CN101530325A - 具有虚拟触摸屏的定位系统 - Google Patents

具有虚拟触摸屏的定位系统 Download PDF

Info

Publication number
CN101530325A
CN101530325A CN200910130767A CN200910130767A CN101530325A CN 101530325 A CN101530325 A CN 101530325A CN 200910130767 A CN200910130767 A CN 200910130767A CN 200910130767 A CN200910130767 A CN 200910130767A CN 101530325 A CN101530325 A CN 101530325A
Authority
CN
China
Prior art keywords
display device
response
magnetic field
medical apparatus
interface equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910130767A
Other languages
English (en)
Inventor
M·巴-塔尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Inc
Original Assignee
Biosense Webster Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Inc filed Critical Biosense Webster Inc
Priority to CN201510029456.5A priority Critical patent/CN104605855B/zh
Publication of CN101530325A publication Critical patent/CN101530325A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/064Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/502Headgear, e.g. helmet, spectacles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Electromagnetism (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • User Interface Of Digital Computer (AREA)
  • Endoscopes (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本发明涉及具有虚拟触摸屏的定位系统。使用包括基于磁场的定位设施的系统,实现了在医疗过程期间的侵入式医疗器具的控制。磁场传感器放置在医疗器具(例如,探针)和接口设备中,以便当传感器暴露于磁场时,使得能够通过地点处理器确定探针和接口设备的相应位置。布置接口设备使得操作者可以同时控制医疗器具和接口设备。可以包括虚拟现实显示的显示设备响应于由地点处理器确定的接口设备的移动,调用系统的各种功能(例如,图像处理),并且经由图形用户接口促进医疗过程。

Description

具有虚拟触摸屏的定位系统
技术领域
本发明涉及用于侵入式医疗过程的系统。更具体地,本发明涉及使用磁场跟踪活体内的医疗器具。
背景技术
用于医疗应用的磁跟踪系统使用磁场检测患者体内的点和靠近身体或在体内的侵入式设备(如导管和手术工具)的地点(location)。为此,磁场发生器在身体中和身体周围区域产生场,并且身体和侵入式设备中的传感器检测该场。系统控制台接收传感器信号并且显示侵入式设备相对于身体的地点。
例如,授予Govari等人的共同受让的美国专利No.7,174,201公开了用于在对象内执行医疗过程的装置,其包括固定到组织的无线标签,并且包括第一传感器线圈,该专利在此引入以供参考。第二传感器线圈固定到用于执行该过程的医疗设备。一体化的处理和显示单元包括多个辐射器线圈以及处理电路和显示器。该辐射器线圈在组织附近产生电磁场,从而使得电流在传感器线圈中流动。该处理电路处理该电流以确定标签相对于医疗设备的坐标。该显示器由处理电路驱动以便给医疗设备的操作者呈现该设备相对于该标签的方位的视觉指示。
授予Bladen等人的美国专利No.5,913,820公开了用于通过产生在传感器处检测的磁场,优选地以三维定位该传感器的位置(position)的方法和装置,该专利在此引入以供参考。从多个地点产生磁场,并且在本发明的一个实施例中,该磁场使得能够确定单线圈传感器的方位和地点。该系统允许操作者在他的身体上佩戴小的、单线圈传感器,以使得他的移动能够被机器检测和解释,而无需操作者和该机器之间的物理接触。例如,定位系统可使得操作者能够与电视机或计算机屏幕上的图像交互,而不用使用常规的键盘、鼠标或触针(stylus)。
授予Haynor等人的美国专利No.6,129,668公开了一种使用三组或更多组磁传感器检测耦合到患者内的留置医疗设备的磁体的地点的设备,该三组或更多组磁传感器每个具有按照已知方式排列的传感器元件,该专利在此引入以供参考。每个传感器元件感测由磁体产生的磁场强度,并且提供指示三维空间中磁体的方向的数据。
授予Schneider等人的美国专利No.6,427,079公开了一种远程地点确定系统,其使用磁场值的样条(sphne)确定地点参数,该专利在此引入以供参考。该地点确定系统用在可操作以执行心肌血管再生的激光导管上。自动校准技术补偿传感器和相关组件中的任何增益变化。在电磁位置和方位测量系统中使用了用于减少周围导电物体中的涡流的影响的方法。
发明内容
在如上述美国专利No.7,174,201中公开的系统中,为了与控制台交互,系统操作者(如医生)通常必须使用常规的用户接口设备,例如键盘、鼠标或触摸屏。操作者可能不得不脱离操纵侵入式设备,并且移动到不同位置来操作用户接口。可选地,他必须指示助手采取必要动作。
本发明的实施例提供了用于用户与使用磁位置跟踪的、用于医疗治疗和/或诊断的系统的交互的新方法和设备。这些方法和设备允许系统操作者与控制台交互而不用离开他的正常操作位置。在这些实施例的一些中,给操作者提供包含磁传感器的触针或其它用户接口设备,其链接到控制台。接口设备自身可以具有作为侵入式医疗器具的双重功能。只要触针在患者身体附近,传感器就感测由磁场发生器产生的场。在其它实施例中,接口设备和医疗器具产生磁场,该磁场由外部的位置传感器感测。控制台中的位置处理器因此能够确定触针的位置,就像其确定系统的其它组件的位置一样。系统控制台在屏幕上显示光标,该光标随着操作者移动触针而移动。操作者可以使用该光标启动(actuate)屏幕上的控制,以在屏幕上画线,并且标记点以及另外与显示在屏幕上的图像和图交互。
换句话说,触针和磁跟踪系统的效果是提供一种系统操作者在对患者操作的同时可以方便地使用的“虚拟触摸屏”。
本发明的一些实施例允许系统操作者使用“虚拟现实”或“增强现实”显示,在解剖结构的实际位置中查看该结构的虚拟图像,并且使用触针与该图像交互。例如,操作者使用触针与其交互的显示可以呈现在系统操作者佩戴的眼镜(goggles)上。该眼镜包含位置传感器,使得该显示与患者的身体配准。
本发明的实施例提供用于在活的对象的身体中的侵入式医疗操作的装置。该装置包括:布置在已知地点的一个或多个场产生元件,用于以相应频率产生磁场;以及适于插入所述身体中的医疗器具。所述医疗器具具有耦合到其的第一磁位置传感器,所述第一磁位置传感器响应于所述磁场而发射第一信号。接口设备具有耦合到其的第二磁位置传感器,所述第二磁位置传感器响应于所述磁场而发射第二信号。所述装置包括位置处理器,用于接收所述第一信号和所述第二信号,并且响应于所述第一信号和所述第二信号确定所述接口设备和所述医疗器具相对于所述已知地点的相应位置;以及显示设备,用于响应于所述医疗器具的位置显示图像。所述显示设备具有响应于所述接口设备的位置改变、在所述位置处理器的控制下可以在所述显示设备上移动的光标。
根据本装置的一方面,所述显示设备具有显示控制,响应于所述光标在其上的叠加而启动所述显示控制。
根据本装置的另一个方面,所述显示设备具有显示控制,在所述光标叠加在所述显示控制上时,响应于所述接口设备大体朝向所述显示设备的位移而启动所述显示控制。
根据本装置的一个方面,所述显示设备是虚拟现实显示设备,其具有响应于所述磁场而发射第三信号的第三磁位置传感器。
根据本装置的另一个方面,为所述医疗器具提供定位控制,并且所述接口设备布置在所述定位控制的操作者可及的范围内。
根据本装置的又一方面,所述第一磁位置传感器和所述第二磁位置传感器包括至少两个传感器线圈。
本发明的其它实施例提供由上述装置执行的方法。
附图说明
为了更好地理解本发明,通过示例的方式参照本发明的详细描述,要结合附图阅读该详细描述,在附图中相同的附图标记表示相同的元件,并且其中:
图1是根据本发明的公开实施例的用于使用虚拟触摸屏的医疗成像系统的图示;
图2是根据本发明的实施例的可以用于图1所示的系统中的导管的图示;
图3是根据本发明的替代实施例的可以用于图1所示的系统中的接口设备的图示;
图4是根据本发明的另一个替代实施例的可以用于图1所示的系统中的产生虚拟现实显示的设备的图示;
图5是示出根据本发明的公开实施例的在虚拟触摸屏的辅助下执行侵入式医疗操作的方法的流程图;以及
图6是示出根据本发明的公开实施例的用于在图4的虚拟现实显示上对解剖结构成像的方法的流程图。
具体实施方式
在下面的描述中,陈述了许多具体细节以便提供对本发明的彻底理解。然而,对本领域技术人员显而易见的是,可以实践本发明而不用这些具体细节。在其它情况下,众所周知的电路、控制逻辑和用于传统算法和过程的计算机程序指令的细节没有详细示出,以便不必要地混淆本发明。
实施本发明的各方面的软件程序代码典型地保持在诸如计算机可读介质的永久存储器中。在客户端/服务器环境中,这种软件程序代码可以存储在客户端或服务器上。该软件程序代码可以包含在用于数据处理系统的多种已知介质的任何一种上,例如软磁盘、硬驱动器或CD-ROM。该代码可以分布在这种介质上,或者可以通过到其它计算机系统的某种类型的网络从一个计算机系统的存储器或存储分布给用户,用于由这种其它系统的用户使用。
现在转到附图,首先参照图1,图1是根据本发明公开的实施例构造和操作的、使用虚拟触摸屏在活体内跟踪和操作医疗器具的系统20的图示。例如医生22的操作者可以使用系统20,以使用可以插入内部体腔(如对象26的心脏24的心室)中的探针(如导管23)获得医疗图像。典型地,导管23用于诊断或治疗医学过程,如标测(map)心脏中的电势或执行心脏组织的消融。通过自身或结合它治疗设备,导管或其它体内设备可以可选地用于其它目的。参照图1描述的心脏应用是示例性的。本发明的原理可应用到遍及身体的许多侵入式医疗和手术过程。
现在参照图2,图2是根据本发明实施例的导管23的图示。示出的导管是示例性的;许多其它类型的导管可以用作导管23。导管23典型地包括手柄28上的定位控制27,以使得医生能够根据需要操纵(steer)、定位和定向、以及操作导管23的远端(distal end)29。
例如操纵杆52的定点设备附接到手柄28。在一些实施例中,手柄28包括一个或多个触摸激活的开关,显示为按钮56。可选地,按钮56可以位于操纵杆52上。操纵杆52和按钮56用于控制系统20,如以下详细描述的。
远端29和操纵杆52分别包括位置传感器32和54,每个位置传感器包括如下所述的传感器线圈35。
在一些实施例中,远端29包括超声成像传感器39。超声成像传感器39典型地发送短的超声能量脉冲(burst),并且将反射的超声转换为电信号,该电信号经由电缆33被传送到控制台34(图1),如本领域所知的。
在一些实施例中,远端29还包括至少一个电极42,用于执行诊断功能、治疗功能或两者,如电生理标测和射频(RF)消融。在一个实施例中,电极42用于感测局部电势。通过电极42测量的电势可以用于将局部电活动映射到心脏内表面上。当使得电极42与心脏24(图1)的内表面上的点接触或靠近时,该电极测量在该点处的局部电势。测量的电势被转换为电信号,并且通过导管23发送给图像处理器43(图1),该图像处理器43将信号转换为电解剖图。
可选地,电极42可用于测量不同于上述电势的参数,如各种组织特性、温度和血流。
再次参照图1,系统20包括定位子系统30,定位子系统30测量导管23的远端29的地点和方位坐标。如这里使用的,术语“地点(location)”指物体的空间坐标,术语“方位”指物体的角坐标,而术语“位置(position)”指物体的全部位置定位信息,包括地点和方位坐标两者。
在一个实施例中,定位子系统30包括磁位置跟踪系统,所述磁位置跟踪系统确定导管23的远端29的位置。定位子系统30典型地包括一组外部辐射器,如场产生元件(例如线圈31),其处于对象外部的固定已知位置。线圈31在心脏24附近产生场,典型地为磁场。
再次参照图2,位置传感器32感测由线圈31产生的场,并且响应于感测的场,通过穿过导管23的电缆33将位置相关的电信号发送到控制台34(图1)。可选地,位置传感器32可以通过无线链路发送信号到该控制台。
为了确定6个定位坐标(X、Y、Z方向和俯仰、偏转和横滚方位),位置传感器32包括至少两个,并且优选为三个,传感器线圈35,所述线圈被适配为其中一个线圈31的频率,如本领域所知的。传感器线圈35缠绕在空心芯或材料芯上。传感器线圈35的轴应当是非平行的,并且优选是相互正交的。
在其中要求更少的位置坐标的一些应用中,在位置传感器32中只需要单个传感器线圈35。
位于操纵杆52中(优选地在手柄中)的位置传感器54类似于位置传感器32。位置传感器54感测由线圈31产生的场,并且用于确定操纵杆52的手柄的位置,包括其在空间中的角度方位。位置传感器54要求至少一个感测线圈,并且优选地具有三个线圈。
再次参照图1,控制台34包括位置处理器36,该位置处理器36基于由位置传感器32(图2)发送的信号,计算导管23的远端29的地点和方位。位置处理器36典型地接收、放大、过滤、数字化和以其他方式处理来自导管23的信号。系统20和位置处理器36还可以被实现为CARTO XP EP导航和消融系统的元件,其可以从Biosense Webster公司,3333 Diamond Canyon Road,DiamondBar,CA 91765获得,并且适当地修改以执行本发明的原理。
例如在美国专利No.6,690,963、6,618,612和6,332,089以及美国专利申请公开2004/0147920和2004/0068178中描述了可以用于本发明的实施例的一些位置跟踪系统,所有这些专利和专利申请在此引入以供参考。
在一些实施例中,图像处理器43使用从超声成像传感器39(图2)接收的电信号和从位于导管23的远端29中的位置传感器32接收的定位信息,来产生对象的心脏的目标结构的图像。这些图像可以使用从电极42导出的电信息来增强。
在其它实施例中,图像处理器43可能不产生医疗图像,而可能只产生叠加在对象26的表示上的导管23的远端29的图像,或者可能只显示远端29关于对象内的目标的位置,以便辅助医生22进行医疗过程。
由图像处理器43产生的图像被输出到显示设备44上。例如,图1示出了部分心脏24的图像46。系统20典型地提供显示控制,例如GUI(图形用户接口),其包括窗口、图标和菜单,用于操纵和查看由图像处理器43产生的图像。接口设备用于在显示设备44上移动光标48。
在一个实施例中,该接口设备包括操纵杆52(图2),当医生22使用操作控制27时,该操纵杆52在他可及的范围内。例如,在涉及实时图像处理的医疗过程中,操纵杆的旋转可以连续地控制诸如边缘检测算法中的边缘阈值的参数。其它操纵杆运动和按钮命令可以由用户分配,以便控制系统20的操作的其它方面。当医生22移动操纵杆52时,位置传感器54的地点由位置处理器36(图1)跟踪,发送给控制台34,在控制台34其在显示器44上进行配准。位置处理器36将操纵杆移动转换为显示设备44上的光标48的移动。
可选地,该接口设备可以是不同于导管23或任何其它医疗设备的单独的设备。现在参照图3,图3是根据本发明的替代实施例的、用于供系统20(图1)使用的示例性接口设备60的示图。接口设备60可以是扫描笔(wand)或触针,并且成形为易于由医生22(图1)抓住和操纵。如上所述,接口设备60包括位置传感器54和按钮56。位置传感器54感测由线圈31(图1)产生的磁场,并且响应于感测的场,通过电缆63发送位置相关的电信号到控制台34。可选地,位置传感器54可以通过无线链路发送信号到控制台。通过这种方式,系统20能够确定接口设备60的位置。
位置处理器36将包括显示器40的屏幕62的三维空间区域61映射到靠近或包括设备60的空间区域67。在坐标系统65中改变其XY坐标的区域67中的设备60的位移产生了屏幕62上的光标的对应移动。当设备60发生位移以便改变其Z坐标并与虚拟平面70交叉时,模拟与屏幕62的物理接触。该事件刺激显示器40的图形用户接口,就像在对应于平面70中的交叉点的XY坐标的点接触物理触摸屏。
显示器40上的图标和菜单(未示出)通过将光标叠加到它们之上来启动。在替代实施例中,通过将光标移到它们上方同时按下按钮56之一来启动图标和菜单。这导致沿着电缆33将电信号发送到控制台34,其中处理器解释该信号以激活该图标或菜单。用于GUI的定点设备的跟踪是本领域公知的,并且这里不进一步描述。
类似地,医生22可以将光标48从第一位置移动到第二位置,以便经由GUI绘制从第一位置到第二位置的对应的线,使用按钮56标记点,并且以其他方式与显示在显示设备上的图像和图进行交互。
在本发明的一些实施例中,图像显示在虚拟现实显示上而不是常规的显示监视器上。现在参照图4,图4是根据本发明的替代实施例的、产生虚拟现实显示的设备的图示。
虚拟现实眼镜100包括由框架110支撑的至少一个,并且典型地为两个,显示设备105,其被构造为使得医生22(图1)可以佩戴眼镜100,并且显示设备105在他眼睛前面。如下所述,显示设备105示出例如部分心脏24(图1)和导管23(图2)的远端29的虚拟图像。可选地,显示设备105可以是透明的或者部分透明的,以便提供其中虚拟图像叠加在对象26(图1)的身体上的增强的现实图像。
用于显示虚拟现实和增强的现实图像的方法是本领域公知的。示例性公开是授予Sauer等人的美国专利No.6,695,779,该专利在此引入以供参考。
眼镜100包括类似于位置传感器32的位置传感器132,其感测由线圈31(图1)产生的磁场,并响应于感测的场使用无线发送器140发送位置相关的电信号给控制台34(图1)。无线发送器140还可以用作要在显示设备105上显示的图像的接收器。可选地,所述发送器可以有线连接到控制台。
位置传感器132类似于位置传感器32,但是可以包括微型化的位置传感器,例如,如授予Govari的美国专利No.6,201,387中所述的,该专利在此引入以供参考。
可选地,位置传感器132可以包括无线位置传感器。在美国专利申请公开No.2005/0099290中描述了一种适合的设备,该专利公开在此引入以供参考。在该情况下,无线发送器140仅仅用作来自图像处理器43(图1)的图像的接收器。
进一步可选地,位置传感器132可以通过电缆(未示出)发送信号到控制台。然而,该可选方案不那么方便。类似地,要在显示设备105上显示的图像可以通过电缆(未示出)接收。因为显示设备105的位置相对于位置传感器132固定,所以系统20能够确定每个显示设备105的位置。使用由位置传感器132提供的信息,位置处理器36(图1)可以将虚拟现实显示与患者身体配准。通过此方式,操作者可以查看在正确的位置和方位叠加在患者身体的图像上的器官的图像,并且可以使用设备60(图3)与图像交互,如上所述。
可选地,如图4所示,每个显示设备105可以附接到它自己的位置传感器132。这允许眼镜的更多移动灵活性,因为显示设备105的相对位置不需要是恒定的。尽管图4示出了连接到分开的无线发送器140的每个位置传感器132,但是可以使用单个无线发送器140。
如上所述,可以使用诸如操纵杆52或接口设备60之类的接口设备的许多组合来操纵虚拟现实图像。随着医疗过程的条件的改变,一些实施例可能变得没有其它方便。例如,一些阶段可能是危险的,例如,在辐射暴露的条件下发生,以及在医生22方面要求医疗器具的离手启动(actuation)。在这种情况下,使用眼镜100可能是优选的。在其它情况下,工作室中的照明条件可能不适于眼镜100的使用。
在替代实施例中,位置传感器32、54、132可以由产生磁场的辐射器(例如,线圈)替代,该磁场由对象体外的传感器接收。该外部传感器产生位置相关的电信号。
现在参照图5,图5是显示根据本发明的公开实施例的、用于在虚拟触摸屏的辅助下执行侵入式医疗操作的方法的流程图。
该方法开始于初始步骤150,其中典型地使用由线圈31产生并由位置传感器32(图2)感测的磁场,确定导管23的远端29(图1)的位置。可选地,如上所述,可以通过外部位置传感器确定远端29的位置,该外部位置传感器检测在相对于远端29的固定位置处产生的磁场。
接着,在步骤152,图像(例如图像46)被获取并显示在显示器44上。该图像可以是对象26的图像,其例如可以使用导管23获得。可选地,该图像可以是叠加在对象26的表示上的远端29的图像。进一步可选地,该图像可以显示远端29关于对象内的目标的位置。随着远端29移动,可以重复步骤150和152。
在步骤155,典型地与步骤150和152同时执行,例如通过位置传感器54(图2)确定接口设备的位置。可选地,位置传感器32、54之一可以由辐射器替代,该辐射器用于作为基准建立系统的坐标。在该情况下,使用相同的外部传感器检测导管的远端和接口设备的位置。
接着,在步骤160,光标48被定位在显示器44上。初始位置可以是预定的或随机的。
在步骤165,典型地在时间延迟后或在中断后执行,确定接口设备的位置,如在步骤155。
接着,在判定步骤170,确定自从步骤165或步骤155(如果这是首次迭代)的先前迭代以来接口设备是否已经移动。如果在确定步骤170的确定是否定的,则控制进行到判定步骤175,如下所述。
如果在判定步骤170的确定是肯定的,则控制进行到步骤180。响应于接口设备相对于其先前位置的位移,在显示器44上重新定位光标48。控制进行到判定步骤175。
在本发明的一些实施例中,例如上述GUI的显示控制出现在显示器44上。在判定步骤175,确定光标是否叠加在显示控制之一上。如果在判定步骤175的确定是否定的,则控制返回到步骤165。
如果在判定步骤175的确定是肯定的,则控制进行到步骤185。启动显示控制。根据经由GUI控制的计算机应用,这可以导致显示器44上的图像的方位或尺度的改变,或图像显示的其它改变,或者可以启动导管23的功能。
接着,在判定步骤190,确定过程是否完成。典型地,这由在步骤185启动适当的显示控制来指示。如果在判定步骤190的确定是否定的,则控制返回到步骤165。
如果在判定步骤190的确定是肯定的,则控制进行到最终步骤195,其中该方法结束。
现在参照图6,图6是示出根据本发明的公开实施例的、用于在图4的虚拟现实显示上对解剖结构成像的方法的流程图。为了呈现清楚,图6中以特定线性顺序示出了过程步骤。然而,显然它们中的许多可以并行、异步或按照不同顺序执行。例如,获取图像和放置显示设备可以以任一顺序或同时执行。
该方法开始于初始步骤205,其中获取解剖结构的一部分的图像,典型地为三维图像。对于超声图像,这可以按照例如美国专利申请公开No.2006/0241445中所述的执行,该专利申请在此引入以供参考。
接着,在步骤220,一个或多个位置传感器132(图4)确定显示设备105的位置。该位置信息被发送给控制台34。
接着,在步骤222,图像处理器43使用来自步骤220的位置信息和标准几何技术对每个显示设备105获得该图像的二维投影。
在最后步骤225,所述投影被发送到显示设备105(图4)并显示。
本领域技术人员将意识到,本发明不限于上面具体显示和描述的那些。相反,本发明的范围包括上面描述的各种特征的组合和子组合、以及不在现有技术中的它们的变型和修改,本领域技术人员在阅读前面描述时将显而易见这些变型和修改。

Claims (25)

1.一种用于活的对象的身体中的侵入式医疗操作的装置,包括:
布置在已知地点的一个或多个场产生元件,用于以相应频率产生磁场;
适于插入所述身体中的医疗器具,所述医疗器具具有耦合到其的第一磁位置传感器,所述第一磁位置传感器响应于所述磁场而发射第一信号;
接口设备,所述接口设备具有耦合到其的第二磁位置传感器,所述第二磁位置传感器响应于所述磁场而发射第二信号;
位置处理器,用于接收所述第一信号和所述第二信号,并且响应于所述第一信号和所述第二信号确定所述接口设备和所述医疗器具相对于所述已知地点的相应位置;以及
显示设备,用于响应于所述医疗器具的所述位置来显示图像,所述显示设备具有响应于所述接口设备的所述位置的改变、在所述位置处理器的控制下能够在所述显示设备上移动的光标。
2.如权利要求1所述的装置,其中所述显示设备具有显示控制,响应于所述光标叠加在所述显示控制上而启动所述显示控制。
3.如权利要求1所述的装置,其中所述显示设备具有显示控制,在所述光标叠加在所述显示控制上时,响应于所述接口设备大体朝向所述显示设备的位移而启动所述显示控制。
4.如权利要求1所述的装置,其中所述显示设备包括虚拟现实显示设备,其具有响应于所述磁场而发射第三信号的第三磁位置传感器。
5.如权利要求1所述的装置,还包括用于所述医疗器具的定位控制,并且其中所述接口设备在所述定位控制的操作者可及的范围内。
6.如权利要求1所述的装置,其中所述第一磁位置传感器和所述第二磁位置传感器包括至少两个传感器线圈。
7.一种用于活的对象的身体中的侵入式医疗操作的装置,包括:
适于插入所述身体的解剖结构中的医疗器具,所述医疗器具具有用于以相应频率产生第一磁场的一个或多个第一场产生元件;
接口设备,所述接口设备具有用于以相应频率产生第二磁场的一个或多个第二场产生元件;
在已知地点处的磁位置传感器,其响应于所述第一磁场而发射第一信号,并且响应于所述第二磁场而发射第二信号;
位置处理器,用于接收所述第一信号和所述第二信号,并且响应于所述第一信号和所述第二信号确定所述接口设备和所述医疗器具相对于所述已知地点的相应位置;以及
显示设备,用于响应于所述医疗器具的所述位置而显示图像,所述显示设备具有在所述位置处理器的控制下能够在所述显示设备上移动的光标,所述光标的移动由所述位置处理器响应于所述接口设备的所述位置的改变而控制。
8.如权利要求7所述的装置,其中所述显示设备具有显示控制,响应于所述光标叠加在所述显示控制上而启动所述显示控制。
9.如权利要求7所述的装置,其中所述显示设备具有显示控制,在所述光标叠加在所述显示控制上时,响应于所述接口设备大体朝向所述显示设备的位移而启动所述显示控制。
10.如权利要求7所述的装置,其中所述显示设备包括虚拟现实显示设备,其具有用于产生第三磁场的一个或多个第三场产生元件,所述磁位置传感器响应于所述第三磁场。
11.如权利要求7所述的装置,其中所述显示设备用于当所述光标从第一位置移动到第二位置时,在所述显示设备上绘制从所述第一位置到所述第二位置的线。
12.如权利要求7所述的装置,还包括用于所述医疗器具的定位控制,并且其中所述接口设备在所述定位控制的操作者可及的范围内。
13.如权利要求7所述的装置,其中所述磁位置传感器包括至少两个传感器线圈。
14.一种用于执行活的对象的身体中的侵入式医疗操作的计算机辅助方法,包括以下步骤:
在所述身体附近产生磁场;
将医疗器具插入所述身体中;
响应于所述磁场,确定所述医疗器具的位置;
响应于所述磁场,确定接口设备的位置;
响应于所述医疗器具的所述位置,在显示设备上显示图像;以及
在所述显示设备上显示光标,所述光标能够响应于所述接口设备的所述位置的改变而移动。
15.如权利要求14所述的方法,其中所述产生步骤包括在已知地点产生所述磁场,其中确定所述医疗器具的所述位置的所述步骤包括以下步骤:
在相对于所述医疗器具的固定位置处感测所述磁场;以及
确定所述医疗器具相对于所述已知地点的所述位置,并且其中确定所述接口设备的所述位置的所述步骤包括以下步骤:
在相对于所述接口设备的固定位置处感测所述磁场;以及
确定所述接口设备相对于所述已知地点的所述位置。
16.如权利要求14所述的方法,其中所述产生步骤包括以下步骤:
在相对于所述医疗器具的固定位置处产生第一磁场;以及
在相对于所述接口设备的固定位置处产生第二磁场,其中确定所述医疗器具的所述位置的所述步骤包括以下步骤:
在已知地点处感测所述第一磁场;以及
确定所述医疗器具相对于所述已知地点的所述位置,并且其中确定所述接口设备的所述位置的所述步骤包括以下步骤:
在所述已知地点处感测所述第二磁场;以及
确定所述接口设备相对于所述已知地点的所述位置。
17.如权利要求14所述的方法,还包括以下步骤:
在所述显示设备上显示显示控制;
检测所述光标叠加在所述显示控制上;以及
响应于所述检测步骤而启动所述显示控制。
18.如权利要求14所述的方法,还包括以下步骤:
在所述显示设备上显示显示控制;
检测所述光标叠加在所述显示控制上;
响应于所述检测步骤,移动所述接口设备以与预定平面交叉;以及
此后启动所述显示控制。
19.如权利要求14所述的方法,其中所述显示设备包括虚拟现实显示设备,所述虚拟现实显示设备具有耦合到其的第三磁位置传感器,所述第三磁位置传感器响应于所述磁场而发射第三信号。
20.一种用于在虚拟现实眼镜上对解剖结构成像的方法,包括以下步骤:
将医疗器具插入所述解剖结构中,靠近布置在已知地点的、用于以相应频率产生磁场的一个或多个场产生元件,其中所述医疗器具具有耦合到其的第一磁位置传感器,所述第一磁位置传感器响应于所述磁场而发射第一信号;
响应于所述第一信号,确定所述医疗器具相对于所述已知地点的位置;
响应于所述医疗器具的所述位置,使用所述医疗器具获取所述解剖结构的图像;
从耦合到至少一个显示设备的一个或多个第二磁位置传感器接收第二信号,其中所述虚拟现实眼镜包括所述至少一个显示设备;
响应于所述第二信号,确定所述至少一个显示设备相对于所述已知地点的位置;
响应于所述至少一个显示设备的所述位置,获得所述图像的二维投影;以及
在所述至少一个显示设备上显示所述二维投影。
21.一种用于对解剖结构成像的系统,包括:
布置在已知地点的一个或多个场产生元件,用于以相应频率产生磁场;
适于插入所述解剖结构中的医疗器具,所述医疗器具具有耦合到其的第一磁位置传感器,所述第一磁位置传感器响应于所述磁场而发射第一信号;
虚拟现实眼镜,其包括一个或多个第二磁位置传感器和至少一个显示设备,所述第二磁位置传感器响应于所述磁场而发射第二信号;以及
位置处理器,用于接收所述第一信号和所述第二信号,响应于所述第一信号确定所述医疗器具相对于所述已知地点的位置,响应于所述医疗器具的所述位置,使用所述医疗器具获取所述解剖结构的图像,响应于所述第二信号,确定所述至少一个显示设备相对于所述已知地点的位置,响应于所述至少一个显示设备的所述位置,获得所述图像的二维投影,以及在所述至少一个显示设备上显示所述二维投影。
22.如权利要求21所述的系统,还包括接口设备,所述接口设备具有耦合到其的第三磁位置传感器,所述第三磁位置传感器响应于所述磁场而发射第三信号,并且其中所述位置处理器用于接收所述第三信号,并且响应于所述第三信号,确定所述接口设备相对于所述已知地点的位置,并且其中所述至少一个显示设备具有能够在其上移动的光标,所述光标的移动由所述位置处理器响应于所述接口设备的所述位置的改变来控制。
23.如权利要求22所述的系统,其中所述至少一个显示设备具有显示控制,响应于所述光标叠加在所述显示控制上而启动所述显示控制。
24.如权利要求22所述的系统,其中所述至少一个显示设备具有显示控制,在所述光标叠加在所述显示控制上时,响应于所述接口设备大体朝向所述显示设备的位移而启动所述显示控制。
25.如权利要求22所述的系统,还包括用于所述医疗器具的定位控制,并且其中所述接口设备在所述定位控制的操作者可及的范围内。
CN200910130767A 2008-02-29 2009-02-27 具有虚拟触摸屏的定位系统 Pending CN101530325A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510029456.5A CN104605855B (zh) 2008-02-29 2009-02-27 具有虚拟触摸屏的定位系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/039,779 US8926511B2 (en) 2008-02-29 2008-02-29 Location system with virtual touch screen
US12/039779 2008-02-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510029456.5A Division CN104605855B (zh) 2008-02-29 2009-02-27 具有虚拟触摸屏的定位系统

Publications (1)

Publication Number Publication Date
CN101530325A true CN101530325A (zh) 2009-09-16

Family

ID=40672316

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510029456.5A Active CN104605855B (zh) 2008-02-29 2009-02-27 具有虚拟触摸屏的定位系统
CN200910130767A Pending CN101530325A (zh) 2008-02-29 2009-02-27 具有虚拟触摸屏的定位系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510029456.5A Active CN104605855B (zh) 2008-02-29 2009-02-27 具有虚拟触摸屏的定位系统

Country Status (10)

Country Link
US (1) US8926511B2 (zh)
EP (1) EP2096523B1 (zh)
JP (1) JP5436886B2 (zh)
KR (1) KR101612278B1 (zh)
CN (2) CN104605855B (zh)
AU (1) AU2009200770B2 (zh)
BR (1) BRPI0901476B8 (zh)
CA (1) CA2656309C (zh)
IL (1) IL197318A (zh)
MX (1) MX350265B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014067190A1 (zh) * 2012-10-30 2014-05-08 华南理工大学 一种基于超声波的实时无线手术导航装置
CN103860272A (zh) * 2012-12-17 2014-06-18 韦伯斯特生物官能(以色列)有限公司 一种医疗装置、医疗设备以及一种用于控制医疗手术的方法
TWI501130B (zh) * 2010-10-18 2015-09-21 Ind Tech Res Inst 虛擬觸控輸入系統
CN105636527A (zh) * 2013-08-23 2016-06-01 伊西康内外科有限责任公司 用于外科器械的交互式显示器
CN105788390A (zh) * 2016-04-29 2016-07-20 吉林医药学院 基于增强现实的医学解剖辅助教学系统
CN106251752A (zh) * 2016-10-25 2016-12-21 深圳市科创数字显示技术有限公司 Ar和vr相结合的医学培训系统
CN107209568A (zh) * 2015-01-21 2017-09-26 谷歌公司 虚拟现实中的电话控制和存在
CN107533233A (zh) * 2015-03-05 2018-01-02 奇跃公司 用于增强现实的系统和方法
CN108366785A (zh) * 2015-12-17 2018-08-03 奥林巴斯株式会社 超声波观测装置、处理装置、超声波观测装置的工作方法以及超声波观测装置的工作程序
CN108700939A (zh) * 2016-02-05 2018-10-23 奇跃公司 用于增强现实的系统和方法
CN108778100A (zh) * 2016-03-17 2018-11-09 伯克顿迪金森公司 使用患者化身的医疗记录系统
CN110461269A (zh) * 2017-12-14 2019-11-15 威博外科公司 用于机器人外科系统的多面板图形用户界面
US10649211B2 (en) 2016-08-02 2020-05-12 Magic Leap, Inc. Fixed-distance virtual and augmented reality systems and methods
US10678324B2 (en) 2015-03-05 2020-06-09 Magic Leap, Inc. Systems and methods for augmented reality
US10762598B2 (en) 2017-03-17 2020-09-01 Magic Leap, Inc. Mixed reality system with color virtual content warping and method of generating virtual content using same
US10769752B2 (en) 2017-03-17 2020-09-08 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
US10812936B2 (en) 2017-01-23 2020-10-20 Magic Leap, Inc. Localization determination for mixed reality systems
US10838207B2 (en) 2015-03-05 2020-11-17 Magic Leap, Inc. Systems and methods for augmented reality
US10861237B2 (en) 2017-03-17 2020-12-08 Magic Leap, Inc. Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same
US10909711B2 (en) 2015-12-04 2021-02-02 Magic Leap, Inc. Relocalization systems and methods
US10943521B2 (en) 2018-07-23 2021-03-09 Magic Leap, Inc. Intra-field sub code timing in field sequential displays
CN112955073A (zh) * 2018-08-22 2021-06-11 奇跃公司 患者观察系统
US11379948B2 (en) 2018-07-23 2022-07-05 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
US11786319B2 (en) 2017-12-14 2023-10-17 Verb Surgical Inc. Multi-panel graphical user interface for a robotic surgical system

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2387026T3 (es) 2003-09-15 2012-09-11 Super Dimension Ltd. Dispositivo de fijación envolvente para utilizarse con broncoscopios
EP2316328B1 (en) 2003-09-15 2012-05-09 Super Dimension Ltd. Wrap-around holding device for use with bronchoscopes
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US9801709B2 (en) 2004-11-02 2017-10-31 E-Vision Smart Optics, Inc. Electro-active intraocular lenses
US20090264966A1 (en) * 2004-11-02 2009-10-22 Pixeloptics, Inc. Device for Inductive Charging of Implanted Electronic Devices
US8778022B2 (en) 2004-11-02 2014-07-15 E-Vision Smart Optics Inc. Electro-active intraocular lenses
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US8343096B2 (en) 2008-03-27 2013-01-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US9241768B2 (en) 2008-03-27 2016-01-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Intelligent input device controller for a robotic catheter system
US8317744B2 (en) 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter manipulator assembly
WO2009120982A2 (en) 2008-03-27 2009-10-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system with dynamic response
US9161817B2 (en) 2008-03-27 2015-10-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US8684962B2 (en) 2008-03-27 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter device cartridge
US8641663B2 (en) 2008-03-27 2014-02-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system input device
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
EP2297673B1 (en) 2008-06-03 2020-04-22 Covidien LP Feature-based registration method
US8218847B2 (en) 2008-06-06 2012-07-10 Superdimension, Ltd. Hybrid registration method
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
US9405886B2 (en) 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
WO2011123669A1 (en) 2010-03-31 2011-10-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Intuitive user interface control for remote catheter navigation and 3d mapping and visualization systems
US9330497B2 (en) 2011-08-12 2016-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. User interface devices for electrophysiology lab diagnostic and therapeutic equipment
US9439736B2 (en) 2009-07-22 2016-09-13 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for controlling a remote medical device guidance system in three-dimensions using gestures
KR101113219B1 (ko) * 2009-12-08 2012-02-20 삼성메디슨 주식회사 증강현실 초음파 시스템 및 증강현실 초음파 영상 형성 방법
WO2011106797A1 (en) 2010-02-28 2011-09-01 Osterhout Group, Inc. Projection triggering through an external marker in an augmented reality eyepiece
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US20150309316A1 (en) 2011-04-06 2015-10-29 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US20120194553A1 (en) * 2010-02-28 2012-08-02 Osterhout Group, Inc. Ar glasses with sensor and user action based control of external devices with feedback
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
US20110218550A1 (en) * 2010-03-08 2011-09-08 Tyco Healthcare Group Lp System and method for determining and adjusting positioning and orientation of a surgical device
US9216257B2 (en) * 2010-03-25 2015-12-22 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US8475407B2 (en) 2010-03-25 2013-07-02 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US9339601B2 (en) * 2010-03-25 2016-05-17 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US8483802B2 (en) 2010-03-25 2013-07-09 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
WO2011159834A1 (en) 2010-06-15 2011-12-22 Superdimension, Ltd. Locatable expandable working channel and method
DE102010027526B4 (de) * 2010-07-16 2012-04-19 Gottfried Wilhelm Leibniz Universität Hannover Handführbares Vermessungs- und Projektionssystem und Verfahren
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US11103174B2 (en) 2013-11-13 2021-08-31 Biosense Webster (Israel) Ltd. Reverse ECG mapping
US9629570B2 (en) 2013-11-21 2017-04-25 Biosense Webster (Israel) Ltd. Tracking of catheter from insertion point to heart using impedance measurements
CN103989520A (zh) * 2014-04-30 2014-08-20 西安云合生物科技有限公司 一种触摸式多功能电刀
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
JP6429618B2 (ja) * 2014-12-22 2018-11-28 オリンパス株式会社 内視鏡挿入形状観測装置
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
KR101647467B1 (ko) * 2015-06-05 2016-08-11 주식회사 메드릭스 증강현실을 이용한 외과 수술용 3d 안경 시스템
US9947091B2 (en) * 2015-11-16 2018-04-17 Biosense Webster (Israel) Ltd. Locally applied transparency for a CT image
CN105395252A (zh) * 2015-12-10 2016-03-16 哈尔滨工业大学 具有人机交互的可穿戴式血管介入手术三维立体图像导航装置
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US20170354338A1 (en) * 2016-06-09 2017-12-14 Biosense Webster (Israel) Ltd. Dual-function sensors for a basket catheter
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
KR101908016B1 (ko) 2016-12-08 2018-12-11 제주대학교 산학협력단 현실과 사이버 세상을 연계한 IoT 기반 O2O 도망자 추적 게임 시스템 및 방법
US10918445B2 (en) * 2016-12-19 2021-02-16 Ethicon Llc Surgical system with augmented reality display
US10895906B2 (en) * 2017-04-20 2021-01-19 The Cleveland Clinic Foundation System and method for holographic image-guided non-vascular percutaneous procedures
US10390891B2 (en) 2017-06-13 2019-08-27 Biosense Webster (Israel) Ltd. Hologram lens for positioning an orthopedic implant
USD882633S1 (en) 2017-07-06 2020-04-28 Biosense Webster (Israel) Ltd. Display screen or portion thereof with icon
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
EP3801245A4 (en) * 2018-06-04 2022-03-02 Bard Access Systems, Inc. SYSTEMS AND METHODS FOR ANATOMY VISUALIZATION, MEDICAL DEVICE LOCATION, OR MEDICAL DEVICE POSITIONING
CN109036046A (zh) * 2018-09-05 2018-12-18 南京阿波罗机器人科技有限公司 一种stem触屏可编程电子积木控制器
US10832392B2 (en) * 2018-12-19 2020-11-10 Siemens Healthcare Gmbh Method, learning apparatus, and medical imaging apparatus for registration of images
US11723517B2 (en) * 2019-12-31 2023-08-15 Biosense Webster (Israel) Ltd. Wiring of trocar having movable camera and fixed position sensor
CN113180574A (zh) * 2021-04-06 2021-07-30 重庆博仕康科技有限公司 内窥镜的快插结构及内窥镜
CN113610853B (zh) * 2021-10-11 2022-01-28 北京工业大学 基于静息态脑功能图像的情绪状态展示方法、装置及系统
WO2024026349A2 (en) * 2022-07-26 2024-02-01 Elucent Medical, Inc. Systems and methods for wireless localization

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417210A (en) * 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5913820A (en) * 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5729129A (en) * 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US6702736B2 (en) * 1995-07-24 2004-03-09 David T. Chen Anatomical visualization system
EP0891152B1 (en) * 1996-02-15 2003-11-26 Biosense, Inc. Independently positionable transducers for location system
IL125757A (en) * 1996-02-15 2003-09-17 Biosense Inc Medical procedures and apparatus using intrabody probes
US6129668A (en) * 1997-05-08 2000-10-10 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US6201387B1 (en) * 1997-10-07 2001-03-13 Biosense, Inc. Miniaturized position sensor having photolithographic coils for tracking a medical probe
US7174201B2 (en) * 1999-03-11 2007-02-06 Biosense, Inc. Position sensing system with integral location pad and position display
US9572519B2 (en) 1999-05-18 2017-02-21 Mediguide Ltd. Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors
US7386339B2 (en) * 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system
US6233476B1 (en) * 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US7343195B2 (en) * 1999-05-18 2008-03-11 Mediguide Ltd. Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US6427079B1 (en) * 1999-08-09 2002-07-30 Cormedica Corporation Position and orientation measuring with magnetic fields
JP3520062B2 (ja) 2001-08-10 2004-04-19 日清食品株式会社 酸味低減された生タイプ即席麺及びその製造方法
US6695779B2 (en) 2001-08-16 2004-02-24 Siemens Corporate Research, Inc. Method and apparatus for spatiotemporal freezing of ultrasound images in augmented reality visualization
US7324085B2 (en) * 2002-01-25 2008-01-29 Autodesk, Inc. Techniques for pointing to locations within a volumetric display
US7285117B2 (en) * 2002-03-15 2007-10-23 Boston Scientific Scimed, Inc. Medical device control systems
US7769427B2 (en) * 2002-07-16 2010-08-03 Magnetics, Inc. Apparatus and method for catheter guidance control and imaging
US20040068178A1 (en) * 2002-09-17 2004-04-08 Assaf Govari High-gradient recursive locating system
US7306593B2 (en) * 2002-10-21 2007-12-11 Biosense, Inc. Prediction and assessment of ablation of cardiac tissue
CN1747679B (zh) * 2003-02-04 2012-10-03 奥林巴斯株式会社 医疗装置引导系统及其控制方法
US7347821B2 (en) * 2003-06-26 2008-03-25 Koninklijke Philips Electronics N.V. Adaptive processing of contrast enhanced ultrasonic diagnostic images
US7280863B2 (en) * 2003-10-20 2007-10-09 Magnetecs, Inc. System and method for radar-assisted catheter guidance and control
US7397364B2 (en) * 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor
CN1901835A (zh) * 2003-11-14 2007-01-24 通用电气公司 减少电磁跟踪器中失真的系统和方法
US7983733B2 (en) * 2004-10-26 2011-07-19 Stereotaxis, Inc. Surgical navigation using a three-dimensional user interface
EP1815424B1 (en) 2004-11-16 2019-01-09 Koninklijke Philips N.V. Touchless manipulation of images for regional enhancement
US20060241445A1 (en) * 2005-04-26 2006-10-26 Altmann Andres C Three-dimensional cardial imaging using ultrasound contour reconstruction
US20060281990A1 (en) * 2005-05-06 2006-12-14 Viswanathan Raju R User interfaces and navigation methods for vascular navigation
EP1982206A1 (en) * 2006-01-30 2008-10-22 Koninklijke Philips Electronics N.V. Automated system for interventional breast magnetic resonance imaging
JP4533863B2 (ja) 2006-03-28 2010-09-01 本田技研工業株式会社 ワーク位置決めテーブル及びこのワーク位置決めテーブルを備える工作機械
US20090080738A1 (en) * 2007-05-01 2009-03-26 Dror Zur Edge detection in ultrasound images

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501130B (zh) * 2010-10-18 2015-09-21 Ind Tech Res Inst 虛擬觸控輸入系統
WO2014067190A1 (zh) * 2012-10-30 2014-05-08 华南理工大学 一种基于超声波的实时无线手术导航装置
CN103860272A (zh) * 2012-12-17 2014-06-18 韦伯斯特生物官能(以色列)有限公司 一种医疗装置、医疗设备以及一种用于控制医疗手术的方法
CN105636527A (zh) * 2013-08-23 2016-06-01 伊西康内外科有限责任公司 用于外科器械的交互式显示器
CN105636527B (zh) * 2013-08-23 2018-07-13 伊西康内外科有限责任公司 用于外科器械的交互式显示器
CN107209568A (zh) * 2015-01-21 2017-09-26 谷歌公司 虚拟现实中的电话控制和存在
US11619988B2 (en) 2015-03-05 2023-04-04 Magic Leap, Inc. Systems and methods for augmented reality
CN107533233A (zh) * 2015-03-05 2018-01-02 奇跃公司 用于增强现实的系统和方法
US11429183B2 (en) 2015-03-05 2022-08-30 Magic Leap, Inc. Systems and methods for augmented reality
US11256090B2 (en) 2015-03-05 2022-02-22 Magic Leap, Inc. Systems and methods for augmented reality
CN112764536A (zh) * 2015-03-05 2021-05-07 奇跃公司 用于增强现实的系统和方法
US10678324B2 (en) 2015-03-05 2020-06-09 Magic Leap, Inc. Systems and methods for augmented reality
US10838207B2 (en) 2015-03-05 2020-11-17 Magic Leap, Inc. Systems and methods for augmented reality
US11288832B2 (en) 2015-12-04 2022-03-29 Magic Leap, Inc. Relocalization systems and methods
US10909711B2 (en) 2015-12-04 2021-02-02 Magic Leap, Inc. Relocalization systems and methods
CN108366785A (zh) * 2015-12-17 2018-08-03 奥林巴斯株式会社 超声波观测装置、处理装置、超声波观测装置的工作方法以及超声波观测装置的工作程序
CN108366785B (zh) * 2015-12-17 2020-11-10 奥林巴斯株式会社 超声波观测装置及其工作方法、处理装置及存储介质
CN108700939B (zh) * 2016-02-05 2022-07-05 奇跃公司 用于增强现实的系统和方法
CN108700939A (zh) * 2016-02-05 2018-10-23 奇跃公司 用于增强现实的系统和方法
CN108778100A (zh) * 2016-03-17 2018-11-09 伯克顿迪金森公司 使用患者化身的医疗记录系统
CN105788390A (zh) * 2016-04-29 2016-07-20 吉林医药学院 基于增强现实的医学解剖辅助教学系统
US10649211B2 (en) 2016-08-02 2020-05-12 Magic Leap, Inc. Fixed-distance virtual and augmented reality systems and methods
US11536973B2 (en) 2016-08-02 2022-12-27 Magic Leap, Inc. Fixed-distance virtual and augmented reality systems and methods
US11073699B2 (en) 2016-08-02 2021-07-27 Magic Leap, Inc. Fixed-distance virtual and augmented reality systems and methods
CN106251752A (zh) * 2016-10-25 2016-12-21 深圳市科创数字显示技术有限公司 Ar和vr相结合的医学培训系统
US11206507B2 (en) 2017-01-23 2021-12-21 Magic Leap, Inc. Localization determination for mixed reality systems
US11711668B2 (en) 2017-01-23 2023-07-25 Magic Leap, Inc. Localization determination for mixed reality systems
US10812936B2 (en) 2017-01-23 2020-10-20 Magic Leap, Inc. Localization determination for mixed reality systems
US11423626B2 (en) 2017-03-17 2022-08-23 Magic Leap, Inc. Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same
US10769752B2 (en) 2017-03-17 2020-09-08 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
US10762598B2 (en) 2017-03-17 2020-09-01 Magic Leap, Inc. Mixed reality system with color virtual content warping and method of generating virtual content using same
US11315214B2 (en) 2017-03-17 2022-04-26 Magic Leap, Inc. Mixed reality system with color virtual content warping and method of generating virtual con tent using same
US11978175B2 (en) 2017-03-17 2024-05-07 Magic Leap, Inc. Mixed reality system with color virtual content warping and method of generating virtual content using same
US10861130B2 (en) 2017-03-17 2020-12-08 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
US11410269B2 (en) 2017-03-17 2022-08-09 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
US10964119B2 (en) 2017-03-17 2021-03-30 Magic Leap, Inc. Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same
US10861237B2 (en) 2017-03-17 2020-12-08 Magic Leap, Inc. Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same
US11786319B2 (en) 2017-12-14 2023-10-17 Verb Surgical Inc. Multi-panel graphical user interface for a robotic surgical system
CN110461269A (zh) * 2017-12-14 2019-11-15 威博外科公司 用于机器人外科系统的多面板图形用户界面
CN110461269B (zh) * 2017-12-14 2022-11-22 威博外科公司 用于机器人外科系统的多面板图形用户界面
US11501680B2 (en) 2018-07-23 2022-11-15 Magic Leap, Inc. Intra-field sub code timing in field sequential displays
US10943521B2 (en) 2018-07-23 2021-03-09 Magic Leap, Inc. Intra-field sub code timing in field sequential displays
US11790482B2 (en) 2018-07-23 2023-10-17 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
US11379948B2 (en) 2018-07-23 2022-07-05 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
CN112955073A (zh) * 2018-08-22 2021-06-11 奇跃公司 患者观察系统

Also Published As

Publication number Publication date
CN104605855A (zh) 2015-05-13
AU2009200770A1 (en) 2009-09-17
JP5436886B2 (ja) 2014-03-05
CN104605855B (zh) 2017-09-08
KR101612278B1 (ko) 2016-04-14
MX350265B (es) 2017-08-31
JP2009207895A (ja) 2009-09-17
BRPI0901476B8 (pt) 2021-06-22
EP2096523A1 (en) 2009-09-02
KR20090093877A (ko) 2009-09-02
US20090221907A1 (en) 2009-09-03
IL197318A0 (en) 2009-12-24
AU2009200770B2 (en) 2014-11-27
US8926511B2 (en) 2015-01-06
MX2009002363A (es) 2009-08-31
BRPI0901476B1 (pt) 2019-11-26
EP2096523B1 (en) 2013-07-10
IL197318A (en) 2015-06-30
CA2656309C (en) 2016-11-22
BRPI0901476A2 (pt) 2010-01-26
CA2656309A1 (en) 2009-08-29

Similar Documents

Publication Publication Date Title
CN104605855B (zh) 具有虚拟触摸屏的定位系统
US11013561B2 (en) Medical device navigation system
US11445988B2 (en) Systems and methods for using x-ray field emission to determine instrument position and orientation
EP3340918B1 (en) Apparatus for determining a motion relation
CN1853573B (zh) 使用超声以预获取图像配准电解剖图
EP3441036B1 (en) Location determination apparatus
CN1853574B (zh) 超声数据以预获取图像的配准
JP6779716B2 (ja) 疑わしいマップシフトの識別及び提示
JP6706576B2 (ja) 最小侵襲性のインターベンションのための形状センスされるロボット超音波
JP2018153626A (ja) 心臓の立体電気生理学シミュレーションシステム及び関連する方法
CN106491133B (zh) 不一致的基于场的贴片位置坐标的校正
CN111511281A (zh) 用于外科导航系统的配准面部标志的设备和方法
CN104274245A (zh) 荧光镜的无辐射位置校准

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090916