CN101576608B - 预测铝铸件疲劳寿命的方法和系统 - Google Patents

预测铝铸件疲劳寿命的方法和系统 Download PDF

Info

Publication number
CN101576608B
CN101576608B CN200910149728XA CN200910149728A CN101576608B CN 101576608 B CN101576608 B CN 101576608B CN 200910149728X A CN200910149728X A CN 200910149728XA CN 200910149728 A CN200910149728 A CN 200910149728A CN 101576608 B CN101576608 B CN 101576608B
Authority
CN
China
Prior art keywords
fatigue
sigma
equation
situation
phase particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910149728XA
Other languages
English (en)
Other versions
CN101576608A (zh
Inventor
Q·王
P·E·琼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101576608A publication Critical patent/CN101576608A/zh
Application granted granted Critical
Publication of CN101576608B publication Critical patent/CN101576608B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

本发明涉及预测铝铸件疲劳寿命的方法和系统。该方法和系统组合铸造缺陷和微结构的极值和多尺度寿命模型。该模型基于瑕疵和微结构特征的尺寸尺度计及不同的疲劳裂纹起始,包括毫米尺度的铸造缺陷,微米尺度的开裂或剥离的第二相粒子,亚微米尺度的位错与沉淀物的交互的规定。若存在铸造缺陷,疲劳起始寿命可忽略,总疲劳寿命消耗在疲劳裂纹从该缺陷的扩展。若不存在铸造缺陷,总疲劳寿命消耗在裂纹起始和扩展,除了粗的微结构中疲劳裂纹源于大的第二相粒子。当铸造缺陷和微结构特征的二维或三维尺寸由直接测量或分析预测提供,铸造缺陷,第二相粒子,铝基体平均自由程或粒径的极值通过极值统计获得。上限裂纹或微结构特征尺寸通过极值统计计算。

Description

预测铝铸件疲劳寿命的方法和系统
技术领域
本发明主要涉及预测铝铸件疲劳寿命的方法和系统,更特别地涉及通过将极值统计和多尺度疲劳寿命模型与铸造缺陷和微结构的组成类型、尺寸和形状相组合,来预测铸铝制品的疲劳寿命。
背景技术
改善燃料效率是汽车设计的重要目标。一种帮助实现这个目标的方法是在车辆组件部分(包括在动力系和其相关组件中)的构造中使用重量轻的材料。除了使这种组件更轻之外,也希望通过利用铸造和相关可调节(scalable)工艺保持低的生产成本。例如,在以前使用重型材料(典型地,钢或者其他铁基合金)的地方可以使用铝基材料和相关铸造方法。
然而,铸造某些重量轻的材料时必须注意,因为这些材料可能易于因疲劳而失效(failure),其中组件失效经历各个阶段,开始于微裂纹的孕育,小而长的裂纹扩展或者导致渗漏(在密闭壳的情况下),最终过载,或者导致其他功能损失。因此希望开发在组件和制造工艺设计周期之初能精确预测这些铸件的疲劳性能的方法和系统。存在两种用于结构组件的疲劳设计原则-无限寿命和容损设计。无限寿命设计不允许在工作载荷下裂纹开裂和扩展,而容损设计假设铸造缺陷的存在并允许裂纹扩展。对于铝型材(aluminum shape)铸件,铸造缺陷和不连续性的存在几乎是不可避免的。而且,在千兆周寿命范围之下,铸铝合金没有明显的耐疲劳极限。因此,容损设计方法可以比无限寿命方法制造出结构上更有效率的设计,且适用于疲劳载荷的铝型材铸件。
铸铝组件的疲劳性能很大程度上依赖于缺陷,例如铸造期间产生的空隙和相关的孔隙,或者氧化膜的形成,等等。事实上,最大缺陷尺寸已经被认为是确定铝型材铸件的疲劳性能的最重要的参数,一般最大缺陷尺寸越大,给定疲劳寿命下疲劳强度越低。在容损设计中,裂纹扩展寿命根据缺陷扩展速率和初始缺陷尺寸来估计。在这方面,一个这样的估计疲劳寿命的例子可以在本发明人的出版物中找到,其名称为“Fatigue Life Prediction in Aluminum ShapeCastings”,作为Minerals,Metals&Materials Society于2006年出版的“Simulation ofAluminum Shape Casting Processing:From Alloy Design to Mechanical Properties”的一部分出版,该出版物的内容在此引入以供参考。在该出版物中,本发明人注意到在存在铸造缺陷的情况下疲劳性能是可以仅基于裂纹扩展来预测的,使得裂纹开裂可以被忽略。他们还注意到在这种情况下预测疲劳性能的一个重要问题是定义起始缺陷尺寸。
本发明人认识到,缺少能够结合统计方法来考虑缺陷尺寸的不同等级或不同尺度的计算工具限制了准确预测铸件疲劳性能的能力。因而,需要一种预测铝铸组件的疲劳寿命的方法和系统,该方法和系统基于在多种大小尺度(由于例如孔,空隙,氧化膜等等产生的)、微结构组成(例如,第二相粒子和铝枝晶结构)和亚微米尺度沉淀物结构上对各种缺陷的精确评估。
发明内容
这些需求可由本发明满足,其中公开了用于预测铝铸件的疲劳寿命的改善的方法和系统。这种方法和系统组合了极值统计(EVS)来预测最大铸造缺陷尺寸,连同多尺度寿命(也称作多尺度疲劳(MSF))模型,来更精确地估计铸件的疲劳性能。本发明人发现依据缺陷(瑕疵)的尺度或尺寸状况(regime)而变化的疲劳预测,与不考虑这种不同尺度的情况相比,导致更加精确地预报铸造组件的疲劳性能。通过这种方式,相对大尺度的上述缺陷的建模可以不同于第二相粒子和相关微结构组成(例如枝晶臂间距,及金属间(intermetallic)和硅粒子的开裂或剥离)所支配的情况或与和沉淀物相互作用形成驻留滑移带的位错相关的甚至更小的体系(regime)所支配的情况。因此,本发明允许预测源于这些多尺度起始部位的疲劳裂纹,所述多尺度起始部位通常在毫米范围(对于孔隙,空隙,氧化膜或相关缺陷类型)内,微米范围(对于第二相粒子的开裂或剥离的类型)内,或亚微米范围(对于与沉淀物相互作用形成驻留滑移带的位错类型)内。
而且,本发明人发现,通过合并来自可用的二维金相(metallographic)数据和断口(fractographic)数据,或从无损探伤技术、计算机模拟或两者获得的三维信息的对应值,将EVS应用到这种MSF寿命模型可用于改善疲劳预测。
根据本发明的第一方面,公开了一种预测铝铸件的疲劳寿命的方法。这种预测基于确定(例如,通过直接测量或分析预测)或假设在该铸件中存在一个或多个疲劳裂纹起始部位。为实现此预测,该方法包括利用EVS来估计预期在该铸件内的特定位置处发生的上限起始部位尺寸和类型,然后利用MSF方程计算疲劳寿命,该MSF方程被定制适于该位置处的主要的裂纹起始状况(regime)。
任选地,这样的状况(regime)可以由疲劳裂纹起始部位的性质支配。例如,该方法可包括确定该铸件的至少一部分(例如,铸件中的具体体积单元)是否包括其中一个铸造缺陷,在该位置处的二次枝晶臂间距(SDAS),以及预期在使用中形成第二相粒子的剥离或开裂,还是形成亚微米范围内的驻留滑移带。在铝基铸件是亚共晶的铝-硅(Al-Si)合金的情况中,SDAS是尤其适合的表示。如上所述,当存在铸造缺陷(例如,孔隙,空隙,氧化膜等等)时,这种存在通常支配疲劳寿命计算。当不存在这样的缺陷时,疲劳寿命的计算以第二相粒子的开裂或者剥离为主,以及当缺陷及第二相粒子的开裂或剥离都不存在或者不被预期的情况下,该疲劳寿命计算主要依赖于通过位错与亚微米微结构组成的交互作用而形成驻留滑移带。这种分级预测方法允许基于主要的疲劳裂纹起始部位的类型和尺度选择合适的疲劳寿命预测方程。如在本上下文中使用的,术语“尺度”表示尺寸(包括相对于基体平均自由程的尺寸),并且因此与疲劳起始部位是多尺度的概念一致。在铝基合金(如上述亚共晶Al-Si合金)的特定情况中,选择哪个多尺度疲劳方程基于上限起始部位的主要形式和穿过铝基体的平均自由程。
在确定存在缺陷的疲劳裂纹起始部位的范围内,选择合适的方程还依赖于缺陷是大还是小,其中大和小之间的界限(也称为临界尺寸或临界裂纹尺寸)是裂纹延伸机制在短的和长的裂纹延伸之间变化的尺寸,其中前者在小应力强度范围参数(ΔK)下生长很快,而在该参数下长裂纹通常不生长。如上所述,对于特定合金和微结构,可通过估计作为长裂纹延伸阀值,疲劳强度和几何因子中的至少一个的函数的界限来确定区分小裂纹和长裂纹行为的临界尺寸。一种定义临界裂纹尺寸(a0)的方法是作为长裂纹延伸阀值,疲劳强度和几何因子(以计及特定样本构造)的函数来估计短裂纹行为与长裂纹行为之间的界限。该方法已被El Haddad,M.H.,Smith,K.N和Topper,T.H.在″Fatigue Crack Propagationof Short Cracks″,Journal of Engineering Materials and Technology,Vol.101,1979,pp.42-46中讨论过。EVS是有用的,因为它允许将对整体的一小部分(discreet portion)(例如,在粒度水平)的测量用作能够扩展到更大的表面面积或体积的代表性样品尺寸。本领域技术人员将理解,在铸件的给定部分中具有铸造缺陷(例如孔隙或氧化物)的概率依赖于许多因素。
在不存在缺陷的疲劳裂纹起始部位范围(即,MSF值不被缺陷或相关铸造瑕疵支配)内,该方法继续确定是否预期第二相粒子的开裂或剥离。确定是否预期这种起始部位的一个尤其感兴趣的事情是使用通过铝基体的平均自由程,例如亚共晶铝合金中的SDAS;如果具体体积单元中的SDAS在改性共晶合金中大于大约50μm,或在未改性合金的情况中大于大约30μm,那么响应于工作载荷的第二相粒子开裂或剥离可能是主要的疲劳裂纹起始机制。共晶合金是这样一种合金,其中在铝铸件的任意给定部分中,共晶硅粒子(particles)永远存在。铝枝晶的尺寸(使用SDAS作为量度)和第二相粒子的尺寸主要取决于铸件的该部分在凝固期间的冷却速度。在亚共晶铝-硅基铸铝合金中,片状(plate-like)硅粒子在凝固期间通过共晶相反应形成。在不存在铸造缺陷的情况下,大的片状硅粒子确定材料的延展性。共晶改性剂(如钠或锶)可被加入以将共晶硅粒子的形态从大的片状改变为细纤维状。这种形状上的改变通常改善延展性。当在不存在较大尺度铸造缺陷的情况下,裂纹起始和早期扩展是穿晶的(transgranular),使得疲劳响应被非瑕疵裂纹成核控制时,微结构被认为是粗的(coarse)。在亚共晶铝-硅合金中,当穿过铝基体的平均自由程(例如SDAS)在改性共晶合金中大于大约50μm,或在未改性合金中大于大约30μm时,观测到穿晶断裂萌生。相反,当穿过铝基体的平均自由(例如亚共晶铝-硅合金中的SDAS)在改性共晶合金中小于大约50μm,或在未改性合金中小于大约30μm时,微结构被认为是细的。在按照这些标准被定义为“细的”微结构中,断裂起始和早期扩展是晶粒间的。在任何一种情况下,当这被确定时,该方法还包括确定是否预期响应于工作载荷的粒子开裂或剥离。如果是,那么用于计算疲劳寿命的合适的方程被选择。同样地,如果确定穿过铝基体的平均自由程(例如亚共晶铝-硅合金中的SDAS)小于上述阀值50μm和30μm中的相应一个,那么当晶粒间(intergranular)裂纹扩展之后出现离子的开裂或剥离时,不同的方程被用于确定疲劳寿命。
在不存在缺陷并且第二相粒子的开裂或剥离都不被预期的疲劳裂纹起始部位范围内,该方法继续确定限制驻留滑移带形成的穿过铝基体的平均自由程,然后基于可应用于由驻留滑移带形成引起的裂纹起始的两个其他方程之一来计算疲劳寿命。在亚共晶铝-硅合金的情况中,SDAS可与上述的大约50μm和大约30mμ的阀值相比较,从而选择适当的疲劳寿命计算方程。所有上述尺度上的所有方程将在下面详细讨论,并且所有都包括各种常数的使用,而包括应力幅度、屈服强度、加载循环期间的最大总应变、等效初始裂纹状(rack-like)瑕疵尺寸、等效初始裂纹状第二相粒子尺寸、等效枝晶晶胞尺寸、局部等效塑性应变和等效粒径的其他变量也被用在一些或所有方程中。
根据本发明的第二方面,公开了一种可用于预测铝铸件的疲劳寿命的制品(article of manufacture)。该制品包含计算机可用介质,其具有适于这种疲劳寿命预测的计算机可执行指令。该计算机可执行指令包含用于基于各个常数,输入条件和疲劳引发(fatigue-inducing)条件的性质确定疲劳寿命性质的方程式。这种疲劳引发条件可包括铸造缺陷,第二相粒子和驻留滑移带中的一个或多个,这些都已在先前的方面中讨论过。在铸造缺陷所支配的范围内,可以基于例如铸造缺陷的等效瑕疵尺寸是高于还是低于临界尺寸而进行不同的计算。在第二相粒子支配的范围内,粗的和细的微结构间的区别可被用于选择合适的计算。在驻留滑移带支配的范围内,细的和粗的微结构之间的区别也可以被用来确定哪个方程应该被用于计算疲劳寿命。
本发明的第三方面,公开了一种用于预测铝铸件的疲劳寿命的机器。该机器包括诸如前一方面讨论过的计算装置,并且还可包括样品感测设备,所述样品感测设备的例子可包括疲劳测量组件以及能够在精确受控条件下引发和测量各种结构材料的张力,压力(compression),冲击(impact)和硬度性能的组件。这样的设备(该设备的许多示例是商业可获得的)可操作性地耦合到所述计算装置,使得从该设备获取的感测到的数据能被计算机可读软件处理,以除其他之外计算所取样的铸件的疲劳性能。在其他形式中,所述样品感测设备可以是传感器,其被配置为识别铸造缺陷,第二相粒子,驻留滑移带等等。这些设备可以使用机器视觉或任何其他本领域技术人员所知道的方法操作以探测这些瑕疵。
附图说明
结合下面附图阅读时,可以最好地理解本发明的以下详细描述:
图1A和1B分别示出由于孔隙和氧化膜而产生的疲劳裂纹起始部位的放大图;
图1C和1D分别示出由于大的和小的粒子开裂或剥离而产生的疲劳裂纹起始部位的放大图;
图1E和1F示出由于驻留滑移带而产生的疲劳裂纹起始部位的两个不同放大程度的放大图;
图2示出了三个不同尺度的缺陷和微结构组成(microstructural constituent)对于铸造A365样品的疲劳寿命的影响;
图3示出了如何使用下述各个方程(1)至(3)和(6)至(8)来计算铸铝组件的疲劳寿命的流程图;
图4A示出了根据本发明一方面的疲劳寿命计算,其中将下面方程(1)的长裂纹寿命模型用于具有大尺度铸造缺陷的铸造319样品;
图4B示出了根据本发明一方面的疲劳寿命计算,其中将下面方程(2)的短裂纹寿命模型用于具有大尺度铸造缺陷的铸造319样品;
图5示出了依据本发明一方面的在存在开裂和剥离的第二相粒子而不存在大尺度铸造缺陷的情况下的疲劳寿命计算,其中将以下方程(3)和(6)用于铸造A356样品;
图6示出了由于滑移带而失效的消失模铸造(lost foam cast)319样品的试验测量的疲劳寿命与根据本发明的一方面利用下面方程(7)的计算结果的S-N图比较;
图7示出了由于滑移带而失效的A356样品的实际疲劳寿命与基于下面的方程(7)和(8)计算的寿命的比较;
图8示出了根据本发明一方面的利用EVS估计的最大孔尺寸的方程(1)和(2)的长裂纹和短裂纹模型的预测以及S-N数据,;
图9A示出了低压铸造319基底合金(base alloy)的断裂面和抛光(as-polished)面上观察到的最大孔尺寸的比较;
图9B示出了添加了锶和二硼化钛的319合金的抛光面和断裂面上观察到的最大孔尺寸的比较;以及
图10示出了在各种319合金表面观察到的最大孔尺寸的EVS图;和
图11示出了依据本发明的实施例的合并了使用下面的方程(1)至(17)的算法的制品。
具体实施方式
多尺度寿命模型
最初参考图1A到1F,示出了各种疲劳裂纹起始部位的放大图。在铸件的给定部分中具有铸造缺陷(例如孔隙或氧化物)的概率与很多因素有关。同样的,在铝铸件的任何给定部分中,铝基体和第二相粒子是永远存在的。然而,穿过铝基体的平均自由程(mean free path through the aluminum matrix)(利用SDAS作为亚共晶Al-Si合金中的平均自由程的量度)和第二相粒子的尺度主要取决于该部分铸件在凝固期间的冷却速度。如上所述,MSF建模包括确定铸件的疲劳性能,所述铸件具有或假设具有许多裂纹源(initiator)尺寸,包括相对大(即毫米)尺度缺陷,中(即微米)尺度第二相粒子和它们的开裂或剥离,以及通常小(即亚微米)尺度的位错和沉淀物之间的相互作用以形成驻留滑移带的那些尺寸,不过图1F显示了驻留滑移带的尺寸可以显著变化,包括高至一般肉眼可见的(macroscopic)尺度。众所周知,疲劳裂纹起始于暴露在循环应力下的材料体积内的最大的“弱联结(weak link)”部分(feature)。因此,当选择候选疲劳裂纹源的尺度时,可用的群体(population)的上限应该被考虑。这可以通过使用各种EVS方法估计该上限,或通过直接测量裂纹起始部位来实现,所述裂纹起始部位本身代表给定体积内的可用群体的上限。连同EVS一起应用MSF允许更精确地对各种瑕疵尺寸建模。图1A和1B显示了与大尺度裂纹源部位相关的特殊(particularity)孔隙和氧化层形成现象,而图1C和1D显示了与中等尺度裂纹源部位范围内的大的和小的SDAS微结构相关的特殊粒子开裂或剥离现象,图1E和1F显示了与小尺度裂纹源部位相关的特殊驻留滑移带的形成。
接下来参见图2,一个图表显示了各种不同的大尺度10,中尺度20和小尺度30裂纹源部位对于疲劳寿命的影响程度差别很大,揭示了大尺度10部位(例如,孔隙,由方块代表)是最重要的因素。还显示了在铸造材料没有孔的情况下,其他大尺度(氧化物)或中尺度20影响(以圆圈表示)可能起支配作用。最后,如果大尺度或中尺度影响都不存在,小尺度30影响(如驻留滑移带,以十字表示)对疲劳寿命起支配作用。在该图中,m是用以确定数据的分布的Weibull模数,No是63%的样本在其失效时的特性疲劳寿命,而NFW=0.1%是失效概率(Weibull统计)为0.1%时的循环数。
接下来参见图3,流程图示出了基于铸造样品的疲劳裂纹起始部位的尺度执行各种计算的算法。为了运行该计算,首先输入所施加的应力40和微结构尺度和瑕疵50的表征。一旦接收到该数据,该算法确定样品中是否存在铸造瑕疵(即,大尺度起始部位)60;如果是,相对于初始裂纹状瑕疵或缺陷尺寸的瑕疵尺寸被确定70。如果瑕疵尺寸超过预定的临界尺寸,在计算点80利用下述方程(1)确定寿命。如果瑕疵尺寸不超过预定的临界尺寸,在计算点90利用下述方程(2)确定寿命。响应于确定样品中的铸造瑕疵60的答案是否定的判断点,该算法进行到确定100不管存在还是不存在粒子开裂或剥离,铝基体内的平均自由程是大还是小。在存在铝基体的大的平均自由程(例如,在共晶改性的亚共晶铝硅合金中大于大约50μm或在未改性合金的情况下大于大约30μm)的情况下,然后做出关于发生了粒子开裂和剥离中的一个或两者的确定110A。如果预期发生或存在这样的开裂、剥离或两者,那么利用下述方程(3)确定120疲劳寿命。如果不预期发生或不存在这样的开裂或剥离,利用下述方程(7)确定130寿命。返回到该算法确定铝基体的平均自由程是大还是小,如果铝基体的平均自由程是小的(例如,在共晶改性的亚共晶铝硅合金中小于大约50μm或在未改性合金的情况下小于大约30μm),那么以与110A的确定大致相似的方式做出关于存在粒子开裂和剥离中的一个或两者的确定110B。如果这样的开裂、剥离或两者被预期,那么利用下述方程(6)确定140疲劳寿命。如果没有这样的开裂或剥离被预期,利用下述方程(8)确定150疲劳寿命。
接下来参见图4A和4B,结合图3,在铝铸件中存在铸造缺陷(即,大尺度部位)的情况下,这些缺陷形成疲劳裂纹起始的主要模式。在这种情况下,较小尺度的裂纹源对于疲劳计算影响不大。而且,裂纹起始的循环数可以忽略(Ni=0),所以疲劳寿命主要消耗在(spent in)裂纹扩展。图中产生的值包括具有各种合金元素(alloying agent)的铝铸件。在示出的大尺度部位中,当上限等效缺陷尺寸大于临界尺寸时(在图3中示为从判断点70进行到计算点80),所述临界尺寸依赖于微结构,可用下面的方程预测疲劳寿命:
N = N i + N p = N p = C 1 σ a - m a eq - ( m - 2 ) / 2 - - - ( 1 )
临界尺寸是指裂纹延伸机制在短裂纹延伸和长裂纹延伸之间变化的尺寸,其中前者在小应力强度范围参数(ΔK)下延伸很快,而在此参数下长裂纹通常不延伸。一种定义临界裂纹尺寸的方式是采用上面讨论过的El Haddad等人的定义。一旦裂纹延伸到临界尺寸,裂纹的行为就像长裂纹一样,伴随着清晰的裂纹延伸阀值,稳态裂纹延伸,以及最后快速延伸。同样地,当上限等效缺陷尺寸小于临界尺寸(图3中示为从判断点70进行到计算点90),可用下面的方程预测疲劳寿命:
N = N i + N p = N p = C 2 ( ϵ max σ a σ ys - 1 ) n a eq q . - - - ( 2 )
基于方程(1)和经验常数计算出的扩展寿命与实际疲劳寿命的比较如图4所示。基于方程(2)和经验常数计算出的扩展寿命与实际疲劳寿命的比较如图4B所示。可以看到,对于具有多种合金元素的铸铝,计算出的疲劳寿命与实际疲劳寿命吻合的很好。
接下来结合图3参见图5,在粗的微结构(例如,在亚共晶Al-Si合金中,大的SDAS,在共晶改性的合金中该SDAS大于大约50μm或在未改性台金结构中该SDAS大于大约30μm)的情况中,密集的枝晶晶胞壁充当晶界。第二相粒子的尺寸可能与二次枝晶臂间距一样大,特别是在未改性的微结构中。在这种情况下,可以使用短裂纹模型预测疲劳寿命,该模型假设疲劳裂纹起始于上限第二相粒子,该第二相粒子在第一循环(Ni=0)断裂或剥离。可使用以下方程预测疲劳寿命(图3中示为从判断点100通过判断点110A进行到计算点120):
N = N i + N p = N p = C 3 ( ϵ max σ a σ ys - 1 ) n d eq q . - - - ( 3 )
适用于判断点110A和110B的第二相粒子的开裂或剥离的标准如下给出:
Figure G200910149728XD00093
其中σp是第二相粒子的断裂强度,γ* max是临界最大局部剪切应变,在其之下疲劳裂纹起始于剥离,α是粒子纵横比(particle aspect ratio),t是0和1之间的常数,
Figure G200910149728XD00094
是适应系数,其等于粒子中的弹性应变除以基体中的塑性应变,并且依赖于基体的滑移系和粒子的形态,β是模数校正因子,用以计及弹性不均匀性,μm是铝基体的剪切模数。在通过多滑移变形的基体中,球状的适应系数等于0.393,片状的适应系数等于0.75。当σa超过σp时,粒子开裂或剥离成为主要的裂纹起始机制,并且根据方程(3)计算疲劳寿命。
在涉及细的微结构(即,在亚共晶Al-Si合金中,在共晶改性合金中小的SDAS小于大约50μm,在未改性合金中小于大约30μm,图3中示为从判断点100进行到判断点110B)的情况中,小的枝晶和精细的第二相粒子导致枝晶晶胞界更加不连续。结果,位错能越过晶胞界移动,并且位错的滑移距离也从一个SDAS增加到粒径尺度。在这种情况下,疲劳裂纹经常起始于第二相粒子的裂开并在循环塑性应变作用下快速扩展到粒径。裂纹起始寿命可以由下式估计:
N i ( Δ ϵ eq p ) e = C 4 ( d g ) f . - - - ( 5 )
裂纹从粒径(grain size)扩展到最终失效所需的循环(cycle)可以用长裂纹模型来估计,如方程(1)所示。因此,可以在计算点140通过下式计算总疲劳寿命:
N = N i + N p = C 4 ( Δ ϵ eq p ) - e ( d g ) f + C 5 σ a - m ( d g ) - ( m - 2 ) / 2 . - - - ( 6 )
基于方程(3)和(6)计算的样品疲劳寿命与实际疲劳寿命的比较如图5所示,在样品中疲劳裂纹起始于开裂和/或剥离的第二相粒子中的一个或两者。可以看到,计算的疲劳寿命与实际疲劳寿命很好地吻合。图5中示出的所有数据点(以及图4A和4B的数据点)表示计算值和测量值。示出的每个数据点包含两个寿命循环,一个是计算的(即,x轴上的),一个是测量的(即,在纵轴上的)。
接下来结合图2和3参见图6和7,示出了通过滑移带而失效的样品的计算的疲劳寿命的比较。在粗的微结构的情况中,其中疲劳裂纹起始于驻留滑移带的铝组件的疲劳寿命在计算点130可按下式估计:
N = N i + N p = C 6 ( Δ ϵ eq p ) - e ( λ eq ) f + C 7 ( ϵ max σ a σ ys - 1 ) n ( λ eq ) q - - - ( 7 )
其中λeq是铝基体的等效平均自由程(例如亚共晶Al-Si合金中的SDAS)。如前所述,密集的枝晶晶胞壁可以充当大的SDAS微结构(即,在共晶改性合金中大于大约50μm,或在未改性合金中大于大约30μm)中的晶界。相似的,在细的微结构的情况中(即,在共晶改性合金中SDAS小于大约50μm,或在未改性合金中SDAS小于大约30μm),其中疲劳裂纹起始于驻留滑移带的铝组件的疲劳寿命在计算点150可按下式估计:
N = N i + N p = C 8 ( Δ ϵ eq p ) - e ( d g ) f + C 9 σ a - m ( d g ) - ( m - 2 ) / 2 . - - - ( 8 )
从图中能够看出,当利用对裂纹源尺寸上限的估计进行计算时,计算的疲劳寿命与实际疲劳寿命吻合很好。R(如图2,以及图4A,4B和5所示)是疲劳期间循环应力幅度中最小应力和最大应力的比值。这样,R等于-1的情况意味着施加的应力是完全反向的。
在上述方程中,C1到C9,e,f,m,n和q是常数,σa是应力幅度,σys是屈服强度,εmax是加载循环期间的最大总应变,aeq是EVS等效初始裂纹状瑕疵或缺陷尺寸。同样地,daq是等效初始裂纹状第二相粒子尺寸的EVS估计。铝基体的等效平均自由程由的EVS估计由λeq给出,而Δεp eq是局部等效塑性应变,dg是等效粒径的EVS估计。
总而言之,本发明人发现铸铝组件的给定体积单元的疲劳性能由最大缺陷尺寸,最大第二相粒子尺寸,最大滑移面尺寸等等中的极值控制。他们进一步发现用于上述MSF方程的铸造缺陷和微结构的特性参数(如aeq,deq,λeq和d)应该是这样的给定体积内的缺陷和微结构组成的尺寸极值(extreme size value)。这对于某些参数特别有价值,例如aeq,等效初始裂纹状瑕疵或缺陷尺寸(在下文讨论),难以用高度的确定性预测这些参数。本发明人另外发现将EVS应用到MSF允许产生尺寸的等效值,这些尺寸否则很难确定或量化,因此导致更加精确地预测包含这种缺陷,第二相粒子,驻留滑移带等的铸造组件的疲劳性能。例如,二维金相孔尺寸数据(称作“等效圆直径”)可以与所称的该孔的纵横比相组合,以为孔尺寸的EVS计算创建输入数据。
极值统计
微聚焦X射线计算机断层摄影(CT)技术具有用较高的分辨率(例如,在几微米内)表征微孔性的潜力。目前,该技术实际中并没有广泛应用,特别是对于大部件(诸如发动机组),因为它需要相当大的计算资源。另外,由于X射线成像源的性质,该技术在表征氧化物和第二相粒子方面还有局限性。然而,本发明人相信这种技术能对微孔性的精确表征和它对疲劳性能的伴随影响提供有价值的见解。
尽管目前铸造工艺的数学模型非常先进,并且可获得对几乎任何铸造工艺的装模和凝固行为作出预测的商业程序,然而对于微孔性的预测不那么先进。现有技术的商业代码利用枝晶间流动模型,其假设亚共晶Al-Si合金中孔是球形的,直径等于SDAS的预定义部分。这种假设遇到了困难,因为各个孔往往比SDAS大得多,且形状也与SDAS不同。另外,目前还没有计算工具能准确预测氧化物和第二相粒子。
因此,某些参数(包括计算输入,如铸造瑕疵的尺寸,微结构数据等)也很难量化。金相技术实际中被广泛应用于对铸造缺陷和微结构进行二维(2D)表征。利用常规的2D金相数据,铸造缺陷,夹杂物和其他微结构特征的尺寸分布能够通过具有如下所示的累积分布函数的EVS很好地描述:
F ( x ) = exp ( - exp ( - x - λ δ ) ) - - - ( 9 )
其中x是缺陷或微结构特征的特性参数,而λ和δ分别称为EVS位置和尺度参数(也称作分布参数)。本领域技术人员可以意识到,虽然方程(9)被用于本发明中,其仅仅是这种函数的示例,其他相似的分布函数也可以用于对试验数据进行最佳拟合。
作为示例考虑缺陷或微结构特征的群体,分布函数λ和δ的估计可通过不同方法完成,其中最常用的便利方法是排序/排列统计(ordering/ranking statistics)和线性回归。特性缺陷或微结构特征参数按照从小到大排列,其中基于其等级(ranking)给每个参数分配概率(j),如下所示:
F = j - 0.5 n - - - ( 10 )
其中n是数据点的总数。通过两次取其自然对数并且将参数F(x)变换到ln(-lnF(x))和参数x,可以将方程(9)重新整理为线性方程,如下:
- ln ( - ln ( F ( x ) ) ) = 1 δ · x - λ δ - - - ( 11 )
EVS参数λ和δ可以通过最大似然矩(maximum likelihood moment)或最小二乘法计算得到。当样品尺寸小(例如,大约30个缺陷或微结构特征),最大似然法能给出最有效的估计。对于大量样品(例如,其中n大于大约50),最大似然,矩和最小二乘法给出相似的精度。
通过EVS预测的特性缺陷或微结构特征参数依赖于需要进行预测的材料体积。通过返回周期T计及体积效应,其中两个这样的周期,T和Tb被考虑。T计及与一部分体积相比较的所取样的体积(the volume sampled compared to thevolume of one part)。给定铸件中最大缺陷或微结构特征的返回周期T通过由下式确定:
T = V V 0 - - - ( 12 )
其中V是铸件体积,Vo是用于缺陷或微结构特征测量的样本的体积。
接下来,体积效应被外推以表示群体。该群体由一批N个铸件表示。在一批N个铸件中发生一次的极值缺陷或微结构特征的返回周期是:
Tb=T*N    (13)
一旦计及了体积效应,特性缺陷或微结构特征参数可以利用下式进行估计:
x ( T b ) = λ - δ ln [ - ln ( 1 - 1 T b ) ] - - - ( 14 )
并且可以对最大缺陷或微结构特征特性参数进行x+3σ估计。标准偏差通过Cramer-Rao下限估计:
SD [ x ( T b ) ] = δ n 0.60793 y 2 + 0.51404 y + 1.10866 - - - ( 15 )
其中y是简化的EVS变量, y = - ln ( - ln ( 1 - 1 T b ) ) , n是分析的缺陷或微结构特征的数目。
x(Tb)的最小理论99.94%(+3标准偏差)置信区间由下式给出:
x(Tb)+3·SD[x(Tb)]        (16)
并且一定数量铸件中的最大缺陷或微结构特征特性参数的x“+3σ”估计由下式给出:
x = λ - δ ln [ - ln ( 1 - 1 T b ) ] + 3 ( SD [ x ( T b ) ] ) - - - ( 17 )
接下来参见图8,曲线图比较了利用EVS估计的极限孔尺寸基于方程(1)和(2)预测的疲劳寿命和试验数据。可以看出,利用极限孔尺寸的EVS估计的上限,长裂纹和短裂纹模型都能够给出保守的下限疲劳寿命预测。如图9A,9B和10所示,断面分析表征的源点(origin)与使用EVS方法建模的二维抛光面孔尺寸分布的上限的尺度相似。具体地,EVS可以从可容易获得的2D测量中估计最大3D特性尺寸,该3D特性尺寸否则很难获得且成本高。应理解如果铸件样品的任意给定部分的实际3D尺寸被确定,则可以不需要EVS。
接下来参见图9A和9B,孔隙的金相测量被用作上述疲劳寿命预测模型的输入。可以看出,在抛光面上测量的孔尺寸(用十字标明)和在断裂表面上测量的孔尺寸(用圆圈标明)之间存在显著差异。如图9A中详细示出的,断裂表面上观察到的孔是金相面上观察到的孔的2到5倍大,而不管合金和铸造工艺如何。而且,位于疲劳裂纹源处的孔比断裂表面的其他区域中观察到的孔还要大(2到3倍),表明最大的孔开始了疲劳裂纹。因此,直接使用金相测量可能明显过高估计特定铸件组件的疲劳强度和可用寿命。因此,优选地将金相测量用作材料中存在的孔大小的定性指示,而不是作为预测材料疲劳性能的断裂力学模型的直接输入。
接下来参见图10,计算出的五个不同319铸件的孔尺寸分布(包括低压铸造基底(base)319合金(LP319),重力浇注基底319合金(319),晶粒细化的重力浇注基底319(319+TiB2),锶改性的重力浇注319(319+Sr),和同时晶粒细化和锶改性的重力浇注319基底(319+Sr+TiB2)):EVS参数λ和δ被估计并在图中给出。表1中将使用EVS估计的五个不同铸件的对应最大孔尺寸与在抛光面和断裂表面上测量得到的孔尺寸进行比较。
表1
 合金和铸造工艺   抛光  最大孔尺寸(μm)断裂表面   EVS估计
 LP,基底319   167  1668   1594
 基底319   445  968   2646
 基底319+TiB2   368  1104   2231
 基底319+Sr   391  2483   2246
 基底319+Sr+TiB2   415  2027   2562
表1示出了根据金相数据估计得到的孔尺寸的极值与在断裂表面上测量得到的值之间观察到好的吻合。平均EVS估计与在断裂表面上测量的值的大小相同。这表明EVS是基于传统金相测量估计材料中的最大孔尺寸的好方法。
接下来参见图11,包括MSF和EVS的本计算可以在能在计算装置200上运行的算法中实现。计算装置200(示出为桌上型计算机的形式,但本领域技术人员可以理解该计算装置也可以为主机,膝上型,手持式,蜂窝,或其他相关的计算装置)包括中央处理器210,输入端220,输出端230和存储器240,该存储器可包括随机存取存储器(RAM)240A和只读存储器(ROM)240B,其中前者通常是指可变的、易失性的存储器,而后者是指更持久的、不可变的存储器,不过随着最新发展,这种区别越来越不明显。虽然ROM 240B或RAM240A都能够作为用作计算机可读介质,在其上可以运行代表前面所述的疲劳寿命预测方程(1)至(17)中的一些或全部的程序代码,但是本领域技术人员应理解,当这样的程序代码被加载到计算装置200中以供中央处理器210随后对其进行读取和操作,它通常都驻留在RAM 240A中。因此,在一种优选的形式中,该算法可以被配置为计算机可读的软件,使得当加载到存储器240中时,它会使计算机基于用户的输入而计算疲劳寿命。包含该算法的计算机可读介质另外可通过其他便携装置(如紧凑盘,数字视频盘,闪存,软盘等等)被引入到计算装置200中。不论形式如何,在加载后,计算机可读介质包含有适于实现图3中描述的决策制定过程的计算机可执行指令。本领域技术人员应理解,计算装置200可任选地包括外围设备。例如,计算装置200可以形成可用于预测铝铸件的疲劳寿命的系统的基础。该系统可附加地包括测量,测试与取样设备(未示出),使得直接从铸件样品中得到的疲劳数据可被加载到存储器240中或其他位置以用于随后与预测数据比较等等。
虽然为了说明本发明,示出了某些代表性实施例和细节,但对于本领域技术人员来说,在不偏离本发明的范围的前提下还可以进行多种变化,本发明的范围由随附的权利要求书限定。

Claims (15)

1.一种预测铝基铸件的疲劳寿命的方法,其中假定或确定该铸件中存在至少一个疲劳裂纹起始部位,所述方法包括:
利用极值统计方法估计该铸件中预料发生的上限起始部位尺寸;并且
在计算机上利用多尺度疲劳方程基于所述起始部位尺寸计算所述疲劳寿命,其中对于所述多尺度疲劳方程的哪一个的选择是基于所述上限起始部位的主要形式和穿过所述铝基铸件的铝基体的平均自由程中的至少一个,其中所述上限起始部位的所述主要形式包括铸造缺陷,第二相粒子和驻留滑移带中的至少一个,其中所述计算包括:在所述上限起始部位主要包括所述铸造缺陷使得所述铸造缺陷的最大缺陷尺寸大于临界尺寸的情况中利用方程:
N = N i + N p = N p = C 1 σ a - m a eq - ( m - 2 ) / 2
而在所述最大缺陷尺寸小于所述临界尺寸的情况中,利用方程:
N = N i + N p = N p = C 2 ( ϵ max σ a σ ys - 1 ) n q eq q ;
在所述上限起始部位主要包含所述第二相粒子且与穿晶裂纹扩展相关的穿过铝基体的平均自由程存在,并且所述第二相粒子的开裂和剥离中的至少一个的迹象存在或被预期的情况中,利用方程:
N = N i + N p = N p = C 3 ( ϵ max σ a σ ys - 1 ) n q eq q ;
而在与晶粒间裂纹扩展相关的穿过所述铝基体的所述平均自由程存在,并且所述第二相粒子的开裂和剥离中的至少一个的迹象存在或被预期的情况中,利用方程:
N = N i + N p = C 4 ( Δϵ eq p ) - e ( d g ) f + C 5 σ a - m ( d g ) - ( m - 2 ) / 2 ;
在所述上限起始部位主要包含所述驻留滑移带,以及存在大的穿过所述铝基体的平均自由程并且所述第二相粒子的开裂和剥离中的至少一个的迹象不存在或不被预期的情况中,利用方程:
N = N i + N p = C 6 ( Δϵ eq p ) - e ( λ eq ) f + C 7 ( ϵ max σ a σ ys - 1 ) n ( λ eq ) q ;
而在所述起始部位主要包括所述驻留滑移带,以及存在小的穿过所述铝基体的平均自由程并且所述第二相粒子的开裂和剥离中的至少一个的迹象不存在或不被预期的情况中,利用方程
N = N i + N p = C 8 ( Δϵ eq p ) - e ( d g ) f + C 9 σ a - m ( d g ) - ( m - 2 ) / 2 ,
其中C1到C9,m,n,e,f和q是常数,σa是应力幅度,σys是屈服强度,εmax是加载循环期间的最大总应变,aeq是等效初始裂纹状瑕疵尺寸,deq是等效初始裂纹状第二相粒子尺寸,λeq是穿过所述铝基体的等效平均自由程,
Figure FSB00000997749100023
是局部等效塑性应变,dg是等效粒径。
2.权利要求1所述的方法,其中对于特定合金和微结构,区分小裂纹行为和长裂纹行为的所述临界尺寸可通过作为长裂纹延伸阀值,疲劳强度和几何因子中的至少一个的函数估计它们之间的界限来确定。
3.权利要求1所述的方法,其中至少一个疲劳裂纹起始部位是通过直接测量和分析预测中的至少一个确定的。
4.权利要求3所述的方法,其中所述分析预测包括计算仿真和建模。
5.权利要求3所述的方法,其中所述直接测量包括X射线计算机断层摄影,单一系列切片金相学和断口分析(single and serial sectioning metallography andfractography)中的至少一种。
6.权利要求1所述的方法,其中所述极值统计连同2D金相技术,断口分析技术,X射线计算机断层摄影和计算模拟及建模中的至少一种一起使用,以估计铸造缺陷和微结构特征群体的值。
7.权利要求1所述的方法,其中所述极值统计使用累积分布函数来提供上限缺陷和特征尺寸估计。
8.权利要求7所述的方法,其中所述累积分布函数由以下方程表示:
F ( x ) = exp ( - exp ( - x - λ δ ) )
其中x是缺陷和微结构特征中的至少一个的特性参数,而λ和δ分别是极值统计位置和尺度参数。
9.权利要求1所述的方法,其中用于估计第二相粒子的开裂或剥离的标准是根据方程:
Figure FSB00000997749100032
其中σp是第二相粒子的断裂强度,γ* max是临界最大局部剪切应变,低于该值疲劳裂纹起始于剥离,α是粒子纵横比,t是0和1之间的常数,
Figure FSB00000997749100033
是“适应系数”,其等于该粒子中的弹性应变除以该基体中的塑性应变,并且依赖于该基体的滑移系和粒子的形态,并且在通过多滑移而变形的基体中,对于球状,适应系数等于0.393,对于片状,适应系数等于0.75,β是模数校正因子,以计及弹性不均匀性,μm是铝基体的剪切模数。
10.一种用于预测铝铸件的疲劳寿命的方法,其中假定或确定该铸件中存在至少一个疲劳裂纹起始部位,所述方法包括:
使计算机确定铸造缺陷,第二相粒子和驻留滑移带中的哪一个是导致疲劳失效的主要原因;
使该计算机基于极值统计和多尺度疲劳算法计算预测的疲劳寿命,其中后者基于确定的所述疲劳失效的主要原因,其中所述多尺度疲劳寿命算法被配置为使得在铸件的疲劳行为由所述铸造缺陷支配的情况中,所述多尺度疲劳寿命算法在铸件中的最大缺陷尺寸大于临界尺寸的情况中使用方程:
N = N i + N p = N p = C 1 σ a - m a eq - ( m - 2 ) / 2 ,
而在所述最大缺陷尺寸小于临界尺寸的情况中,所述多尺度疲劳寿命算法使用方程:
N = N i + N p = N p = C 2 ( ϵ max σ a σ ys - 1 ) n q eq q ;
其中所述多尺度疲劳寿命算法被配置为使得在铸件的疲劳行为由所述第二相粒子中的至少一个支配,并且与穿晶裂纹扩展相关的穿过铝基体的平均自由程存在,并且所述第二相粒子的开裂和剥离中的至少一个的迹象存在或被预期的情况中,所述多尺度疲劳寿命算法使用方程:
N = N i + N p = N p = C 3 ( ϵ max σ a σ ys - 1 ) n q eq q ,
而在与晶粒间裂纹扩展相关的穿过所述铝基体的所述平均自由程存在,并且所述第二相粒子的开裂和剥离中的至少一个的迹象存在或被预期的情况中,所述多尺度疲劳寿命算法使用方程:
N = N i + N p = C 4 ( Δϵ eq p ) - e ( d g ) f + C 5 σ a - m ( d g ) - ( m - 2 ) / 2 ;
其中所述多尺度疲劳寿命算法被配置为使得在铸件的疲劳行为由至少一个所述驻留滑移带支配,以及存在大的穿过所述铝基体的平均自由程并且所述第二相粒子的开裂和剥离中的至少一个的迹象既不存在也不被预期的情况中,所述多尺度疲劳寿命算法使用方程:
N = N i + N p = C 6 ( Δϵ eq p ) - e ( λ eq ) f + C 7 ( ϵ max σ a σ ys - 1 ) n ( λ eq ) q ,
而在所述起始部位主要包含所述驻留滑移带,存在小的穿过所述铝基体的平均自由程并且所述第二相粒子的开裂和剥离中的至少一个的迹象既不存在也不被预期的情况中,所述多尺度疲劳寿命算法使用方程:
N = N i + N p = C 8 ( Δϵ eq p ) - e ( d g ) f + C 9 σ a - m ( d g ) - ( m - 2 ) / 2 ,
其中C1到C9,m,n,e,f和q是常数,σa是应力幅度,σys是屈服强度,εmax是加载循环期间的最大总应变,aeq是等效初始裂纹状瑕疵尺寸,deq是等效起始裂纹状第二相粒子尺寸,λeq是穿过所述铝基体的等效平均自由程,是局部等效塑性应变,dg是等效粒径。
11.权利要求10所述的方法,其中所述确定铸造缺陷,第二相粒子和驻留滑移带中的哪一个是导致疲劳失效的主要原因,包含直接测量和分析预测中的至少一种。
12.权利要求10所述的方法,其中对于特定合金和微结构,区分小裂纹行为和长裂纹行为的所述临界尺寸通过作为长裂纹延伸阀值,疲劳强度和几何因子中的至少一个的函数估计它们之间的界限来确定。
13.一种预测铝铸件的疲劳寿命的方法,所述方法包括:
使计算构件确定铸造缺陷,第二相粒子和驻留滑移带中的哪一个是导致疲劳失效的主要原因;
使所述计算构件计算预测的疲劳寿命,该计算通过使用极值统计法和多尺度疲劳方程来进行,其中极值统计法用以估计该铸件预料发生的上限起始部位尺寸,并且基于所述铸造缺陷、第二相粒子和驻留滑移带中的哪一个起支配作用来选择所述多尺度疲劳方程中的至少一个,其中对于铸件的疲劳行为由铸造缺陷支配的情况,在铸件中的最大缺陷尺寸大于临界尺寸的情况中使用方程:
N = N i + N p = N p = C 1 σ a - m a eq - ( m - 2 ) / 2 ,
而在所述最大缺陷尺寸小于临界尺寸的情况中,使用方程:
N = N i + N p = N p = C 2 ( ϵ max σ a σ ys - 1 ) n q eq q ;
其中对于铸件的疲劳行为由至少一个第二相粒子支配的情况,在与穿晶裂纹扩展相关的穿过铝基体的平均自由程存在且所述第二相粒子的开裂和剥离中的至少一个的迹象存在或被预期的情况中,使用方程;
N = N i + N p = N p = C 3 ( ϵ max σ a σ ys - 1 ) n q eq q ,
而在与晶粒间裂纹扩展相关的穿过铝基体的所述平均自由程存在,且所述第二相粒子的开裂和剥离中的至少一个的迹象存在或被预期,使用方程
N = N i + N p = C 4 ( Δϵ eq p ) - e ( d g ) f + C 5 σ a - m ( d g ) - ( m - 2 ) / 2 ; 以及
其中对于铸件的疲劳行为由驻留滑移带支配的情况,以及存在大的穿过所述铝基体的平均自由程并且所述第二相粒子的开裂和剥离中的至少一个的迹象既不存在也不被预期的情况中,使用方程:
N = N i + N p = C 6 ( Δϵ eq p ) - e ( λ eq ) f + C 7 ( ϵ max σ a σ ys - 1 ) n ( λ eq ) q ,
而在所述起始部位主要包含所述驻留滑移带,存在小的穿过所述铝基体的平均自由程并且第二相粒子的开裂和剥离中的至少一个的迹象既不存在也不被预期的情况中,使用方程:
N = N i + N p = C 8 ( Δϵ eq p ) - e ( d g ) f + C 9 σ a - m ( d g ) - ( m - 2 ) / 2 ,
其中C1到C9,m,n,e,f和q是常数,σa是应力幅度,σys是屈服强度,εmax是加载循环期间的最大总应变,aeq是等效初始裂纹状瑕疵尺寸,deq是等效起始裂纹状第二相粒子尺寸,λeq是穿过所述铝基体的等效平均自由程,
Figure FSB00000997749100064
是局部等效塑性应变,dg是等效粒径。
14.权利要求13所述的方法,进一步包括将通过所述方程的至少一个计算的结果以机器可读格式和人类可读格式中的至少一种输出。
15.权利要求14所述的方法,其中对于特定合金和微结构,区分小裂纹行为和长裂纹行为的所述临界尺寸通过作为长裂纹延伸阀值,疲劳强度和几何因子中的至少一个的函数估计它们之间的界限来确定。
CN200910149728XA 2008-05-05 2009-05-05 预测铝铸件疲劳寿命的方法和系统 Expired - Fee Related CN101576608B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/114,875 US7623973B1 (en) 2008-05-05 2008-05-05 Methods and systems to predict fatigue life in aluminum castings
US12/114875 2008-05-05
US12/114,875 2008-05-05

Publications (2)

Publication Number Publication Date
CN101576608A CN101576608A (zh) 2009-11-11
CN101576608B true CN101576608B (zh) 2013-07-10

Family

ID=41257648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910149728XA Expired - Fee Related CN101576608B (zh) 2008-05-05 2009-05-05 预测铝铸件疲劳寿命的方法和系统

Country Status (3)

Country Link
US (1) US7623973B1 (zh)
CN (1) CN101576608B (zh)
DE (1) DE102009019366B4 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106354898A (zh) * 2016-06-28 2017-01-25 湖南工业大学 一种基于总应变能量密度的焊缝疲劳寿命计算方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282926A (ja) * 2008-05-26 2009-12-03 Toshiba Corp 時系列データ分析装置、方法及びプログラム
US8155940B2 (en) * 2008-07-30 2012-04-10 GM Global Technology Operations LLC Methods and systems for predicting very high cycle fatigue properties in metal alloys
US8515688B2 (en) * 2009-03-12 2013-08-20 GM Global Technology Operations LLC Systems and methods to predict fatigue lives of aluminum alloys under multiaxial loading
JP2010256351A (ja) * 2009-04-01 2010-11-11 Nippon Steel Corp 部材の疲労破壊確率推定装置、部材の疲労破壊確率推定方法、及びコンピュータプログラム
US8335673B2 (en) * 2009-12-02 2012-12-18 International Business Machines Corporation Modeling complex hiearchical systems across space and time
US8355894B2 (en) * 2009-12-16 2013-01-15 GM Global Technology Operations LLC Method for simulating casting defects and microstructures of castings
CN101859337B (zh) * 2010-06-04 2012-12-12 中国地质大学(北京) 一种钎焊金刚石磨粒合金层开裂的评价方法
DE102010037112A1 (de) * 2010-08-23 2012-02-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Erstellen eines Simulationswerkzeuges zum Simulieren lokaler Werkstoffeigenschaften eines Gießprodukts als Resultat eines Gießprozesses, entsprechende Vorrichtung zur Durchführung des Verfahrens und entsprechendes Simulationswerkzeug
US8505397B2 (en) * 2010-09-30 2013-08-13 GM Global Technology Operations LLC Methods of characterizing aluminum oxides
US8666706B2 (en) * 2011-03-08 2014-03-04 GM Global Technology Operations LLC Material property distribution determination for fatigue life calculation using dendrite arm spacing and porosity-based models
US8655476B2 (en) * 2011-03-09 2014-02-18 GM Global Technology Operations LLC Systems and methods for computationally developing manufacturable and durable cast components
US20130213152A1 (en) * 2012-02-16 2013-08-22 Solar Turbines Incorporated Analysis of Localized Waste Material
US8942462B2 (en) * 2012-04-12 2015-01-27 GM Global Technology Operations LLC Method for automatic quantification of dendrite arm spacing in dendritic microstructures
US9500594B2 (en) * 2012-04-12 2016-11-22 Gm Global Technology Operations, Llc Method for automatic quantification of dendrite arm spacing in dendritic microstructures
JP5958999B2 (ja) * 2012-07-04 2016-08-02 Ntn株式会社 軸受部品の検査方法および軸受部品の検査装置
US9280620B2 (en) * 2012-10-16 2016-03-08 Siemens Aktiengesellschaft Method and system for probabilistic fatigue crack life estimation
US9652566B2 (en) * 2013-08-13 2017-05-16 Gm Global Technology Operations, Llc Methods for simulating oxides in aluminum castings
US9892219B2 (en) * 2014-01-28 2018-02-13 Rolls-Royce Corporation Using fracture mechanism maps to predict time-dependent crack growth behavior under dwell conditions
US10732085B2 (en) 2015-03-24 2020-08-04 Bell Helicopter Textron Inc. Notch treatment methods for flaw simulation
EP3073245B1 (en) * 2015-03-24 2018-09-12 Bell Helicopter Textron Inc. System and method for determining direct damage tolerance allowables
US10989640B2 (en) 2015-03-24 2021-04-27 Bell Helicopter Textron Inc. Method for defining threshold stress curves utilized in fatigue and damage tolerance analysis
WO2016178736A1 (en) * 2015-05-04 2016-11-10 Sikorsky Aircraft Corporation System and method for calculating remaining useful life of a component
CN106153824B (zh) * 2016-06-22 2018-07-31 北京工业大学 一种基于裂纹闭合效应的疲劳寿命预测方法
CN106649918B (zh) * 2016-09-12 2020-01-14 南京航空航天大学 一种镍基单晶材料统一的拉压不对称微观模型的建立方法
CN108204925B (zh) * 2016-12-16 2020-03-20 海口未来技术研究院 复合材料的疲劳寿命预测方法及预测系统
CN107246944B (zh) * 2017-04-07 2019-01-22 重庆大学 一种基于统计矩理论的结构损伤识别方法
CN109522570B (zh) * 2017-09-19 2020-09-18 浙江大学 一种基于指数Weibull方程的混凝土疲劳变形演化模型
CN108197413A (zh) * 2018-02-06 2018-06-22 辽宁工业大学 变幅载荷下带多部位损伤结构的钢材液压支架疲劳可靠性评价方法
US11169062B2 (en) * 2018-09-08 2021-11-09 The Boeing Company Methods and systems for identifying an internal flaw in a part produced using additive manufacturing
CN109271713B (zh) * 2018-09-25 2023-02-28 重庆大学 考虑晶体微结构力学的齿轮接触疲劳分析方法
CN110059432A (zh) * 2019-04-26 2019-07-26 上海工程技术大学 一种估算裂纹萌生尺寸数值的方法
CN110308201B (zh) * 2019-07-22 2023-08-18 西安工程大学 一种基于磁性的叠层复合材料的损伤检测方法
CN110609042A (zh) * 2019-09-26 2019-12-24 江苏省沙钢钢铁研究院有限公司 一种钢中最大尺寸夹杂物的预测方法
CN110967267A (zh) * 2019-11-25 2020-04-07 中国民用航空飞行学院 一种判定疲劳裂纹萌生寿命的试验方法
CN111024513B (zh) * 2019-12-19 2020-11-06 东北大学 一种连铸坯中间裂纹萌生临界应变测定的方法
CN111649649A (zh) * 2020-04-17 2020-09-11 江阴兴澄特种钢铁有限公司 一种连铸长套管外径在线测量装置和更换预测方法
CN112052615B (zh) * 2020-09-07 2023-05-09 郑州航空工业管理学院 一种基于人工神经网络的微动疲劳性能预测方法
CN113806868B (zh) * 2021-09-17 2022-08-05 湖南大学 一种直升机尾传动轴抗弹击损伤容限分析方法
CN114577809B (zh) * 2022-02-08 2024-07-02 复旦大学 一种齿轮箱油位计聚碳酸酯玻璃板失效的综合分析方法
CN114894642B (zh) * 2022-07-01 2023-03-14 湖南大学 一种基于深度学习的疲劳裂纹扩展速率测试方法及装置
CN117491375B (zh) * 2024-01-02 2024-03-22 中信戴卡股份有限公司 一种铝合金铸件氧化膜缺陷的定量表征及评价方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1500207A (zh) * 2001-03-23 2004-05-26 株式会社产学连携机构九州 金属材料的长寿命疲劳强度设计法
US7016825B1 (en) * 2000-10-26 2006-03-21 Vextec Corporation Method and apparatus for predicting the failure of a component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8290753B2 (en) * 2006-01-24 2012-10-16 Vextec Corporation Materials-based failure analysis in design of electronic devices, and prediction of operating life

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016825B1 (en) * 2000-10-26 2006-03-21 Vextec Corporation Method and apparatus for predicting the failure of a component
CN1500207A (zh) * 2001-03-23 2004-05-26 株式会社产学连携机构九州 金属材料的长寿命疲劳强度设计法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Materials Society and ASM International 2007》.2007,第38B卷第615-621页. *
Q.G. WANG et al..Prediction of Fatigue Performance in Aluminum Shape Castings Containing Defects.《The Minerals, Metals & Materials Society and ASM International 2007》.2007,第38B卷第615-621页.
Q.G. WANG et al..Prediction of Fatigue Performance in Aluminum Shape Castings Containing Defects.《The Minerals, Metals &amp *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106354898A (zh) * 2016-06-28 2017-01-25 湖南工业大学 一种基于总应变能量密度的焊缝疲劳寿命计算方法
CN106354898B (zh) * 2016-06-28 2019-05-03 湖南工业大学 一种基于总应变能量密度的焊缝疲劳寿命计算方法

Also Published As

Publication number Publication date
CN101576608A (zh) 2009-11-11
US20090276166A1 (en) 2009-11-05
DE102009019366B4 (de) 2021-06-24
DE102009019366A1 (de) 2010-08-19
US7623973B1 (en) 2009-11-24

Similar Documents

Publication Publication Date Title
CN101576608B (zh) 预测铝铸件疲劳寿命的方法和系统
CN101639872B (zh) 用于预测金属合金的特高循环疲劳特性的方法和系统
Nicoletto et al. Characterization of microshrinkage casting defects of Al–Si alloys by X-ray computed tomography and metallography
Teng et al. Ductile fracture prediction in aluminium alloy 5A06 sheet forming based on GTN damage model
Pardoen et al. An extended model for void growth and coalescence
Brünig et al. A ductile damage criterion at various stress triaxialities
Nicoletto et al. X-ray computed tomography vs. metallography for pore sizing and fatigue of cast Al-alloys
Wang et al. Oxide films, pores and the fatigue lives of cast aluminum alloys
Agarwal et al. Void growth in 6061-aluminum alloy under triaxial stress state
Shirani et al. Damage tolerant design of cast components based on defects detected by 3D X-ray computed tomography
Ha et al. Ductile fracture of an aluminum sheet under proportional loading
Steglich et al. Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal
Lievers et al. Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys
Choung et al. Failure strain formulation via average stress triaxiality of an EH36 high strength steel
Leitner et al. Microporosity and statistical size effect on the fatigue strength of cast aluminium alloys EN AC-45500 and 46200
Wu et al. Study on corrosion models of structural steel exposed in urban industrial atmospheric and laboratory simulated environments based on the 3D profile
Kong et al. Characterization and modeling of damage behavior of a casting aluminum wheel considering inhomogeneity of microstructure and microdefects
Zhu et al. A probabilistic model of fatigue strength controlled by porosity population in a 319-type cast aluminum alloy: Part I. Model Development
Dørum et al. Numerical modelling of magnesium die-castings using stochastic fracture parameters
Bacha et al. On the determination of true stress triaxiality in sheet metal
Gill et al. A model for the indentation size effect in polycrystalline alloys coupling intrinsic and extrinsic length scales
Steglich et al. Prediction of deformation and failure anisotropy for thin magnesium sheets under mixed-mode loading
Messner et al. Thermally induced surface roughness in austenitic–ferritic duplex stainless steels
Jung et al. Nanoindentation of Hybrid Foams
Alain et al. Robustness of large thin wall magnesium die castings for crash applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130710

Termination date: 20210505

CF01 Termination of patent right due to non-payment of annual fee