CN101553874B - 光盘装置、串扰校正方法和集成电路 - Google Patents

光盘装置、串扰校正方法和集成电路 Download PDF

Info

Publication number
CN101553874B
CN101553874B CN2006800472608A CN200680047260A CN101553874B CN 101553874 B CN101553874 B CN 101553874B CN 2006800472608 A CN2006800472608 A CN 2006800472608A CN 200680047260 A CN200680047260 A CN 200680047260A CN 101553874 B CN101553874 B CN 101553874B
Authority
CN
China
Prior art keywords
correcting value
error signal
output
tracking error
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800472608A
Other languages
English (en)
Other versions
CN101553874A (zh
Inventor
高泽稔
山田真一
山元猛晴
大石恭生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101553874A publication Critical patent/CN101553874A/zh
Application granted granted Critical
Publication of CN101553874B publication Critical patent/CN101553874B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • G11B7/0917Focus-error methods other than those covered by G11B7/0909 - G11B7/0916
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0941Methods and circuits for servo gain or phase compensation during operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0948Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for detection and avoidance or compensation of imperfections on the carrier, e.g. dust, scratches, dropouts
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

在利用非点像差法作为聚焦误差信号(FE信号)的检测方式情况下,轨道跨越成分泄漏到FE信号。通过考虑FE信号的检测方式可以减少泄漏信号,但不能适用于光的利用效率降低的情况。通过光学串扰校正量决定部(1000),在光点跨越轨道时,根据在来自光盘(102)的反射光中产生的从TE信号向FE信号的光学串扰,决定用于校正跟踪误差检测部(120)的输出的校正量,将该决定的校正量和跟踪误差检测部(120)的输出相乘,和聚焦误差检测部(118)的输出相加。并且,由于根据加法运算的结果,由聚焦控制部(138)进行聚焦控制,所以,可以有效地减少因光学串扰而泄漏到FE信号中的TE信号成分。

Description

光盘装置、串扰校正方法和集成电路
技术领域
本发明涉及一种在光点跨越轨道时,对泄漏到聚焦误差信号的跟踪误差信号成分进行校正,并降低光盘装置的耗电和提高聚焦控制的稳定性的光盘装置、串扰(crosstalk)校正方法和集成电路。 
背景技术
近年来,作为高密度·大容量的记录介质,DVD-ROM、DVD-RAM、DVD±R、DVD±RW得到开发。除了上述的光盘外,作为以记录高清晰影像等为目的更大容量的记录介质,蓝光光盘(blu-ray disc)等光盘得到开发。 
在光盘装置中,在光盘聚光的光点跨越轨道时,会产生轨道跨越信号(跟踪误差信号(下面称为“TE”信号)泄漏到聚焦误差信号(下面称为“FE信号”)的光学串扰。若产生光学串扰,则光点会产生抖动,在该抖动较大的情况下,会产生散焦。 
在光盘装置中,在进行聚焦误差信号的检测中,较多采用非点像差法。非点像差法是一种如下所述的方法:将受光元件的受光面分成4部分,在被分割成4部分的受光面中,将在对角线上配置的2个受光面作为一组,对光强度信号进行相加(对各个以配置在对角线上的2个受光面构成的组进行光强度信号的加法运算,求取与各个组对应的这2个加法运算信号。),从这2个加法运算信号的差检测出聚焦误差信号。 
在这样的非点像差法中,例如,在受光元件的安装位置偏离了相对于光轴的光盘的轨道的切线方向的情况下,由于泄漏到2个加法运算信号的轨道跨越成分(光学串扰)不能成为相同的量,所以泄漏到2个加法运算信号的轨道跨越成分不能相互抵消,在聚焦误差信号中出现轨道跨越成分。若在该聚焦误差信号出现的轨道跨越成分较大,在光盘装置中,会产 生散焦。因此,需要校正光学串扰。 
在现有的光盘装置中采用在寻道(seek)中等跟踪控制停止的情况下,对光学串扰进行校正的方法。对此,利用图29进行说明。在图29表示了现有的光盘装置600的构成图。光盘装置600主要由如下构成:用于从光盘102再生信息或将信息记录在光盘102的光头(主要由光源104、耦接透镜(coupling lens)106、偏振光分束器108、偏振板110、会聚透镜(converging lens)112、聚光透镜114和受光元件116构成)、聚焦误差检测部2901、聚焦控制部2902、垂直移动部140、跟踪误差检测部2904、跟踪控制部2905、水平移动部142、和光学串扰校正部2911)。 
在图29中,聚焦误差检测部2901通过受光元件116从来自光盘的反射光中检测聚焦误差信号,并输出。聚焦控制部2902根据聚焦误差检测部2901的输出,产生控制信号以使光点在光盘上的的聚光状态大致保持恒定,通过该控制信号驱动垂直移动部140,执行聚焦控制。跟踪误差检测部2904通过受光元件116从来自光盘的反射光检测跟踪误差信号,并输出。跟踪控制部2905根据跟踪误差检测部2904的输出,产生控制信号以使光点的位置在自光盘的轨道中心大致恒定的范围内,通过该控制信号驱动水平移动部142,执行跟踪控制。在光点跨越轨道时,在从受光元件116向跟踪误差检测部2904的路径到受光元件116向聚焦误差检测部2901的路径上,产生光学串扰。在图29的2910表示的部分的构成,等价地表示该状态。由于该光学串扰,从跟踪误差信号向聚焦误差信号,泄漏相当于光学串扰的信号(光学的泄漏信号)。 
光学串扰校正部2911由系数器2908和加法器2912构成,对从聚焦误差检测部2901输出的聚焦误差信号进行电校正,以减少因光学串扰而产生的光学的泄漏信号成分。系数器2908将跟踪误差信号作为输入信号,将用于减少因光学串扰而产生的光学的泄漏信号成分的增益值与跟踪误差信号相乘,输出到加法器2912。加法器2912通过相加来自聚焦误差检测部2901的输出和来自系数器2908的输出,将减少了因光学串扰而产生的光学的泄漏信号成分的聚焦误差信号输出到聚焦控制部2902。 
由此,在光盘装置600中,可以实现降低光学串扰的影响的聚焦控制。 
关于该聚焦误差信号的校正,例如,具有如下技术:求出跟踪停止时 的泄漏到聚焦误差信号的跟踪误差信号的泄漏量,在寻道时,从聚焦误差信号减去根据该求得的泄漏量进行水平(level)调整后的跟踪误差信号(例如,参照专利文献1)。 
另外,关于该聚焦误差信号的校正,以往也采用过如下技术:将在岸台(land)和沟槽(groove)各不相同的聚焦偏置量,分别在岸台和沟槽进行校正(例如,参照专利文献2)。 
也有用差动非点像差法代替非点像差法来进行聚焦误差信号的校正的技术。在该差动非点像差法中,利用3个光束,通过取由受光面被分成4部分的受光元件作成的第1聚焦误差信号(通过第1光束获得的聚焦误差信号)和包含与第1聚焦误差信号中的光学串扰反相的光学串扰的第2聚焦误差信号(通过第2光束获得的聚焦误差信号和通过第3光束获得的聚焦误差信号的和信号)的和来使光学串扰降低。由此,可以防止由于光学串扰而产生的光学的泄漏信号成分泄漏到聚焦误差信号。 
专利文献1:特开2001-67682号公报(第2页) 
专利文献2:特开平8-180429号公报 
但是,根据上述技术,由于对象是跟踪控制停止的情况,所以,在跟踪控制开启时,由于轨道的曲折(蛇行)成分等会产生偏离轨道(off-track)的状态,在聚焦误差信号中产生光学串扰的情况下,在光盘装置中,存在耗电增加,聚焦控制变得不稳定的问题点。 
另外,根据上述技术,由于没有考虑由跟踪误差信号的调制系数的变化引起的光学串扰的变化,所以,例如,在光盘装置中存在如下问题:在岸台和沟槽的至少一方进行记录·再生的情况下,无法适当地校正光学串扰,存在耗电增加,聚焦控制变得不稳定。 
另外,根据上述技术,在具有2个以上可记录·再生的层的光盘进行记录/再生时,由于没有考虑因各层的跟踪误差信号的调制度(modulationdepth)的差异等而引起的光学串扰量的差异,所以在将相同的校正值应用于所有的层情况下,无法适当地校正光学串扰,在光盘装置中,存在耗电增加,聚焦控制变得不稳定的问题点。 
另外,根据上述技术,在再生来自光盘的信息中和向光盘记录信息中,对检测聚焦误差信号的光受光元件的聚焦误差信号的对比度(contrast)发 生变化,与此相伴泄漏到聚焦误差信号的跟踪误差信号的成分发生变化的情况下,例如,在聚焦误差信号的偏置量、球面像差量或径向倾斜(radialtilt)量发生变化的情况下,无法适当地校正光学串扰,在光盘装置中,存在耗电增加,聚焦控制变得不稳定的问题点。 
另外,在从聚焦驱动向跟踪驱动存在机械串扰(图30的3001为等价地表示其的部分)情况下,形成如图30中的箭头线R3003表示的往聚焦控制系的局部磁滞回线,存在聚焦控制系的动作变得不稳定的问题。 
另外,在上述的技术中,例如,在光盘装置的激光光源使用蓝色激光的情况下,由于不能将蓝色激光的输出能量提升到光盘装置所需要的激光能量上,所以,需要提升光头的光利用效率。因此,在以蓝色激光作为激光光源的光盘装置中,难以采用如差动非点像差法那样分割利用光的检测方法来降低光学串扰的影响。 
进而,在上述技术中,根据跟踪停止时的FE信号的振幅决定用于校正的增益值,将该增益值与TE信号相乘,将和增益值相乘后的TE信号和FE信号相加,由此来对由于串扰而泄漏到FE信号的TE信号成分进行校正。在上述技术中,在跟踪开启时,也使用在跟踪停止时确定的增益值,来校正因光学串扰而泄漏到FE信号的TE信号成分,在该方法中,跟踪开启时的校正并非最佳。 
对此,利用图29和图31进行说明。图31(a)是TE信号波形的一个例子。图31(b)是泄漏到FE信号的TE信号成分的信号波形的一个例子。在图31(a)、(b)均为横轴表示时间(横轴的变量作为θ,设为与时间对应的角度),纵轴表示振幅。图31(a)表示设聚焦误差信号为A·sinθ的情况下的信号波形,图31(b)表示设聚焦误差信号中的跟踪误差信号的泄漏成分为B·sin(θ+α)的情况下的信号波形。并且,将图29的系数器的增益值设为G。对于这种情况在下面进行说明。 
用于跟踪停止时的水平调整(校正)的增益值G按照使系数器2908的输出G·A·sinθ和由于光学串扰泄漏到FE信号的信号成分B·sin(θ+α)相加后的信号(下面称为“加法运算信号”)即(B·sin(θ+α)+G·A·sinθ)的振幅值成为最小的方式求得。展开该加法运算信号f(θ)如(数学式1)。 
【数学式1】 
f(θ)=Bsin(θ+α)+GAsinθ 
=(Bcosα+GA)sinθ+Bsinαcosθ 
根据(数学式1),加法运算信号的振幅值Amp通过(数学式2)求得。 
【数学式2】 
Amp = ( B cos α + GA ) 2 + ( B sin α ) 2
= A 2 ( G + B cos α / A ) 2 + B 2 ( 1 - cos 2 α )
根据(数学式2),使加法运算信号的振幅值Amp最小的增益值G,如(数学式3)求得。 
【数学式3】 
G=-Bcosα/A 
若将由(数学式3)求得的增益值G设定在系数器2908中,由于可以有效地减少跟踪停止时的FE信号中的TE信号的泄漏成分,所以,在光盘装置中,可以降低光学串扰的影响。 
但是,在光盘装置中,在跟踪开启时,轨道上点(on-track point)附近的FE信号的行为十分重要。即通过求取FE信号的振幅的斜率和TE信号振幅的斜率相同这样的光学校正量G,可以最佳地校正光学串扰。用于跟踪开启时的水平调整(校正)的增益值G,按照使系数器2908的输出G·A·sinθ的θ的微分值(斜率)和因光学串扰而泄漏到FE信号的信号成分B·sin(θ+α)的θ的微分值(gradient,斜率)相加后的信号,即加法运算信号(B·sin(θ+α)+G·A·sinθ)的θ的微分值成为最小的方式求得。该加法运算信号的微分值f′(θ)成为(数学式4)。 
【数学式4】 
f ′ ( θ ) = d dθ { B sin ( θ + α ) + GA sin θ }
对于f′(θ)的值成为0的增益值G,设f′(θ)=0,通过(数学式5)求得G。 
【数学式5】 
f ′ ( θ ) = d dθ { B sin ( θ + α ) + GA sin θ } = 0
d dθ B sin ( θ + α ) = d dθ ( - GA sin θ )
G=-B(cosα-sinαtanθ)/A 
在(数学式5),存在着(数学式3)中没有的2项,在这部分的轨道上点(0附近)中,增益值G的计算精度变高。 
若将通过(数学式5)求得的增益值设定在系数器2908中,由于可以有效地减少跟踪开启时的FE信号中的TE信号的泄漏成分,所以,在光盘装置中,可以高效率地降低在跟踪开启时的特别是在轨道上点附近的光学串扰的影响。 
另外,如由(数学式3)和(数学式5)可知,FE信号和TE信号的泄漏成分为同相的情况(α=0)下,在跟踪停止时最佳的校正量和在跟踪开启时最佳的校正量成为G=-B/A,变得一致,在不是同相的情况下,在跟踪开启时使用和跟踪停止时相同的校正量则无法最佳地校正光学串扰,在光盘装置中,产生消耗电流的增加,聚焦控制缺少稳定性的问题。 
进而,根据上述技术,在岸台和沟槽的轨道的能效比(duty ratio)不同的情况下,跟踪误差信号的斜率在各个轨道中不相同。因此,在需要轨道极性的切换的情况下,需要调整分别适于岸台和沟槽的光学串扰的校正值,若不进行这样的调整,就会产生消耗电流的增加,聚焦控制缺少稳定性的问题。 
进而,在上述技术中,关于聚焦误差信号的校正,在盘为多层的情况下,也可以通过同一方法进行校正。由于盘的制造上的偏差,基于各层在轨道间距存在偏差的情况下,为了进行最佳的校正,需要与各层对应地调整校正量,在上述技术中,若不进行这样的调整,在光盘装置中,产生消耗电流的增加,聚焦控制缺少稳定性的问题。 
进而,根据上述的技术,由于不进行基于聚焦误差信号的偏置量、激光器的球面像差量或头倾斜量的调整,所以不能进行最佳的校正,在光盘装置中,产生消耗电流的增加、聚焦控制缺少稳定性的问题。 
发明内容
本发明鉴于上述问题而提出的,其目的在于在光盘装置中不论在跟踪停止时还是跟踪开启时,抑制光盘装置的耗电的增加,提高聚焦控制的稳定性。 
另外,本发明目的在于实现一种用于该光盘装置的串扰校正方法和集成电路。 
第1发明是一种光盘装置,在具有由岸台和沟槽构成的轨道的光盘进行信息的记录再生,所述光盘装置具有:聚焦误差检测部、跟踪误差检测部、光学串扰校正量决定部、乘法器、加法器、聚焦控制部和跟踪控制部。聚焦误差检测部从在光盘聚光的点的反射光中检测聚焦误差信号,并输出聚焦误差信号。跟踪误差检测部从反射光中检测跟踪误差信号,并输出跟踪误差信号。光学串扰校正量决定部在点跨越轨道时,根据在来自光盘的反射光中产生的从跟踪误差信号泄漏到聚焦误差信号的信号成分的微分值(根据从跟踪误差信号泄漏到聚焦误差信号的信号中的、相位与跟踪误差信号相同的成分),决定用于校正跟踪误差检测部的输出的校正量。乘法器将跟踪误差检测部的输出和光学串扰校正量决定部所决定的校正量相乘。加法器将聚焦误差检测部的输出和乘法器的输出相加。聚焦控制部根据加法器的输出对点的聚焦进行控制。跟踪控制部根据跟踪误差检测部的输出进行跟踪控制。 
在本光盘装置中,通过光学串扰校正量决定部在点跨越轨道时,根据在来自光盘的反射光中产生的从TE信号向FE信号的光学串扰,决定用于校正跟踪误差检测部的输出的校正量,将该决定的校正量和跟踪误差检测部的输出相乘,和聚焦误差检测部的输出相加。并且,由于由聚焦控制部根据加法运算的结果执行聚焦控制,所以,可以有效地减少因光学串扰而泄漏到FE信号的TE信号成分。其结果,可以提高光盘装置中的聚焦控制的稳定性,可以减少光盘装置的耗电。 
另外,在本光盘装置中,由于由光学串扰校正量决定部根据从跟踪误差信号泄漏到聚焦误差信号的信号成分的微分值,决定用于校正跟踪误差检测部的输出的校正量,所以,在从TE信号泄漏到在FE信号的信号成 分的振幅值较小的情况下,也可以以较高的精度进行光学串扰的校正。因此,在本光盘装置中,即使在跟踪开启状态的情况下,也可以进行高精度的光学串扰校正。在跟踪开启状态(轨道上点附近)的情况下,由于从TE信号泄漏到FE信号的信号成分的振幅值较小,所以根据振幅值决定进行光学串扰校正的校正量,根据该校正量进行光学串扰校正,则精度较低。因此,在本光盘装置中,根据从TE信号泄漏到FE信号的信号成分的微分值来决定进行光学串扰校正的校正量,由此,在跟踪开启状态(轨道上点附近)也可以执行精度较高的光学串扰校正。另外,“微分值”是包括差分值(斜率值)的概念,例如,包括取在以一定周期间隔采样的信号值间的差分(斜率)的值的概念。 
第2发明以第1发明为基础,光学串扰校正量决定部在执行点的聚焦控制而不执行点的跟踪控制的情况下,根据从跟踪误差信号泄漏到聚焦误差信号的信号成分的振幅值,决定用于校正跟踪误差检测部的输出的校正量的粗略校正量。而且,光学串扰校正量决定部在执行点的聚焦控制并执行点的跟踪控制的情况下,根据从跟踪误差信号泄漏到聚焦误差信号的信号成分的微分量(根据从跟踪误差信号泄漏到聚焦误差信号的信号中的、相位与跟踪误差信号相同的成分),决定用于校正跟踪误差检测部的输出的校正量的精确校正量。 
在本光盘装置中,通过在求概略校正值后求精确校正量,来决定用于进行校正光学串扰校正的校正量,所以可以在短时间内正确地决定用于进行光学串扰校正的校正量。 
第3发明以第2发明未基础,还具有对跟踪控制部的输出附加扰动信号的扰动附加部。扰动附加部,在执行跟踪控制的情况下,附加具有跟踪控制和聚焦控制的频带外的频率和振幅的扰动信号。光学串扰校正量决定部根据因附加扰动信号而产生的、从跟踪误差信号泄漏到聚焦误差信号的信号成分,决定用于校正跟踪误差检测部的输出的校正量的精确校正量。 
在本光盘装置中,在执行跟踪控制的情况中,由扰动附加部附加具有跟踪控制和聚焦控制的频带外的频率和振幅的扰动信号,所以,可以高效率地决定精确校正量。另外,作为扰动信号,由于使用具有跟踪控制和聚焦控制的频带外的频率和振幅的信号,所以不会对跟踪控制和聚焦控制带 来影响,可以决定精确校正量。 
第4发明以第1到第3发明中的任意一项为基础,还具有跟踪极性决定部,其将进行跟踪控制的对象决定为轨道的岸台和沟槽的某一方。光学串扰校正量决定部根据跟踪极性决定部的输出,设定校正量。 
由此,由于可以抑制因在光盘的轨道的岸台及沟槽中至少一方的跟踪误差信号的调制度的变化引起的校正值的偏差,所以,可以减少光盘装置的耗电和提高聚焦控制的稳定性。 
第5发明以第4发明为基础,光学串扰校正量决定部在岸台和沟槽的至少任意的一方中,求取校正量。 
第6发明以第4发明为基础,光学串扰校正量决定部根据岸台的校正量,决定沟槽的校正量。 
由此,由于不需要用另一种方法决定沟槽的校正量,所以,可以高效率地根据岸台的校正量决定沟槽的校正量。 
第7发明以第4发明为基础,光学串扰校正量决定部根据沟槽的校正量,决定岸台的校正量。 
由此,由于不需要另外决定岸台的校正量,所以,可以高效率地根据沟槽的校正量决定岸台的校正量。 
第8发明以第1到第3发明中的任意一项为基础,光盘具有2个以上的可记录/再生的层;还具有:使点从任意的层向其他的层移动的层间移动部;和决定使点聚光的层的层决定部。光学串扰校正量决定部根据层决定部的输出,设定校正量。 
由此,对于由多层构成的光盘,也可以由本光盘装置适当地进行光学串扰校正。 
第9发明以第8发明为基础,光学串扰校正量决定部在光盘的各层中,求取校正量。 
由此,对于由多层构成的光盘,也可以执行考虑了层间的差异的光学串扰校正。 
第10发明以第8发明为基础,光学串扰校正量决定部根据任意层的校正量,决定其他的层的校正量。 
由此,可以高效率地决定其他层的校正量。 
第11发明以第1到第3发明中的任意一项为基础,还具有:偏置决定部,其决定和聚焦误差检测部的输出相加的偏置值;和偏置加法器,其将聚焦误差检测部的输出和偏置决定部所决定的偏置值相加。加法器将偏置加法器的输出和乘法器的输出相加。光学串扰校正量决定部根据偏置决定部所决定的偏置值,设定校正量。 
由此,可以根据偏置由本光盘装置适当地执行光学串扰校正。 
第12发明以第11发明为基础,光学串扰校正量决定部根据偏置决定部所决定的任意的偏置值的校正量,决定其他的偏置值的校正量。 
由此,可以高效率地决定其他偏置值的校正量。 
第13发明以第11发明为基础,光学串扰校正量决定部在偏置值由A成为B的情况下,重新计算偏置值为B时的校正量。 
由此,可以对应偏置值的变化,适当地执行光学串扰的校正。 
第14的发明以第1到第4发明中的任意一项为基础,还具有:球面像差检测部,其检测在光盘上的点中产生的球面像差校正量;和球面像差校正部,其根据球面像差检测部所检测出的球面像差校正量,校正球面像差。光学串扰校正量决定部根据球面像差检测部所检测出的球面像差校正量,设定校正量。 
由此,可以适当地进行考虑球面像差的光学串扰校正。 
第15发明以第14发明为基础,光学串扰校正量决定部根据球面像差检测部所检测出的任意的球面像差校正量的校正量,决定球面像差检测部所检测出的其他的球面像差校正量的校正量。 
由此,可以高效率地决定其他的球面像差校正量的校正量。 
第16发明以第14发明为基础,光学串扰校正量决定部在球面像差检测部所检测出的球面像差校正量由A成为B的情况下,重新计算球面像差校正量为B时的校正量。 
由此,可以对应球面像差量的变化,适当地执行光学串扰的校正。 
第17的发明以第1到第4发明中的任意一项为基础,还具有:径向倾斜检测部,其检测光盘的径向倾斜量;和径向倾斜校正部,其根据径向倾斜检测部所决定的径向倾斜量,校正径向倾斜量。光学串扰校正量决定部根据径向倾斜检测部所检测出的径向倾斜量,设定校正量。 
由此,可以根据径向倾斜量,由本光盘装置适当地执行光学串扰校正。 
第18发明以第17发明为基础,光学串扰校正量决定部根据径向倾斜检测部所检测出的任意的径向倾斜量的校正量,决定径向倾斜检测部所检测出的其他的径向倾斜量的校正量。 
由此,可以高效率地决定其他的径向倾斜量的校正量。 
第19发明以第17发明为基础,光学串扰校正量决定部在径向倾斜检测部所检测出的径向倾斜量由A成为B的情况下,决定径向倾斜量为B时的校正量。 
由此,可以根据径向倾斜量的变化适当地执行光学串扰校正。 
第20发明是一种串扰校正方法,用于在具有由岸台和沟槽构成的轨道的光盘进行信息的记录再生的光盘装置,所述串扰校正方法包括:聚焦误差检测步骤、跟踪误差检测步骤、光学串扰校正量决定步骤、乘法运算步骤、加法运算步骤、聚焦控制步骤和跟踪控制步骤。聚焦误差检测步骤中,从在光盘聚光的点的反射光中检测聚焦误差信号,并输出聚焦误差信号。跟踪误差检测步骤中,从反射光中检测跟踪误差信号,并输出跟踪误差信号。光学串扰校正量决定步骤,在点跨越轨道时,根据在来自光盘的反射光中产生的从跟踪误差信号泄漏到聚焦误差信号的信号成分的微分值,决定用于校正跟踪误差检测部的输出的校正量。乘法运算步骤中,将跟踪误差检测部的输出和光学串扰校正量决定部所决定的校正量相乘。加法运算步骤中,将聚焦误差检测部的输出和乘法器的输出相加。聚焦控制步骤中,根据加法器的输出对点的聚焦进行控制。跟踪控制步骤中,根据跟踪误差检测部的输出进行跟踪控制。 
本串扰校正方法可以产生和第1发明相同的效果。 
第21发明是一种串扰校正方法,在具有由岸台及沟槽构成的轨道的光盘中,在光盘聚光的点跨越轨道时,根据是岸台及沟槽中的哪一个,设定对来自光盘的反射光中产生的由跟踪误差信号向聚焦误差信号的光学串扰进行校正的校正量;将表示轨道与在光盘聚光的点之间的偏移的跟踪误差信号和校正量相乘,将乘法运算结果和表示点在光盘的会聚状态的聚焦误差信号相加。 
本串扰校正方法可以产生和第1发明相同的效果。 
由此,由于可以抑制因光盘的轨道的岸台及沟槽中的至少一方的跟踪误差信号的调制度的变化引起的校正值的偏差,所以,通过将本校正方法在光盘装置使用,可以减少光盘装置的耗电和提高聚焦控制的稳定性。 
第22发明以第21发明为基础,在岸台和沟槽的至少任意的一方中,求取校正量。 
第23发明以第21发明为基础,根据岸台的校正量,决定沟槽的校正量。 
第24发明以第21发明为基础,根据沟槽的校正量,决定岸台的校正量。 
第25发明是一种串扰校正方法,在光点跨越光盘的轨道时,根据是光盘的层的哪一层,设定对来自光盘的反射光中产生的从跟踪误差信号向聚焦误差信号的光学串扰进行校正的校正量;将表示轨道与在光盘聚光的光点之间的偏移的跟踪误差信号和校正量相乘,将乘法运算结果和表示光点在光盘的会聚状态的聚焦误差信号相加。 
由此,对由多层构成的光盘也可以执行考虑层间的差异的光学串扰校正。 
第26发明以第25发明为基础,在光盘的各层中,求取校正量。 
第27发明以第25发明为基础,根据任意的层的校正量,决定其他的层的校正量。 
第28发明是一种串扰校正方法,在光点跨越光盘的轨道时,根据对聚焦误差信号的偏置值,设定对来自光盘的反射光中产生的从跟踪误差信号向聚焦误差信号的光学串扰进行校正的校正量;将表示轨道与在光盘聚光的光点之间的偏移的跟踪误差信号和校正量相乘,将乘法运算结果和表示光点在光盘的会聚状态的聚焦误差信号相加。 
由此,可以根据偏置值适当地执行光学串扰校正。 
第29发明以第28发明为基础,根据偏置值在任意的情况下的校正量,决定偏置值在其他的情况下的校正量。 
第30发明以第28发明为基础,在偏置值由A成为B的情况下,重新计算偏置值为B时的校正量。 
第31发明是一种串扰校正方法,在光点跨越光盘的轨道时,根据对在光盘上的光点中产生的球面像差进行校正的球面像差校正量,设定对来自光盘的反射光中产生的从跟踪误差信号向聚焦误差信号的光学串扰进行校正的校正量;将表示轨道与在光盘聚光的光点之间的偏移的跟踪误差信号和校正量相乘,将乘法运算结果和表示向点在光盘的会聚状态的聚焦误差信号相加。 
第32发明以第31发明为基础,根据球面像差校正量在任意的情况下的校正量,求取球面像差校正量在其他情况下的校正量。 
第33发明以第31发明为基础,在球面像差校正量由A成为B的情况下,重新计算球面像差校正量为B时的校正量。 
第34发明是一种串扰校正方法,在光点跨越光盘的轨道时,根据对在光盘中产生的径向倾斜量进行校正的径向倾斜校正量,设定对来自光盘的反射光中产生的从跟踪误差信号向聚焦误差信号的光学串扰进行校正的校正量;将表示轨道与在光盘聚光的点之间的偏移的跟踪误差信号和校正量相乘,将乘法运算结果和表示光点在光盘的会聚状态的聚焦误差信号相加。 
由此,可以根据径向倾斜量适当地执行光学串扰校正。 
第35发明以第34发明为基础,根据径向倾斜校正量在任意情况下的校正量,决定径向倾斜校正量在其他的情况下的校正量。 
第36发明以第34发明为基础,在径向倾斜校正量由A成为B的情况下,重新计算径向倾斜校正量为B时的校正量。 
第37发明是一种集成电路,用于在具有由岸台和沟槽构成的轨道的光盘进行信息的记录再生的光盘装置,所述集成电路具有:聚焦误差检测部、跟踪误差检测部、光学串扰校正量决定部、乘法器、加法器、聚焦控制部和跟踪控制部。聚焦误差检测部从在光盘聚光的点的反射光中检测聚焦误差信号,并输出聚焦误差信号。跟踪误差检测部从反射光中检测跟踪误差信号,并输出跟踪误差信号。光学串扰校正量决定部在点跨越轨道时,根据在来自光盘的反射光中产生的从跟踪误差信号泄漏到聚焦误差信号的信号成分的微分值,决定用于校正跟踪误差检测部的输出的校正量。乘法器将跟踪误差检测部的输出和光学串扰校正量决定部所决定的校正量相乘。加法器将聚焦误差检测部的输出和乘法器的输出相加。聚焦控制部根据加法器的输出对点的聚焦进行控制。跟踪控制部根据跟踪误差检测部的输出进行跟踪控制。 
本集成电路产生和第1发明相同的效果。 
根据本发明,不论在跟踪停止时还在跟踪开启时,根据岸台及沟槽中的至少一方、层、聚焦偏置量、球面像差量或径向倾斜量来设定光学串扰校正量,从而可以适当地校正光学串扰。由此,可减少光盘装置的耗电和提高聚焦控制的稳定性。 
另外,可以实现在光盘装置使用的串扰校正方法和集成电路。 
附图说明
图1是表示本发明的实施方式1中的光盘装置的图。 
图2是表示本发明的实施方式1到实施方式5中作为对象的光盘的图。 
图3是表示本发明的实施方式1到实施方式5中的光学串扰测定的例子的图。 
图4是表示本发明的实施方式1中的光学串扰校正量设定部1的图。 
图5是本发明的实施方式1中的流程图。 
图6是表示本发明的实施方式1中的光学串扰校正量设定部2的图。 
图7是本发明的实施方式1中的流程图。 
图8是表示本发明的实施方式2中的光盘装置的图。 
图9是表示本发明的实施方式2中的光学串扰校正量设定部1的图。 
图10是本发明的实施方式2中的流程图。 
图11是表示本发明的实施方式2中的光学串扰校正量设定部2的图。 
图12是本发明的实施方式2的流程图。 
图13是表示本发明的实施方式3中的光盘装置的图。 
图14是表示本发明的实施方式3中的光学串扰校正量设定部1的图。 
图15是本发明实施方式3中的流程图。 
图16是表示本发明的实施方式3中的光学串扰校正量设定部2的图。 
图17是本发明的实施方式3中的流程图。 
图18是表示本发明的实施方式4中的光盘装置的图。 
图19是表示本发明的实施方式4中的光学串扰校正量设定部1的图。 
图20是本发明的实施方式4中的流程图。 
图21是表示本发明的实施方式4中的光学串扰校正量设定部2的图。 
图22是本发明的实施方式4中的流程图。 
图23是表示本发明的实施方式5中的光盘装置的图。 
图24是表示本发明的实施方式5中的径向倾斜检测部的图。 
图25是表示本发明的实施方式5中的光学串扰校正量设定部1的图。 
图26是本发明的实施方式5中的流程图。 
图27是表示本发明的实施方式5中的光学串扰校正量设定部2的图。 
图28是表示本发明的实施方式5中的流程图2的图。 
图29是表示现有的光盘装置中的光学串扰校正部的图。 
图30是具有光学串扰和机械串扰的光盘装置的框图。 
图31是TE信号波形和泄漏到FE信号的TE信号成分的信号波形的一个例子。 
图32是扰动信号、TE信号和FE信号的一个例子。 
图33是表示增益值Gα和光学串扰量之间的关系的图表。 
符号的说明 
100、200、300、400、500-光盘装置,102-光盘、104-光源,106-耦接透镜,108-偏振光分束器,110-偏振板,112-会聚透镜,114-聚光透镜,116-受光元件,118-聚焦误差检测部,120-跟踪误差检测部,124-光学串扰校正量运算部,126-加法器,128-乘法器,130-极性切换部,132-跟踪控制部,136-校正量切换部,138-聚焦控制部,1440-扰动附加部,140-扰动生成器,142-垂直移动部,144-水平移动部,156-跟踪极性决定部,202-层决定部,206-层间移动部,302-偏置决定部,306-偏置加法器,404-球面像差检测部,402-球面像差校正部,502-径向倾斜检测部,504-径向倾斜校正部。 
具体实施方式
(实施方式1) 
<光盘装置的构成> 
图1是表示本发明的实施方式1中的光盘装置100的构成的框图。 
本发明的光盘装置100具有用于从光盘102再生信息或将信息记录到光盘102的光头(主要由光源104、耦接透镜106、偏振光分束器108、偏振板110、会聚透镜112、聚光透镜114和受光元件116构成) 
光盘102是可以通过光束进行存取(access)的信息介质。光盘102具有由岸台和沟槽构成的轨道,从岸台和沟槽的至少一方再生信息,另外向岸台和沟槽中的至少一方记录信息。另外,光盘102,如图2(A)所示那样可记录/再生的层可以只有一个层1002,也可以如图2(B)所示那样有两个层即层1004和层1006,或者也可以有3个以上的层。例如,光盘102可以是DVD-ROM或DVD-RAM、DVD-R、DVD+R、DVD-RW或DVD+RW,可以是红外光源用的光盘或蓝色光源用的光盘。 
光源104是射出扩散光的元件。例如,可以是半导体激光、红外光源、红色光源和蓝色光源。光源104射出的光束通过耦合透镜106成为平行光后,通过偏振光分束器108被反射,穿过偏振板110,通过会聚透镜112被会聚。并且,通过会聚后的光束,形成光点以使在光盘的垂直方向具有聚焦点。 
来自光盘102的反射光穿过会聚透镜112、偏振板110、偏振光分束器108,通过聚光透镜114被输入到受光元件116。受光元件116的输出被输入到聚焦误差检测部118和跟踪误差检测部120。聚焦误差检测部118的输出被输入到光学串扰校正量运算部124和加法器126。跟踪误差检测部120的输出被输入到光学串扰校正量运算部124、乘法器128和极性切换部130。极性切换部130的输出被输入到跟踪控制部132。光学串扰校正量运算部124的输出被输入到校正量切换部136。校正量切换部136的输出被输入到乘法器128。乘法器128的输出是将跟踪误差检测部120的输出和校正量切换部136的输出相乘,被输入到加法器126。加法器126将聚焦误差检测部118的输出和乘法器128的输出相加,将其输入到聚焦控制部138输入。聚焦控制部138的输出被输入到垂直移动部140。跟踪控制部132的输出通过扰动附加部1440,被输入到水平移动部142。跟踪极性决定部156的输出被输入到极性切换部130、光学串扰校正量运算部124和校正量切换部136。 
另外,扰动附加部1440包括:生成扰动信号的扰动生成器144;和将扰动生成器144的输出和跟踪控制部132的输出相加并输出到水平移动部142的加法器1441。 
另外,光学串扰校正量运算部124和校正量切换部构成光学串扰校正量决定部1000。 
受光元件116被分割成多个元件,例如分割成2部分或4部分,输出与各元件的受光光量对应的信号。 
聚焦误差检测部118检测出光点与光盘102的记录/再生层之间的垂直方向的位置偏移信号(FE信号),并将其输出。FE信号的检测方法,例如可以利用非点像差法,也可以利用SSD(spot size detection)法。 
跟踪误差检测部120检测出光点与光盘102上的轨道之间的水平方向的位置偏移信号(TE信号),并将其输出。TE信号的检测方法,例如可以利用PP(push-pull)法、也可以利用3光束法或位相差法。 
光学串扰校正量运算部124在光点跨越光盘102上的轨道时,对从在来自光盘102的反射光中产生的从跟踪误差信号泄漏到聚焦误差信号的信号成分(下面称为“光学串扰”)进行测定,决定用于校正光学串扰的校正量。光学串扰的测定方法例如,如图3所示,在扰动生成器144产生特定频率的正弦波的扰动,对利用扰动强制地产生偏离轨道时的聚焦误差检测部118的输出的振幅和跟踪误差检测部120的输出的振幅进行测定。 
对此,以下进行说明。 
首先,在光盘装置100中,使聚焦控制成为开启状态,使跟踪控制成为停止状态,计测FE信号的信号振幅,求取光学串扰的量(下面称为“光学串扰量”)。根据该光学串扰量求取光学串扰校正量的近似粗略值Gα。即这相当于根据上述的(数学式3)求取增益值G的操作。 
接着,使聚焦控制保持开启状态,使跟踪控制成为开启状态,在光盘装置中,在执行跟踪控制时,通过扰动附加部1440,将具有跟踪控制和聚焦控制的频带外的频率和振幅的扰动信号加在跟踪控制部132的输出上。在这样的状态下,根据TE信号的斜率即微分值(差分值)和FE信号的斜率即微分值(差分值)求取串扰量,根据该求得的串扰量求取光学串扰校正量的精确值Gα′。即这相当于根据上述(数学式5)求增益值G的操作。更具体地,利用图32和图33进行说明。 
在图32,表示了扰动信号21、TE信号22和FE信号23。扰动信号21在聚焦控制状态并且是跟踪控制状态时,以矩形波信号来赋予。根据赋予的扰动信号21的变化,TE信号和FE信号发生变化,从扰动信号21即矩形波信号的上升沿和下降沿起经过了大概一定时间(Tm)后,产生位移最大的点和位移最小的点。设从扰动信号21的沿起任意的时刻下的所述Tm时间后的TE信号的位移值为TE[n]、FE信号位移为FE[n],则根据TE信号,影响FE信号的位移量(光学串扰量)如(数学式6)所示。 
【数学式6】 
Figure 807324DEST_PATH_G42276326150138000D000091
这个通过(数学式6)求得的光学串扰量从算出的符号关系还可以判断TE信号和FE信号的相位关系。 
接着,对于从如以上求得的光学串扰量来算出光学串扰校正量的精确值Gα′的方法,利用图33进行说明。 
图33是横轴取用于决定光学串扰校正量的增益值Gα,纵轴取光学串扰量(以下略记为Crs)的图表。在图33的24所示的直线是用于求取决定光学串扰校正量的增益值的近似线,在25所示的点是第1测定点,在26所示的点是第2测定点。 
对增益值Gα赋予不会导致过度校正的适当的初始值,按照光学串扰量Crs在(数学式6)表示的计测方法进行测定。 
由于已经明确Gα和Crs具有一次线性关系,根据作为初期值赋予Gα来测定的第1测定点25利用近似线24可以容易地求得Crs为0(零)的Gα。由于将Crs为0(零)的Gα设为光学串扰校正量的精确值Gα′,所以可以决定光学串扰校正量。 
如图4所示,校正量切换部136主要由校正量输入切换部146、岸台校正量保存部148、沟槽校正量保存部150和校正量输出切换部152构成。校正量输入切换部146根据跟踪极性决定部156的输出,来选择将从光学串扰校正量运算部24输入的校正量输入到岸台校正量保存部148还是输入到沟槽校正量保存部。岸台校正量保存部148保存跟踪极性决定部156的输出在岸台的光学串扰校正量,并保持该输出。沟槽校正量保存部150保存跟踪极性决定部156的输出在沟槽的光学串扰校正量,并保持该输出。校正量输出切换部152根据跟踪极性决定部156的输出,来选择向乘法器128的输出。 
聚焦控制部138根据输入的信号,生成控制信号,以使光点在光盘102的聚光状态大致恒定。作为聚焦控制部138,例如可以利用相位补偿滤光镜。 
极性切换部130根据跟踪极性决定部156的输出,使跟踪误差信号的极性翻转(切换)。例如,在来自跟踪极性决定部156的输出是岸台的情况下,由极性切换部130将跟踪误差检测部120的输出翻转,在沟槽的情况下,极性切换部130不将跟踪误差检测部120的输出翻转。 
跟踪控制部132根据输入的信号,生成控制信号,以使光点在光盘102上的距轨道中心大致一定的范围内进行扫描。作为跟踪控制部132例如可以利用相位补偿滤光镜。 
垂直移动部140使会聚透镜112相对于光盘102在垂直方向上移动。作为垂直移动部140,例如可以利用执行机构(actuator)。 
水平移动部142使会聚透镜112相对于光盘102在水平方向上上移动。作为水平移动部142,例如可利用执行机构。 
跟踪极性决定部156决定跟踪极性是岸台还是沟槽。 
<光盘装置的动作> 
在以上的构成中,参照图5,对于实施方式1所涉及的光盘装置100的动作进行说明。图5是关于根据实施方式1所涉及的岸台/沟槽(是岸台、或者是沟槽)来切换光学串扰校正量的动作的流程图。 
在该校正量切换控制中,光盘装置100首先通过光学串扰补量正运算部124,利用所述方法决定串扰的校正量(S100)。根据跟踪极性决定部156的输出,对跟踪极性是岸台还是沟槽进行判断(S102)。在跟踪极性是岸台的情况下,操作校正量输入切换部146(S104),将决定的校正量保存于岸台校正量保存部148(S106)。在跟踪极性是沟槽的情况下,将决定的校正量保存于沟槽校正量保存部150(S108)。 
接着,判断岸台校正量保存部148和沟槽校正量保存部150中是否保存了校正量,在未保存的情况下,对光学串扰进行测定(S110),直到保存为止。该判别是通过在利用(数学式6)计算的光学串扰量在规定的范围内收敛的情况下,保存该校正量的动作来实现的。另外,在上述内容中,对于求取岸台和沟槽的两方的校正量的情况进行了说明,但是,也可以只对岸台或沟槽中的一方求校正量。在这种情况下,在只对岸台求取校正量时,在步骤S110中,只要判别岸台校正量保存部148中是否保存了校正量即可,而在只对沟槽求取校正量时,在步骤S110中,只要判别沟槽校正量保存部150中是否保存了校正量即可。 
对岸台校正量保存部148中保存的校正量和沟槽校正量保存部150中保存的校正量而言,根据跟踪极性决定部156的输出,判断跟踪极性是岸台还是沟槽(S112)。在跟踪极性是岸台的情况下,对校正量输出切换部152进行操作(S114),将岸台校正量保存部148的校正值输出到乘法器128(S116)。在跟踪极性是沟槽的情况下,将沟槽校正量保存部150的校正值输出到乘法器128(S116)。并且,反复地进行S112到S116的处理,直到光盘装置100停止为止(S118)。 
另外,校正量切换部136也可以为如图6所示。在图6中,标注和图4相同的符号,省略说明。校正量变换部154将岸台校正量保存部148中保存的岸台的校正量作为输入,变换成沟槽的校正量,将变换后的校正量输入到沟槽校正量保存部150。另外,校正量变换部154例如对岸台和沟槽的跟踪误差信号的调制度进行计测,根据该调制度,进行校正量的变换。 
接着,在具有在图6表示的校正量切换部136的构成中,对实施方式1所涉及的光盘装置的动作,参照图7进行说明。对和图5相同的部分,标注和图5相同的符号,省略说明。 
在S106之前对岸台校正量保存部148未输入校正量的情况下,通过校正量变换部154,根据岸台的校正量决定沟槽的校正量(S120),将决定的沟槽校正量保存于沟槽校正量保存部150(S122)。 
另外,校正量变换部154也可以根据沟槽校正量保存部150中保存的校正量,决定岸台的校正量,将决定的校正量保存于岸台校正量保存部148。 
另外,在图5、图7中,也可以调换S100的处理和S102的处理,根据跟踪极性决定部156的输出,使光学串扰校正量运算部124动作,决定校正量。 
如上所述,根据实施方式1的光盘装置100,校正量切换部136根据岸台/沟槽(是岸台、或者是沟槽),切换光学串扰的校正值,分别对岸台及沟槽设定适当的校正量,由于可以校正因岸台中跟踪误差信号的调制度与沟槽中跟踪误差信号的调制度的差异引起的光学串扰的差,所以,可以减轻泄漏到从聚焦误差检测部118输出的FE信号的TE信号成分。其结果,可以减少垂直移动部140的驱动,可以减小光盘装置100的耗电。另外,由于可以使在图30表示的局部磁滞回线(minor loop)R3003的影响变小,所以在光盘装置100中,可以提高聚焦控制的稳定性。进而,在光盘装置100具有如图6所示的校正量切换部136的情况下,只要仅在一方的轨道极性中,由光学串扰校正量运算部124求取校正量即可,可以缩短到另一方的轨道极性的校正量决定为止的时间。 
(实施方式2) 
接着对本发明的实施方式2进行说明。 
<光盘装置的构成> 
图8是表示本发明的实施方式2的光盘装置200的构成的框图。另外,对于和所述实施方式1相同的构成,标注和图1到图7相同的符号,省略说明。光盘102由如图2(B)所示的2个层或3个以上的层构成。 
在实施方式2所涉及的光盘装置200中,层决定部202的输出被输入到光学串扰校正量运算部124、校正量切换部136、开关204、层间移动部206和开关208。开关204根据层决定部202的输出,来选择将加法器126的输出是输入到聚焦控制部138还是输入到层间移动部206。层间移动部206的输出,通过加法器2001,被输入到垂直移动部140。开关208根据层决定部202的输出。切换跟踪控制的开启/停止。 
层决定部202根据再生或寻道等的目标地址,决定将光点在光盘102的层1004聚光还是在层2006聚光。 
层间移动部206根据层决定部202的输出,使光点移动到光盘102的规定的层。例如可以层间跳跃,也可以将焦点重新拉回到规定的层。 
校正量切换部136如图9所示,包括:校正量输入切换部146;保存第1层的校正量的第1层用校正量保存部210;保存第2层的校正量的第2层用校正量保存部212;和校正量输出切换部152。第1层用校正量保存部210保存在层决定部202的输出是第1层的情况下的校正量,并保持。第2层用校正量保存部212保存在层决定部202的输出是第2层的情况下的校正量,并保持。 
<光盘装置的动作> 
在以上的构成中,参照图10,对实施方式2所涉及的光盘装置200的动作进行说明。图10是关于在光盘装置200中根据光盘102的层来切换光学串扰校正量的动作的流程图。 
在该校正量切换控制中,光盘装置200首先在光盘102的层1004的规定的轨道,进行聚焦控制和跟踪控制(S200),由光学串扰校正量124决定第1层的校正量(S202),将该校正量输入到第1层用校正量保存部210(S204)。 
接着,在层决定部202的输出从层1004切换到层2006的情况下(S206),使开关208断开(S208),切断向跟踪控制部的输入,使跟踪控制成为停止状态。 
使跟踪控制成为停止状态后,将开关204切换到层间移动部206侧(S210),使光点移动到层2006(S212)。在使光点移动到层2006后,将开关204切换到聚焦控制部138侧(S214),使开关208接通(S216),进行跟踪控制(使跟踪控制成为开启状态)。 
使跟踪控制成为开启状态后,判别层2006的光学串扰校正量是否被保存于第2层用校正量保存部212(S218)。在层2006的光学串扰校正量未被保存于第2层用校正量保存部212的情况下,由光学串扰校正量运算部124决定第2层的校正量(S220),将决定的校正量保存于第2层用校正量保存部212(S222)。 
根据层决定部202的输出来切换校正量输出切换部152,将保存于第2层用校正量保存部212的第2层的校正量输入到乘法器128(S224)。 
另外,在第2层的校正量未被保存于第2层用校正量保存部212的情况下,从S208到S220的校正量可以是0,也可以是规定的校正量。 
另外,在第2层的校正量被保存于第2层用校正量保存部212的情况下,由校正量输出切换部152进行的从第1层用校正量保存部210向第2层用校正量保存部212的切换也可以在S208到S224的任意步骤中进行。 
另外,校正量切换部136也可以如图11所示。在图11中,对和图9相同的构成标注相同的符号,省略说明。校正量变换部154将保存于第1层用校正量保存部210的第1层的校正量作为输入,将其变换成第2层的校正量,将变换后的校正量输入到第2层用校正量保存部212。另外,校正量变换部154例如计测层1004和层2006的跟踪误差信号的调制度,根据该调制度,进行校正量的变换。 
接着,在图11表示的具有校正量切换部136的构成中,对光盘装置200的动作参照图12进行说明。对于和图10相同的部分,标注和图10相同的符号,省略说明。 
在S204之前对第1层用校正量保存部210输入了校正量的情况下,根据校正量变换部154决定第2层的校正量(S226),将决定的第2层校正量保存于第2层用校正量保存部212(S228)。 
在第2层的校正量在第1层的校正量之前被决定的情况下,也可以通过校正量变换部将第2层的校正量变换成第1层的校正量,决定第1层的校正量。 
另外,用于对应3个以上层的光盘的情况下光盘装置200也可以具有保存各层的校正量的构成部分。 
如上所述,根据光盘装置200,校正量切换部136根据层来切换光学串扰的校正值在各个层设定适当的校正量,由于可以抑制因各层中的跟踪误差信号的调制度的差异而引起的光学串扰的差,所以,可以减少泄漏到从聚焦误差检测部118输出的FE信号的TE信号成分。其结果,可以减少垂直移动部140的驱动,降低光盘装置的耗电。另外,由于可以减小局部磁滞回线R3003的影响,所以在光盘装置200中,可以提高聚焦控制的稳定性。进而,在光盘装置200具有校正量切换部136的情况下,可以通过光学串扰校正量运算部124只求取在一个层的校正量,由于可以根据该校正量求取其他层的校正量,所以,在求取其他层的校正量的情况下,可以缩短决定校正量为止的时间。 
(实施方式3) 
接着,对本发明的实施方式3进行说明。 
图13是表示本发明的实施方式3的光盘装置300的构成的框图。另外,对于和所述的实施方式相同的构成,标注和图1到图12相同的符号,省略说明。 
在实施方式3所涉及的光盘装置300中,受光元件116的输出被输入到聚焦误差检测部118、跟踪误差检测部120和偏置决定部302。偏置决定部302输出偏置值。输出的偏置值被输入到偏置加法器306、光学串扰校正量运算部124和校正量切换部136。偏置加法器136将聚焦误差检测部118的输出和偏置值相加,并输入到加法器126。加法器126的输出,将偏置加法器306的输出和乘法器128的输出相加的值,将其输入到聚焦控制部138。 
偏置决定部302按照使从光盘102的再生和向光盘102的记录确保规定的品质的方式,决定在聚焦误差检测部118中进行加法运算的偏置值。规定的品质是指例如在再生时,再生信号的抖动和再生信号的调制度为最好的情况下的品质。另外,偏置决定部302进行动作可以以一定时间间隔进行,也可以以一定温度间隔进行。 
校正量切换部136如图14所示,由校正量输入切换部146、第1偏置的校正量保存部310、第2偏置的校正量保存部312、…、第N偏置的校正量保存部314和校正量输出切换部152构成。在第1偏置的校正量保存部310中保存保持从偏置决定部302输出的偏置值在第1范围内的校正量,在第2偏置的校正量保存部312中保存保持偏置值在规定的第2范围内的校正量,在第N偏置的校正量保存部314保存保持偏置值在规定的第N范围内的校正量。另外,从规定的第1范围到规定的第N范围分别取得的偏置值不会重复且在不同的范围。 
<光盘装置的动作> 
在以上的构成中,参照图15,对光盘装置300的动作进行说明。图15是在光盘装置300中关于根据和聚焦误差信号相加的偏置来切换光学串扰校正量的动作的流程图。 
在该校正量切换控制中,光盘装置300首先通过偏置决定部302决定 偏置值(S300)。接着,对决定的偏置值在规定的第1范围到规定的第N范围中的哪个范围进行决定(S302)。根据决定的范围,切换校正量输出切换部152,将校正量输入到乘法器128(S304)。另外,各规定的范围的校正量也可以被事先赋予,也可以根据各范围的偏置值由光学串扰校正量运算部124决定。 
另外,校正量切换部136也可以是如图16所示的构成。在图16中,对和图14相同的结构标注和图14相同的符号,省略说明。校正量变换部154将在第1偏置值的校正量保存部310中保存的规定的第1范围的校正量作为输入,根据该校正量,通过变换求得第2偏置值的校正量保存部312到第N偏置值的校正量保存部314中保存的各个校正量。并且将通过变换求得的各个校正量分别输入到第2偏置的校正量保存部312到第N偏置的校正量保存部314。另外,校正量变换部154例如在从规定的第1范围到规定的第N范围的各种情况下,对跟踪误差信号的调制度进行计测,根据该调制度,进行校正量的变换。 
接着,在图16表示的具有校正量切换部136的构成中,参照图17,对光盘装置300的动作进行说明。对和图15相同的部分,标注和图15相同的符号,省略说明。 
首先,决定偏置值(S306),对决定的偏置值在规定的第1范围到规定的第N范围中的哪个范围进行决定(S308)。决定范围后,由光学串扰校正量运算部124决定校正量(S310),在第1偏置值的校正量保存部310到第N偏置值的校正量保存部314内,向和在S310决定的规定范围对应的校正量保存部输入所决定的校正量(S312)。 
接着,根据在S310决定的校正量,由校正量变换部154对在S310决定的规定的范围以外的规定的范围1到规定的范围N的校正量进行决定,向和规定的范围对应的校正量保存部输入由校正量变换部154所决定的校正量(S314)。 
另外,向校正量变换部154的输入可以是来自第1偏置的校正量保存部310到第N偏置的校正量保存部314中的至少一个的输出,校正量变换部154也可以在输入的校正量保存部以外的校正量保存部输出变换后的校正量。 
另外,图17的S310的处理也可以在S306的处理和S308的处理之间进行。 
另外,也可以是在从偏置决定部输出的偏置值发生变化的情况下,每次偏置值方式变化,根据变化后的偏置值,决定第1偏置的校正量保存部到第N偏置的校正量保存部的至少1个校正量。 
如上所述,根据光盘装置300,校正量切换部136根据聚焦误差信号的偏置值来切换光学串扰校正量的校正值,对偏置分别设定适当的校正量,由于可以抑制因各个偏置值下的跟踪误差信号的调制度的差异引起的光学串扰的差,所以,可以减少泄漏到从聚焦误差检测部118输出的FE信号的TE信号成分。其结果,可以减少垂直移动部140的驱动,降低光盘装置300的耗电。另外,由于可以减小图30所示的局部磁滞回线R3003的影响,所以,在光盘装置300中,可以提高聚焦控制的稳定性。进而,在光盘装置300具有校正量切换部136的情况下,由于可以通过光学串扰校正量运算部124,关于偏置值,只要仅仅求取在1个规定的范围的校正量即可,由于基于该校正量可以求得在其他的规定的范围的校正量,所以,在求取在其他的范围的校正量的情况下,可以缩短到决定校正量为止的时间。 
(实施方式4) 
接着,对本发明的实施方式4进行说明。 
<光盘装置的构成> 
图18是表示本发明的实施方式4的光盘装置400的构成的框图。另外,对所述的实施方式相同的构成,标注和图1到图17相同的符号,省略说明。 
在实施方式4所涉及的光盘装置400中,通过偏振光分束器108被反射的光穿过球面像差校正部402,输入到偏振板110。 
受光元件116的输出被输入到聚焦误差检测部118、跟踪误差检测部120和球面像差检测部404。球面像差检测部404的输出在球面像差校正部402、光学串扰校正量运算部124和校正量切换部136输入。 
球面像差校正部402是对在由光盘102和会聚透镜112聚光后的点之间产生的球面像差进行校正的光学元件,根据球面像差检测部404的输出 对球面像差进行校正。作为球面像差校正部402,可以利用例如准直透镜。 
球面像差检测部404决定球面像差校正量,以使自光盘102的再生和向光盘102的记录可以确保规定的品质。规定的品质是指例如再生时,再生信号的抖动和再生信号的调制度为最好的情况下的品质。另外,球面像差检测部404进行动作可以以一定的时间间隔进行,也可以以一定的温度间隔进行。 
校正量切换部136如图19所示,由校正量输入切换部146、第1球面像差的校正量保存部406、第2球面像差的校正量保存部408、第N球面像差的校正量保存部410和校正量输出切换部152构成。在第1球面像差的校正量保存部406中保存保持球面像差在规定的范围1的校正量,在第2球面像差的校正量保存部408中保存保持球面像差在规定的范围2的校正量,在第N球面像差的校正量保存部410中保存保持球面像差在规定的范围N的校正量。各个规定的范围1到规定的范围N是该取得的球面像差的值不同的范围。 
<光盘装置的动作> 
在以上的构成中,参照图20对光盘装置400的动作进行说明。图20是在光盘装置400中,关于根据球面像差来切换光学串扰校正量的动作流程图。 
在该校正量切换控制中,光盘装置400首先通过球面像差检测部404决定球面像差校正量(S400)。接着对决定的球面像差校正量在规定的范围1到规定的范围N中的哪个范围进行决定(S402)。根据决定的范围,切换校正量输出切换部152,从被切换目标的校正量保存部输出的校正量输入到乘法器128(S404)。另外,在各规定范围的校正量可以事先被赋予,也可以根据各范围的球面像差由光学串扰校正量运算部124决定。 
另外,校正量切换部136也可以是如图21所示的构成。在图21中,对和图19相同的构成标注和图19相同的符号,省略说明。校正量变换部154将第1球面像差的校正量保存部406中保存的第1球面像差的校正量作为输入,根据该校正量,通过变换求得第2球面像差的校正量保存部408到第N球面像差的校正量保存部410中保存的各个校正量。并且,将通过变换求得的各个校正量分别输入到第2球面像差的校正量保存部408到第 N球面像差的校正量保存部410。另外,校正量变换部154例如在规定的范围1到规定的范围N的各情况下,对跟踪误差信号的调制度进行计测,根据该调制度,进行校正量的变换。 
接着,在具有图21所示的校正量切换部136的构成中,参照图22对光盘装置400的动作进行说明。对和图20相同的部分,标注和图20相同的符号,省略说明。 
首先,决定球面像差校正量(S406),对决定的球面像差校正量在规定的范围1到规定的范围N中的哪个范围进行决定(S408)。决定范围后,由光学串扰校正量运算部124决定校正量(S410),在第1球面像差的校正量保存部406到第N球面像差的校正量保存部410内,向和在S410决定的规定的范围对应的校正量保存部输入所决定的校正量(S412)。 
接着,根据在S410决定的校正量,由校正量变换部154对在S410决定的规定的范围以外的规定的范围1到规定的范围N的校正量进行决定,向和规定的范围对应的校正量保存部输入由校正量变换部154所决定的校正量(S414)。 
另外,向校正量变换部154的输入,也可以是来自第1球面像差的校正量保存部406到第N球面像差的校正量保存部410的至少一个的输出,校正量变换部154也可以在输入的校正量保存部以外的校正量保存部输出变换后的校正量。 
另外,图22的S410的处理也可以在S406的处理和S408的处理之间进行。 
另外,在球面像差发生变化的情况下,也可以每次球面像差发生变化时,根据变化后的球面像差来决定第1球面像差的校正量保存部到第N球面像差的校正量保存部中的至少一个校正量。 
如上所述,根据光盘装置400,校正量切换部136根据球面像差切换光学串扰的校正值,针对各球面像差设定适当的校正量,可以抑制因各个球面像差值下的跟踪误差信号的调制度的差异引起的光学串扰的差。因此,可以减少泄漏到从聚焦误差检测部118输出的FE信号的TE信号成分,可以减少垂直移动部140的驱动,降低光盘装置400的耗电。另外,由于可以减小图30所示的局部磁滞回线R3003的影响,所以,在光盘装 置400中,可以提高聚焦控制的稳定性。进而,在光盘装置具有校正量切换部136的情况下,只要通过光学串扰校正量运算部124,仅仅求取在1个规定的范围的校正量即可,由于基于该校正量求得在其他的规定的范围的校正量,所以,在求在其他的范围的校正量的情况下,可以缩短到决定校正量为止的时间。 
(实施方式5) 
接着,对本发明的实施方式5进行说明。 
<光盘装置的构成> 
图23是表示本发明的实施方式5的光盘装置500的构成的框图。另外,对和所述的实施方式相同的构成,标注和图1到图22相同的符号。省略说明。 
在实施方式5所涉及的光盘装置中,聚焦控制部138的输出被输入到垂直移动部140和径向倾斜检测部502。径向倾斜检测部502的输出被输入到径向倾斜校正部504、光学串扰校正量运算部124和校正量切换部136(下面,也有时将径向倾斜略记为“R倾斜”)。 
径向倾斜检测部502检测在光盘102中产生的径向倾斜量。例如,如图24(A)所示,对聚焦控制部138的输出和垂直移动部140的移动量具有线性关系的情况进行说明。这种情况,如图24(B)所示,根据光盘102的规定的半径位置下的聚焦控制部138的输出与相对于所述的半径位置在光盘102的半径方向上使会聚透镜112只移动规定的距离的半径位置下的聚焦控制部138的输出之差,来求取径向倾斜量。另外,径向倾斜检测部502进行动作可以以一定时间间隔进行,也可以以一定温度间隔进行。 
径向倾斜校正部504根据由径向倾斜检测部502检测出的径向倾斜量来校正径向倾斜量。例如,可以通过径向倾斜校正部504,使光拾取器整体倾斜,也可以通过使光拾取器的一部分倾斜来校正径向倾斜量。 
校正量切换部136,如图25所示,由校正量输入切换部146、第1R倾斜的校正量保存部506、第2R倾斜的校正量保存部508、…、和第N R倾斜的校正量保存部510和校正量输出切换部152构成。在第1R倾斜的校正量保存部506中保存保持径向倾斜在规定范围1中的校正量被,在第2R倾斜的校正量保存部508中保存保持径向倾斜量在规定的范围2中的校正量,在第N R倾斜的校正量保存部510中保存保持径向倾斜在规定的范围N中的校正量。从规定的范围1到规定的范围N是该取得的径向倾斜量不同的范围。
<光盘装置的动作> 
在以上的构成中,参照图26对光盘装置500的动作进行说明。图26是关于在光盘装置500中根据径向倾斜量来切换光学串扰校正量的动作的流程图。 
在该校正量切换控制中,光盘装置500首先通过径向倾斜检测部502检测径向倾斜(S500)。接着,对检测出的径向倾斜在规定的范围1到规定的范围N中的哪个进行决定(S502)。根据决定的范围,切换校正量输出切换部152,将从切换的校正量保存部输出的校正量输入到乘法器128(S504)。另外,在各规定的范围的校正量可以被事先赋予,也可以根据各范围的径向倾斜量由光学串扰校正量运算部124决定。 
另外,校正量切换部136也可以是如图27所示的构成。在图27中,对和图25相同构成赋予和图25相同的符号,省略说明。校正量变换部154将第1R倾斜的校正量保存部506中保存的第1径向倾斜的校正量作为输入,根据该校正量,通过变换求得第2R倾斜的校正量保存部508到第NR倾斜的校正量保存部510中保存的各个校正量。并且,将通过变换求得的各个校正量分别输入到第2R倾斜的校正量保存部508到第N R倾斜的校正量保存部510。另外,校正量变换部154例如在规定的范围1到规定的范围N的各情况中,对跟踪误差信号的调制度进行计测,根据该调制度,进行校正量的变换。 
接着,在具有图27表示的校正量切换部136的构成中,参照图28对光盘装置500的动作进行说明。对和图26相同的部分,标注和图26相同的符号,省略说明。 
首先,检测径向倾斜量(S506),对检测出的径向倾斜量在规定的范围1到规定的范围N中的哪个范围进行决定(S508)。决定范围后,由光学串扰校正量运算部124决定校正量(S510),在第1R倾斜的校正量保存部506到第N R倾斜的校正量保存部510内,向在S510决定的和规定的范围对应的校正量保存部输入所决定的校正量(S512)。 
接着,根据在S510决定的校正量,由校正量变换部154对在S510决定的规定的范围以外的规定的范围1到规定的范围N的校正量进行决定,向和各规定的范围对应的校正量保存部输入由校正量变换部154所决定的校正量(S514)。 
另外,图26的S510的处理也可以在S506的处理和S508的处理之间进行。 
另外,向校正量变换部154的输入,也可以是来自第1R倾斜的校正量保存部506到第N R倾斜的校正量保存部510的至少一个的输出,校正量变换部154也可以向输入的校正量保存部以外的校正量保存部输入变换后的校正量。 
另外,在径向倾斜发生变化的情况下,也可以每次径向倾斜发生变化时,根据变化后的径向倾斜来决定第1R倾斜的校正量保存部到第N R倾斜的校正量保存部的至少一个的校正量。 
如上所述,根据光盘装置500,校正量切换部136根据径向倾斜量切换光学串扰的校正值,设定对于各个径向倾斜量适当的校正量,可以抑制因各个径向倾斜量下的跟踪误差信号的调制度的不同而引起的光学串扰的差。因此,可以减少泄漏到从聚焦误差检测部118输出的FE信号的TE信号成分,可以减少垂直移动部140的驱动,降低光盘装置500的耗电。另外,由于可以减小图30所示的局部磁滞回线R3003的影响,所以,在光盘装置400中,可以提高聚焦控制的稳定性。进而,在光盘装置具有校正量切换部136的情况下,由于可以通过光学串扰校正量运算部124,只求在1个规定的范围中的校正量,并基于该校正量求得在其他的规定的范围的校正量,所以,在求在其他的范围的校正量的情况下,可以缩短到决定校正量为止的时间。 
(其他的实施方式) 
另外,在所述实施方式中说明的光盘装置中,各模块可以通过LSI等的半导体装置单独进行单芯片化,也可以按照包含一部分或全部模块的方式进行单芯片化。 
另外,在这里,虽然作为LSI,但根据集成度的不同,也有时分别称为IC、系统LSI、大规模LSI(super LSI)、超大规模LSI(ultra LSI)。 
另外,集成电路化的方法不限于LSI,也可以用专用电路或通用处理器来实现。在LSI制造后,也可以利用可编程的FPGA(Field ProgrammableGate Array)、可以对LSI内部的电路单元的连接或设定进行重构的可重构处理器(reconfigurable processor)。 
进而,由于半导体技术的进步或派生出其他的技术而代替LSI的集成电路化的技术登场的话,当然也可以使用该技术进行功能模块的集成化。有可能实现生物技术的应用等。 
另外,上述实施方式的各处理可以通过硬件来实现,也可以通过软件来实现。进而,也可以通过软硬件的混合处理来实现。 
另外,本发明的具体构成不限于所述的实施方式,在不脱离本发明的宗旨的范围,可以进行各种的变更和修正。 
产业上的利用可行性 
本发明可以使用于具有对如DVD记录器(recorder)或蓝光记录器的大容量光盘进行数字AV信息的记录再生处理的功能的应用光盘的家用电器或利用光盘的计算机用存储设备等。 

Claims (37)

1.一种光盘装置,在具有由岸台和沟槽构成的轨道的光盘进行信息的记录再生,所述光盘装置具有:
聚焦误差检测部,其从在所述光盘聚光的点的反射光中检测聚焦误差信号,并输出所述聚焦误差信号;
跟踪误差检测部,其从所述反射光中检测跟踪误差信号,并输出所述跟踪误差信号;
光学串扰校正量决定部,其在所述点跨越所述轨道时,根据在来自所述光盘的反射光中产生的从所述跟踪误差信号泄漏到所述聚焦误差信号的信号成分的微分值,决定用于校正所述跟踪误差检测部的输出的校正量;
乘法器,其将所述跟踪误差检测部的输出和所述光学串扰校正量决定部所决定的所述校正量相乘;
加法器,其将所述聚焦误差检测部的输出和所述乘法器的输出相加;
聚焦控制部,其根据所述加法器的输出对所述点的聚焦进行控制;和
跟踪控制部,其根据所述跟踪误差检测部的输出进行跟踪控制。
2.一种光盘装置,在具有由岸台和沟槽构成的轨道的光盘进行信息的记录再生,所述光盘装置具有:
聚焦误差检测部,其从在所述光盘聚光的点的反射光中检测聚焦误差信号,并输出所述聚焦误差信号;
跟踪误差检测部,其从所述反射光中检测跟踪误差信号,并输出所述跟踪误差信号;
光学串扰校正量决定部,其在所述点跨越所述轨道时,根据在来自所述光盘的反射光中产生的从所述跟踪误差信号泄露到所述聚焦误差信号的信号成分,决定用于校正所述跟踪误差检测部的输出的校正量;
乘法器,其将所述跟踪误差检测部的输出和所述光学串扰校正量决定部所决定的所述校正量相乘;
加法器,其将所述聚焦误差检测部的输出和所述乘法器的输出相加;
聚焦控制部,其根据所述加法器的输出对所述点的聚焦进行控制;和
跟踪控制部,其根据所述跟踪误差检测部的输出进行跟踪控制,
所述光学串扰校正量决定部在执行所述点的聚焦控制而不执行所述点的跟踪控制的情况下,根据从所述跟踪误差信号泄漏到所述聚焦误差信号的信号成分的振幅值,决定用于校正所述跟踪误差检测部的输出的所述校正量的粗略校正量;在执行所述点的聚焦控制并执行所述点的跟踪控制的情况下,根据从所述跟踪误差信号泄漏到所述聚焦误差信号的信号成分的微分值,决定用于校正所述跟踪误差检测部的输出的所述校正量的精确校正量。
3.根据权利要求2所述的光盘装置,其特征在于,
还具有对所述跟踪控制部的输出附加扰动信号的扰动附加部;
所述扰动附加部,在执行所述跟踪控制的情况下,附加具有所述跟踪控制和所述聚焦控制的频带外的频率和振幅的扰动信号;
所述光学串扰校正量决定部根据因附加所述扰动信号而产生的、从所述跟踪误差信号泄漏到所述聚焦误差信号的信号成分,决定用于校正所述跟踪误差检测部的输出的所述校正量的所述精确校正量。
4.根据权利要求1~3中任意一项所述的光盘装置,其特征在于,
还具有跟踪极性决定部,其将进行跟踪控制的对象决定为所述轨道的所述岸台和所述沟槽的某一方;
所述光学串扰校正量决定部根据所述跟踪极性决定部的输出,设定所述校正量。
5.根据权利要求4所述的光盘装置,其特征在于,
所述光学串扰校正量决定部在所述岸台和所述沟槽的至少任意一方中,求取所述校正量。
6.根据权利要求4所述的光盘装置,其特征在于,
所述光学串扰校正量决定部根据所述岸台的所述校正量,决定所述沟槽的所述校正量。
7.根据权利要求4所述的光盘装置,其特征在于,
所述光学串扰校正量决定部根据所述沟槽的所述校正量,决定所述岸台的所述校正量。
8.根据权利要求1~3中任意一项所述的光盘装置,其特征在于,
所述光盘具有可记录/再生的2个以上的多个层;
还具有:
层间移动部,其使所述点从所述可记录/再生的2个以上的多个层中的一个层向另一个层移动;和
层决定部,其决定使所述点聚光在所述可记录/再生的2个以上的多个层中的哪个层;
所述光学串扰校正量决定部根据所述层决定部的输出,设定所述校正量。
9.根据权利要求8所述的光盘装置,其特征在于,
所述光学串扰校正量决定部在所述光盘的各层中,求取所述校正量。
10.根据权利要求8所述的光盘装置,其特征在于,
所述光学串扰校正量决定部根据任意的所述层的所述校正量,决定其他所述层的所述校正量。
11.根据权利要求1~3中任意一项所述的光盘装置,其特征在于,
还具有:偏置决定部,其决定和所述聚焦误差检测部的输出相加的偏置值;和
偏置加法器,其将所述聚焦误差检测部的输出和所述偏置决定部所决定的所述偏置值相加;
所述加法器将所述偏置加法器的输出和所述乘法器的输出相加;
所述光学串扰校正量决定部根据所述偏置决定部所决定的所述偏置值,设定所述校正量。
12.根据权利要求11所述的光盘装置,其特征在于,
所述光学串扰校正量决定部根据所述偏置决定部所决定的任意的所述偏置值的所述校正量,决定其他的所述偏置值的所述校正量。
13.根据权利要求11所述的光盘装置,其特征在于,
所述光学串扰校正量决定部在所述偏置值由A成为B的情况下,重新计算所述偏置值为B时的所述校正量。
14.根据权利要求1~3中任意一项所述的光盘装置,其特征在于,
还具有:球面像差检测部,其检测在所述光盘上的所述点中产生的球面像差校正量;和
球面像差校正部,其根据所述球面像差检测部所检测出的所述球面像差校正量,校正球面像差;
所述光学串扰校正量决定部根据所述球面像差检测部所检测出的所述球面像差校正量,设定所述校正量。
15.根据权利要求14所述的光盘装置,其特征在于,
所述光学串扰校正量决定部根据所述球面像差检测部所检测出的任意的所述球面像差校正量的所述校正量,决定所述球面像差检测部所检测出的其他的所述球面像差校正量的所述校正量。
16.根据权利要求14所述的光盘装置,其特征在于,
所述光学串扰校正量决定部在所述球面像差检测部所检测出的所述球面像差校正量由A成为B的情况下,重新计算所述球面像差校正量为B时的所述校正量。
17.根据权利要求1~3中任意一项所述的光盘装置,其特征在于,
还具有:径向倾斜检测部,其检测所述光盘的径向倾斜量;和
径向倾斜校正部,其根据所述径向倾斜检测部所决定的所述径向倾斜量,校正所述径向倾斜量;
所述光学串扰校正量决定部根据所述径向倾斜检测部所检测出的所述径向倾斜量,设定所述校正量。
18.根据权利要求17所述的光盘装置,其特征在于,
所述光学串扰校正量决定部根据所述径向倾斜检测部所检测出的任意的所述径向倾斜量的所述校正量,决定所述径向倾斜检测部所检测出的其他的所述径向倾斜量的所述校正量。
19.根据权利要求17所述的光盘装置,其特征在于,
所述光学串扰校正量决定部在所述径向倾斜检测部所检测出的所述径向倾斜量由A成为B的情况下,决定所述径向倾斜量为B时的所述校正量。
20.一种串扰校正方法,用于在具有由岸台和沟槽构成的轨道的光盘进行信息的记录再生的光盘装置,所述串扰校正方法包括:
聚焦误差检测步骤,从在所述光盘聚光的点的反射光中检测聚焦误差信号,并输出所述聚焦误差信号;
跟踪误差检测步骤,从所述反射光中检测跟踪误差信号,并输出所述跟踪误差信号;
光学串扰校正量决定步骤,在所述点跨越所述轨道时,根据在来自所述光盘的反射光中产生的从所述跟踪误差信号泄漏到所述聚焦误差信号的信号成分的微分值,决定用于校正所述跟踪误差检测步骤的输出的校正量;
乘法运算步骤,将所述跟踪误差检测步骤的输出和所述光学串扰校正量决定步骤所决定的所述校正量相乘;
加法运算步骤,将所述聚焦误差检测步骤的输出和所述乘法步骤的输出相加;
聚焦控制步骤,根据所述加法步骤的输出对所述点的聚焦进行控制;和
跟踪控制步骤,根据所述跟踪误差检测步骤的输出进行跟踪控制。
21.一种串扰校正方法,在具有由岸台及沟槽构成的轨道的光盘中,在所述光盘聚光的点跨越所述轨道时,根据是岸台及沟槽中的哪一个,设定对来自所述光盘的反射光中产生的由跟踪误差信号向聚焦误差信号的光学串扰进行校正的校正量;
将表示所述轨道与在所述光盘聚光的所述点之间的偏移的跟踪误差信号和所述校正量相乘,将乘法运算结果和表示所述点在所述光盘的会聚状态的聚焦误差信号相加。
22.根据权利要求21所述的串扰校正方法,其特征在于,
在所述岸台和所述沟槽的至少任意一方中,求取所述校正量。
23.根据权利要求21所述的串扰校正方法,其特征在于,
根据所述岸台的所述校正量,决定所述沟槽的所述校正量。
24.根据权利要求21所述的串扰校正方法,其特征在于,
根据所述沟槽的所述校正量,决定所述岸台的所述校正量。
25.一种串扰校正方法,在光点跨越光盘的轨道时,根据是所述光盘的层的哪一层,设定对来自所述光盘的反射光中产生的从跟踪误差信号向聚焦误差信号的光学串扰进行校正的校正量;
将表示所述轨道与在所述光盘聚光的所述光点之间的偏移的跟踪误差信号和所述校正量相乘,将乘法运算结果和表示所述光点在所述光盘的会聚状态的聚焦误差信号相加。
26.根据权利要求25所述的串扰校正方法,其特征在于,
在所述光盘的各层中,求取所述校正量。
27.根据权利要求25所述的串扰校正方法,其特征在于,
根据任意的所述层的所述校正量,决定其他的所述层的所述校正量。
28.一种串扰校正方法,在光点跨越光盘的轨道时,根据对聚焦误差信号的偏置值,设定对来自所述光盘的反射光中产生的从跟踪误差信号向所述聚焦误差信号的光学串扰进行校正的校正量;
将表示所述轨道与在所述光盘聚光的所述光点之间的偏移的跟踪误差信号和所述校正量相乘,将乘法运算结果和表示所述光点在所述光盘的会聚状态的聚焦误差信号相加。
29.根据权利要求28所述的串扰校正方法,其特征在于,
根据所述偏置值在任意情况下的所述校正量,求取所述偏置值在其他的情况下的所述校正量。
30.根据权利要求28所述的串扰校正方法,其特征在于,
在所述偏置值由A成为B的情况下,重新计算偏置值为B时的校正量。
31.一种串扰校正方法,在光点跨越光盘的轨道时,根据对在所述光盘上的所述光点中产生的球面像差进行校正的球面像差校正量,设定对来自所述光盘的反射光中产生的从跟踪误差信号向聚焦误差信号的光学串扰进行校正的校正量;
将表示所述轨道与在所述光盘聚光的所述光点之间的偏移的跟踪误差信号和所述校正量相乘,将乘法运算结果和表示所述光点在所述光盘的会聚状态的聚焦误差信号相加。
32.根据权利要求31所述的串扰校正方法,其特征在于,
根据所述球面像差校正量在任意情况下的所述校正量,求取所述球面像差校正量在其他的情况下的所述校正量。
33.根据权利要求31所述的串扰校正方法,其特征在于,
在所述球面像差校正量由A成为B的情况下,重新计算在所述球面像差校正量为B时的校正量。
34.一种串扰校正方法,在光点跨越光盘的轨道时,根据在所述光盘中产生的径向倾斜量,设定对来自所述光盘的反射光中产生的从跟踪误差信号向聚焦误差信号的光学串扰进行校正的校正量;
将表示所述轨道与在所述光盘聚光的所述光点之间的偏移的跟踪误差信号和所述校正量相乘,将乘法运算结果和表示所述光点在所述光盘的会聚状态的聚焦误差信号相加。
35.根据权利要求34所述的串扰校正方法,其特征在于,
根据所述径向倾斜量在任意情况下的所述校正量,决定所述径向倾斜量在其他情况下的所述校正量。
36.根据权利要求34所述的串扰校正方法,其特征在于,
在所述径向倾斜量由A成为B的情况下,重新计算所述径向倾斜量为B时的校正量。
37.一种集成电路,用于在具有由岸台和沟槽构成的轨道的光盘进行信息的记录再生的光盘装置,所述集成电路具有:
聚焦误差检测部,其从在所述光盘聚光的点的反射光中检测聚焦误差信号,并输出所述聚焦误差信号;
跟踪误差检测部,其从所述反射光中检测跟踪误差信号,并输出所述跟踪误差信号;
光学串扰校正量决定部,其在所述点跨越所述轨道时,根据在来自所述光盘的反射光中产生的从所述跟踪误差信号泄漏到所述聚焦误差信号的信号成分的微分值,决定用于校正所述跟踪误差检测部的输出的校正量;
乘法器,其将所述跟踪误差检测部的输出和所述光学串扰校正量决定部所决定的所述校正量相乘;
加法器,其将所述聚焦误差检测部的输出和所述乘法器的输出相加;
聚焦控制部,其根据所述加法器的输出对所述点的聚焦进行控制;和
跟踪控制部,其根据所述跟踪误差检测部的输出进行跟踪控制。
CN2006800472608A 2005-12-15 2006-12-13 光盘装置、串扰校正方法和集成电路 Expired - Fee Related CN101553874B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP361573/2005 2005-12-15
JP2005361573 2005-12-15
PCT/JP2006/324863 WO2007069655A2 (ja) 2005-12-15 2006-12-13 光ディスク装置、クロストーク補正方法および集積回路

Publications (2)

Publication Number Publication Date
CN101553874A CN101553874A (zh) 2009-10-07
CN101553874B true CN101553874B (zh) 2012-09-12

Family

ID=38163343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800472608A Expired - Fee Related CN101553874B (zh) 2005-12-15 2006-12-13 光盘装置、串扰校正方法和集成电路

Country Status (4)

Country Link
US (1) US8174941B2 (zh)
JP (1) JP4972560B2 (zh)
CN (1) CN101553874B (zh)
WO (1) WO2007069655A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009154000A1 (ja) * 2008-06-19 2011-11-24 パナソニック株式会社 光ディスク装置および光ディスク装置の駆動方法
JP5176723B2 (ja) * 2008-07-01 2013-04-03 ソニー株式会社 駆動装置および方法、プログラム、並びに記録媒体
WO2010038268A1 (ja) * 2008-09-30 2010-04-08 パイオニア株式会社 情報記録再生装置及び方法
WO2011004496A1 (ja) * 2009-07-10 2011-01-13 パイオニア株式会社 ガイド層分離型の光ディスク、光ディスクドライブ装置及びトラッキング制御方法
JP5494265B2 (ja) * 2010-06-14 2014-05-14 ソニー株式会社 光ピックアップ制御回路および光ディスクドライブ装置
US8743495B1 (en) 2011-06-03 2014-06-03 Western Digital Technologies, Inc. Disk drive detecting track squeeze when circular tracks are defined from non-circular servo tracks
US8717704B1 (en) * 2012-02-28 2014-05-06 Western Digital Technologies, Inc. Disk drive defining non-circular data tracks relative to a rotation axis of the disk
US8749904B1 (en) 2012-02-28 2014-06-10 Western Digital Technologies, Inc. Disk drive compensating for track squeeze by writing non-circular servo tracks
US8670206B1 (en) 2012-03-27 2014-03-11 Western Digital Technologies, Inc. Disk drive estimating repeatable runout of reference pattern based on repeatable runout of phase error
US8724253B1 (en) 2012-03-27 2014-05-13 Western Digital Technologies, Inc. Disk drive adjusting demodulation window for spiral track using timing feed-forward compensation
US8929021B1 (en) 2012-03-27 2015-01-06 Western Digital Technologies, Inc. Disk drive servo writing from spiral tracks using radial dependent timing feed-forward compensation
JP5927561B2 (ja) * 2012-05-31 2016-06-01 パナソニックIpマネジメント株式会社 光ディスク情報装置及び情報処理装置
US8917475B1 (en) 2013-12-20 2014-12-23 Western Digital Technologies, Inc. Disk drive generating a disk locked clock using radial dependent timing feed-forward compensation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768227A (en) * 1993-12-15 1998-06-16 Canon Kabushiki Kaisha Optical information recording and or reproducing apparatus and method for irradiating a recording medium having a plurality of information tracks
JP2004227694A (ja) * 2003-01-23 2004-08-12 Funai Electric Co Ltd 光ディスク装置
CN1689080A (zh) * 2002-10-15 2005-10-26 松下电器产业株式会社 多层信息介质、其再生方法以及再生装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199011A (en) * 1990-01-17 1993-03-30 Hewlett-Packard Company Apparatus for attenuating optical crosstalk induced components of a focus error signal in an optical disk drive
JPH08180429A (ja) * 1994-12-22 1996-07-12 Sharp Corp 光情報記録再生装置及び光記録媒体
JP2901952B1 (ja) 1998-02-25 1999-06-07 株式会社エイ・ティ・アール環境適応通信研究所 周波数混合器
JP2001067682A (ja) 1999-08-30 2001-03-16 Sanyo Electric Co Ltd 光ディスク装置
US6958957B2 (en) * 2001-01-25 2005-10-25 Dphi Acquisitions, Inc. Digital tracking and focus servo system with TES to FES crosstalk calibration
TWI253636B (en) * 2003-11-19 2006-04-21 Mediatek Inc Apparatus with switching servo gain and offset for optical disk device and method thereof
JP2007058911A (ja) * 2005-08-22 2007-03-08 Funai Electric Co Ltd 光ディスク装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768227A (en) * 1993-12-15 1998-06-16 Canon Kabushiki Kaisha Optical information recording and or reproducing apparatus and method for irradiating a recording medium having a plurality of information tracks
CN1689080A (zh) * 2002-10-15 2005-10-26 松下电器产业株式会社 多层信息介质、其再生方法以及再生装置
JP2004227694A (ja) * 2003-01-23 2004-08-12 Funai Electric Co Ltd 光ディスク装置

Also Published As

Publication number Publication date
JP4972560B2 (ja) 2012-07-11
JPWO2007069655A1 (ja) 2009-05-21
US8174941B2 (en) 2012-05-08
WO2007069655A2 (ja) 2007-06-21
CN101553874A (zh) 2009-10-07
US20090046549A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
CN101553874B (zh) 光盘装置、串扰校正方法和集成电路
EP0986053B1 (en) Tilt detection device, optical disc recording and reproducing device, and tilt detection method
US7046593B2 (en) Optical disk apparatus and method for adjusting tilt based on optical disk type
US6407968B1 (en) Optical information recording/reproducing apparatus having focus error signal compensation
US7116612B2 (en) Optical pickup device driven by an error signal obtained from an optical detector&#39;s output signals
EP1724764A2 (en) Optical information storage medium
US20020039331A1 (en) Header region detecting method and apparatus and recording/reproducing method and apparatus using thereof for optical recording medium
JP2001023254A (ja) 光磁気記録テスト方法及び光磁気記録再生装置
US7602690B2 (en) Aberration adjustment device, method thereof, optical pickup, and optical information recording apparatus
JP3698066B2 (ja) オフセット測定方法
US20100226234A1 (en) Optical Head Device and Optical Information Recording/Reproducing Device
US6661769B2 (en) Optical storage medium, a tilt detection apparatus, and a data recording and reproducing apparatus
WO2005104108A1 (ja) 光ディスク装置および光ディスク半導体
CN102693733B (zh) 记录调整方法、推荐记录条件的决定方法
KR19990077952A (ko) 광디스크장치
WO2009154000A1 (ja) 光ディスク装置および光ディスク装置の駆動方法
JP2000242952A (ja) チルト検出装置および光ディスク装置、チルト制御方法
JPH0684194A (ja) 光ディスク装置
KR100565717B1 (ko) 광 기록 매체의 기록재생방법 및 그 장치
JP3401460B2 (ja) チルト検出装置および光ディスク装置、チルト制御方法
JP3401458B2 (ja) チルト検出装置
WO2010073450A1 (ja) 信号処理回路および光ディスク再生装置
JP3470105B2 (ja) チルト検出装置および光ディスク装置、チルト検出方法
JP3401459B2 (ja) チルト検出装置および光ディスク装置、チルト制御方法
CN101093683A (zh) 光盘设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120912

Termination date: 20181213

CF01 Termination of patent right due to non-payment of annual fee