NMOS管MN2的栅极与第三NMOS管MN3的栅极连接,第二NMOS管MN2的源极、第三NMOS管MN3的源极输入电压为第二电压VSS。第三PMOS管MP3的漏极输出电压即为第二偏置电压VBN
半缓冲复制电路624与差分放大电路623连接,半缓冲复制电路624和控制电压缓冲电路625将控制电压VCTRL复制到输出端的第一偏置电压VBP,即VBP=VCTRL。如果电源电压、控制电压VCTRL发生变化,差分放大电路623调节第二偏置电压VBN,以保证第一偏置电压VBP仍等于VCTRL
半缓冲复制电路624包括第五PMOS管MP5、第六PMOS管MP6、第四NMOS管MN4和第五NMOS管MN5。其中,第五PMOS管MP5的栅极与第四PMOS管MP4的栅极连接,第五PMOS管MP5的栅极、漏极与第六PMOS管MP6的栅极、漏极连接,第五PMOS管MP5的源极、第六PMOS管MP6的源极、第四NMOS管MN4的栅极输入电压为第一电压VCC;第四NMOS管MN4的漏极与第五PMOS管MP5的漏极连接,第四NMOS管MN4的源极与第五NMOS管MN5的漏极连接;第五NMOS管MN5的栅极输入电压为第二偏置电压VBN,源极输入电压为第二电压VSS
控制电压缓冲电路625包括第七PMOS管MP7、第八PMOS管MP8、第六NMOS管MN6和第七NMOS管MN7。其中,第七PMOS管MP7的栅极、漏极与第八PMOS管MP8的栅极、漏极连接,并与第二电荷泵23的输出端连接,第七PMOS管MP7的漏极、第八PMOS管MP8的漏极输出电压即为第一偏置电压VBP;第七PMOS管MP7的源极、第八PMOS管MP8的源极、第六NMOS管MN6的栅极输入电压为第一电压VCC;第六NMOS管MN6的漏极与第七PMOS管MP7的漏极连接,第六NMOS管MN6的源极与第七NMOS管MN7的漏极连接;第七NMOS管MN7的栅极输入电压为第二偏置电压VBN,源极输入电压为第二电压VSS。第七PMOS管MP7和第八PMOS管MP8构成偏置生成器62的输出电阻Ro,第二电荷泵23对输出电阻Ro进行充放电。
压控振荡器41由n个(n≥3)串接的缓冲级构成,例如图4所示的3级带对称负载的差分缓冲延时级410串接而成的压控振荡器41,其中,后一级差分缓冲延时级410的正极输入与前一级差分缓冲延时级410的负极输出连接,后一级差分缓冲延时级410的负极输入与前一级差分缓冲延时级410的正极输出连接。偏置电压VBN为对称负载411和412提供偏置电流2ID,即流过对称负载411或412的电流为ID,对称负载411、412的偏置电压VBP等于控制电压VCTRL,对称负载411、412的等效电阻等于1/2gm,gm为对称负载中一个晶体管的跨导。随着控制电压VCTRL的变化,对称负载411、412的电阻发生变化,缓冲级的延时也发生变化,压控振荡器41的输出信号Fout(CK+或CK-)的频率发生变化。
结合图6、图7和图4,第一电荷泵22输出的电流IC为压控振荡器41的偏置电流2ID的x倍,即IC=x·2ID,其中,x=K1/N,第一电荷泵22输出的电流IC为对电容Cp进行充电或放电的电流,即作为Ip代入公式(1)、(2)中;第二电荷泵23输出的电流IR为压控振荡器41的偏置电流2ID的1/K2倍,偏置生成器62的输出电阻Ro等于压控振荡器41的缓冲延时级410的等效电阻1/2gm,因此偏置生成器62建立的等效电阻Ro为压控振荡器41的缓冲延时级410的等效电阻1/2gm的y倍,即Rp=yRo=y/2gm,其中,y=N/K2,将参数x,y代入公式(3)和(4),可以得到本实施方式的自偏置锁相环的环路带宽ωn与输入频率ωref的比值由公式(6)表示,环路的阻尼因子ξ由公式(7)表示:
ω n ω ref = xN 2 π C B C 1 = K 1 N N 2 π C B C 1 = K 1 2 π C B C 1 - - - ( 6 )
ξ = y 4 x N C 1 C B = N K 2 4 K 1 N N C 1 C B = 1 4 K 2 K 1 C 1 C B - - - ( 7 )
理论上,K1、K2的取值没有严格的限制,符合阻尼因子ξ=0.7-1.2,环路带宽ωn与输入频率ωref的比值ωnref=1%~5%就可以了。在一个具体的实施例中,综合考虑锁相环的锁定时间、功耗和速度,取K1=1、K2=4,偏置生成器62的输出电阻Ro等于压控振荡器41的缓冲延时级410的等效电阻;并且,为了减小第二电荷泵23输出的电流IR,将偏置生成器62的输出电阻Ro扩大为原来的10倍,根据公式(5-2),第二电荷泵23输出的电流IR可以缩小为原来的1/10,因此,在实际的电路设计中,取K1=1、K2=40,偏置生成器62的输出电阻Ro等于压控振荡器41的缓冲延时级410的等效电阻的10倍。当然,输出电阻Ro并不限于扩大为原来的10倍,也可以扩大为原来的6倍、20倍或15倍等,相应地,第二电荷泵23输出的电流IR可以缩小为原来的1/6、1/20或1/15等。也就是说,偏置生成器62的输出电阻Ro可以与压控振荡器41的缓冲延时级410的等效电阻1/2gm成倍数关系。
因此,从公式(6)、(7)可以得到,环路带宽ωn与输入频率ωref的比值、环路的阻尼因子ξ仅由制造工艺中电容CB、C1决定,而与偏置生成器62建立的等效电阻Rp、分频器50的分频数N无关,也就是说,改变分频器50的分频数N,环路的阻尼因子ξ可以保持为固定值,而输入信号Fref的频率范围可以不受限制,锁相环的环路带宽ωn能够跟踪锁相环的输入频率ωref
现有技术中的自偏置锁相环(例如图5所示),由于对电容进行充放电的电荷泵和对电阻进行充放电的电荷泵输出的电流被设定为相同的,这样,对电阻进行充放电的电荷泵不能直接给电阻充放电,需要引入新的参数,并且通过转换电路,才能得到与分频器的分频数无关的环路带宽与输入频率的比值以及环路的阻尼因子;而本发明实施方式所述的技术方案是将两个电荷泵输出的电流设定为不同,其中,对电容进行充放电的第一电荷泵输出的电流正比于压控振荡器的偏置电流且反比于分频器的分频数,对电阻进行充放电的第二电荷泵输出的电流正比于压控振荡器的偏置电流而与分频器的分频数无关,这样,第二电荷泵可以直接给电阻充放电,并且不需要引入新的参数就可以消去公式中的分频数,使得环路带宽与输入频率的比值以及环路的阻尼因子与分频器的分频数无关。
综上所述,由于上述技术方案省去了现有技术中的参数C2,因而简化了自偏置锁相环的参数设定;并且,上述技术方案也不需要包含有电容C2、平衡开关S等电路元件的转换电路,因而简化了自偏置锁相环的电路设计;另外,由于上述技术方案不需要平衡开关S,也就避免了因开关转换而引起的电压抖动和电路噪声,因而优化了自偏置锁相环的电路性能。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,因此本发明的保护范围应当以本发明权利要求所界定的范围为准。

Claims (6)

1.一种自偏置锁相环,包括第一电荷泵、第二电荷泵,所述第一电荷泵的输出端与充放电电容连接,输出控制电压,所述第二电荷泵的输出端与偏置生成器的第一偏置电压输出端连接,所述第一偏置电压等于所述控制电压,其特征在于,
所述第一电荷泵输出的电流等于第一常数和压控振荡器的偏置电流的乘积与分频器的分频数的比值;
所述第二电荷泵输出的电流等于压控振荡器的偏置电流与第二常数的比值;
所述偏置生成器的输出电阻与压控振荡器的差分缓冲延时级的等效电阻成倍数关系。
2.根据权利要求1所述的自偏置锁相环,其特征在于,
所述第一电荷泵输出的电流由第一电流镜提供,所述第一电流镜的输入端连接偏置生成器的第二偏置电压输出端,所述第二偏置电压输出端为压控振荡器提供偏置电流,所述第一电流镜的输出端连接第一电荷泵,所述第一电流镜的输出电流为输入电流的K1/N倍,其中,K1是第一常数,N是分频器的分频数;
所述第二电荷泵输出的电流由第二电流镜提供,所述第二电流镜的输入端连接偏置生成器的第二偏置电压输出端,所述第二电流镜的输出端连接第二电荷泵,所述第二电流镜的输出电流为输入电流的1/K2倍,其中,K2是第二常数。
3.根据权利要求1所述的自偏置锁相环,其特征在于,所述第一常数等于1,所述第二常数等于4,所述偏置生成器的输出电阻等于压控振荡器的差分缓冲延时级的等效电阻。
4.根据权利要求1所述的自偏置锁相环,其特征在于,所述第一常数等于1,所述第二常数等于40,所述偏置生成器的输出电阻为压控振荡器的差分缓冲延时级的等效电阻的10倍。
5.根据权利要求1所述的自偏置锁相环,其特征在于,所述偏置生成器包括:放大器偏置电路、差分放大电路、半缓冲复制电路和控制电压缓冲电路,所述放大器偏置电路为差分放大电路提供偏置,所述差分放大电路根据电源电压和控制电压调节第二偏置电压,所述半缓冲复制电路和控制电压缓冲电路将控制电压复制到第一偏置电压。
6.根据权利要求5所述的自偏置锁相环,其特征在于,所述控制电压缓冲电路包括两个栅极、漏极与所述第二电荷泵的输出端连接的PMOS管,所述两个PMOS管构成所述偏置生成器的输出电阻。
CNA2008100382104A 2008-05-26 2008-05-26 自偏置锁相环 Pending CN101594145A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNA2008100382104A CN101594145A (zh) 2008-05-26 2008-05-26 自偏置锁相环
US12/464,687 US7986191B2 (en) 2008-05-26 2009-05-12 Self-biased phase locked loop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100382104A CN101594145A (zh) 2008-05-26 2008-05-26 自偏置锁相环

Publications (1)

Publication Number Publication Date
CN101594145A true CN101594145A (zh) 2009-12-02

Family

ID=41341664

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100382104A Pending CN101594145A (zh) 2008-05-26 2008-05-26 自偏置锁相环

Country Status (2)

Country Link
US (1) US7986191B2 (zh)
CN (1) CN101594145A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412833A (zh) * 2010-09-24 2012-04-11 比亚迪股份有限公司 一种电压-电流转换电路
CN102611430A (zh) * 2012-03-29 2012-07-25 广州市广晟微电子有限公司 一种电压控制的等效电阻电路和一种滤波电路
CN104601168A (zh) * 2013-10-31 2015-05-06 中芯国际集成电路制造(上海)有限公司 自偏置锁相环
CN105227179A (zh) * 2014-05-28 2016-01-06 中芯国际集成电路制造(上海)有限公司 振荡电路
CN106130545A (zh) * 2016-06-17 2016-11-16 中国电子科技集团公司第五十八研究所 一种抗单粒子辐射的自偏置pll加固结构
CN106169933A (zh) * 2015-05-21 2016-11-30 意法半导体国际有限公司 用于锁相环的电荷泵电路
CN108123715A (zh) * 2017-12-19 2018-06-05 四川和芯微电子股份有限公司 倍频电路
WO2021142830A1 (zh) * 2020-01-19 2021-07-22 京东方科技集团股份有限公司 随机数生成电路、随机数生成方法和电子设备
CN113346893A (zh) * 2020-12-24 2021-09-03 澜起电子科技(昆山)有限公司 驱动输出电路、芯片及驱动输出方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098027B (zh) * 2009-12-15 2015-05-06 北京中星微电子有限公司 时钟信号发生电路
KR101183626B1 (ko) 2010-12-17 2012-09-17 에스케이하이닉스 주식회사 클럭 신호 생성 회로
CN102035509B (zh) * 2010-12-24 2016-01-06 上海集成电路研发中心有限公司 脉冲产生电路
KR102284656B1 (ko) * 2014-07-31 2021-08-02 삼성전자 주식회사 전하 펌프를 포함하는 전자 회로를 시뮬레이션하는 방법
CN107431857B (zh) * 2015-01-20 2020-01-31 Tdk株式会社 用于电荷泵布置的阻抗电路和电荷泵布置
CN109085405B (zh) * 2017-06-13 2021-04-02 中芯国际集成电路制造(上海)有限公司 一种电路模块的工作电流检测方法及电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873214B2 (en) * 2002-05-03 2005-03-29 Texas Instruments Incorporated Use of configurable capacitors to tune a self biased phase locked loop
US7078977B2 (en) * 2002-09-06 2006-07-18 True Circuits, Inc. Fast locking phase-locked loop
CN101588178B (zh) * 2008-05-23 2011-08-17 中芯国际集成电路制造(上海)有限公司 自偏置锁相环

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412833B (zh) * 2010-09-24 2014-03-19 比亚迪股份有限公司 一种电压-电流转换电路
CN102412833A (zh) * 2010-09-24 2012-04-11 比亚迪股份有限公司 一种电压-电流转换电路
CN102611430A (zh) * 2012-03-29 2012-07-25 广州市广晟微电子有限公司 一种电压控制的等效电阻电路和一种滤波电路
CN104601168A (zh) * 2013-10-31 2015-05-06 中芯国际集成电路制造(上海)有限公司 自偏置锁相环
CN104601168B (zh) * 2013-10-31 2018-07-10 中芯国际集成电路制造(上海)有限公司 自偏置锁相环
CN105227179A (zh) * 2014-05-28 2016-01-06 中芯国际集成电路制造(上海)有限公司 振荡电路
CN105227179B (zh) * 2014-05-28 2018-06-01 中芯国际集成电路制造(上海)有限公司 振荡电路
CN106169933B (zh) * 2015-05-21 2019-06-07 意法半导体国际有限公司 用于锁相环的电荷泵电路
CN106169933A (zh) * 2015-05-21 2016-11-30 意法半导体国际有限公司 用于锁相环的电荷泵电路
CN106130545A (zh) * 2016-06-17 2016-11-16 中国电子科技集团公司第五十八研究所 一种抗单粒子辐射的自偏置pll加固结构
CN106130545B (zh) * 2016-06-17 2019-02-22 中国电子科技集团公司第五十八研究所 一种抗单粒子辐射的自偏置pll加固结构
CN108123715A (zh) * 2017-12-19 2018-06-05 四川和芯微电子股份有限公司 倍频电路
CN108123715B (zh) * 2017-12-19 2021-02-23 四川和芯微电子股份有限公司 倍频电路
WO2021142830A1 (zh) * 2020-01-19 2021-07-22 京东方科技集团股份有限公司 随机数生成电路、随机数生成方法和电子设备
CN113498506A (zh) * 2020-01-19 2021-10-12 京东方科技集团股份有限公司 随机数生成电路、随机数生成方法和电子设备
CN113498506B (zh) * 2020-01-19 2024-03-19 京东方科技集团股份有限公司 随机数生成电路、随机数生成方法和电子设备
CN113346893A (zh) * 2020-12-24 2021-09-03 澜起电子科技(昆山)有限公司 驱动输出电路、芯片及驱动输出方法

Also Published As

Publication number Publication date
US7986191B2 (en) 2011-07-26
US20090289726A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
CN101594145A (zh) 自偏置锁相环
CN101572549B (zh) 自偏置锁相环和锁相方法
CN101588178B (zh) 自偏置锁相环
CN102136840B (zh) 自偏置锁相环
US6617933B2 (en) VCO circuit with wide output frequency range and PLL circuit with the VCO circuit
US8878614B2 (en) Phase-locked loop
US7728688B2 (en) Power supply circuit for a phase-locked loop
US8164366B2 (en) Locked loops, bias generators, charge pumps and methods for generating control voltages
US9515667B2 (en) Oscillator with frequency control loop
CN103066952A (zh) 内置振荡电路
TW201246764A (en) Charge pump circuit
JP2012160927A (ja) 遅延制御回路、チャージポンプ回路、及びチャージポンプ回路における充放電電流制御方法
CN104242923B (zh) 压控振荡器
US9467154B2 (en) Low power and integrable on-chip architecture for low frequency PLL
TWM487576U (zh) 自偏壓鎖相迴路設備及包含自偏壓鎖相迴路設備之以處理器為基礎的系統
US20060022760A1 (en) Current-controlled oscillator
KR101623125B1 (ko) 위상 동기 루프 회로 및 이를 포함한 시스템
Bhardwaj et al. Design of a wide output range and reduced current mismatch charge pump PLL with improved performance
US8619937B2 (en) Integrated CMOS clock generator with a self-biased phase locked loop circuit
KR100903055B1 (ko) 위상 고정 루프 및 위상 고정 방법
JP2000036729A (ja) 90°位相シフタ
US20100026397A1 (en) Pll circuit
Saw et al. Performance Analysis of Low Power CSVCO for PLL Architecture
Roche et al. A PLL with loop bandwidth enhancement for low-noise and fast-settling clock recovery
KR101542189B1 (ko) 전하 펌프 및 위상 동기 루프

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20091202