CN107533233A - 用于增强现实的系统和方法 - Google Patents

用于增强现实的系统和方法 Download PDF

Info

Publication number
CN107533233A
CN107533233A CN201680025479.1A CN201680025479A CN107533233A CN 107533233 A CN107533233 A CN 107533233A CN 201680025479 A CN201680025479 A CN 201680025479A CN 107533233 A CN107533233 A CN 107533233A
Authority
CN
China
Prior art keywords
electromagnetic
wear
user
component
electromagnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680025479.1A
Other languages
English (en)
Other versions
CN107533233B (zh
Inventor
M·J·伍兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magic Leap Inc
Original Assignee
Magic Leap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap Inc filed Critical Magic Leap Inc
Priority to CN202110029355.3A priority Critical patent/CN112764536A/zh
Publication of CN107533233A publication Critical patent/CN107533233A/zh
Application granted granted Critical
Publication of CN107533233B publication Critical patent/CN107533233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Computer Graphics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Processing Or Creating Images (AREA)
  • Position Input By Displaying (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Artificial Fish Reefs (AREA)

Abstract

公开了用于向用户呈现虚拟现实和增强现实体验的配置。增强现实显示系统包括:手持式组件,其容纳电磁场发射器;电磁场发射器,其发射已知磁场;头戴式组件,其耦合到一个或多个电磁传感器,所述一个或多个电磁传感器检测由容纳在手持式组件中的电磁场发射器发射的磁场,其中头部姿态是已知的;以及控制器,其通信地耦合到手持式组件和头戴式组件,所述控制器接收来自手持式组件的磁场数据,并接收来自头戴式组件的传感器数据,其中控制器至少部分地基于所接收的磁场数据和所接收的传感器数据来确定手的姿态。

Description

用于增强现实的系统和方法
相关申请的交叉引用
本申请要求2015年3月5日提交的序列号为62/128,993的美国临时申请“ELECTROMAGNETIC TRACKING SYSTEM AND METHOD FOR AUGMENTED REALITY(用于增强现实的电磁跟踪系统和方法)”(案卷号ML 30031.00)和2016年2月5日提交的序列号为62/292,185的美国临时申请“SYSTEMS AND METHODS FOR AUGMENTED REALITY(用于增强现实的系统和方法)”(案卷号ML 30062.00)的优先权。
背景技术
现代计算和显示技术已经促进了用于所谓的“虚拟现实”或“增强现实”体验的系统的发展,其中,数字再现的图像或其部分以看起来是或可能感知为真实的方式向用户呈现。虚拟现实“VR”场景通常涉及数字或虚拟图像信息的呈现,而对其它实际的真实世界视觉输入没有透明性。增强现实“AR”场景通常涉及数字或虚拟图像信息的呈现,作为对用户周围的实际世界的可视化的增强。
例如,参见图1,描绘了增强现实场景4,其中AR技术的用户看见背景中以人、树、建筑物为特征的类似真实世界公园的设置6以及混凝土平台1120。除了这些项目之外,AR技术的用户还可以感知站在真实世界平台1120上的机器人雕像1110和绕着公园飞行的卡通式化身角色2。当然,虚拟元素2和1110在真实世界中不存在,但是,用户将这些虚拟对象感知为真实世界的一部分并与真实世界的对象(例如,6、1120等)交互。应当理解,人类视觉感知系统非常复杂,产生这种有助于虚拟图像元素在其它虚拟或现实世界图像元素中的舒适、自然感觉和丰富的呈现的AR场景是具有挑战性的。
例如,头戴式AR显示器(例如,头盔显示器或智能眼镜)可以耦合到用户的头部,因此,可以在用户的头部移动时移动。如果显示系统检测到用户的头部动作,则可以更新正在显示的数据,以考虑头部姿态的变化。可以利用头部姿态以向用户适当地渲染虚拟内容。因此,任何小的变化可能会中断和/或减少传递给用户的AR显示器的虚拟内容的传递或定时。
作为示例,如果戴着头戴式显示器的用户在显示器上观看三维(3D)对象的虚拟表示,并在3D对象出现的区域周围走动,则3D对象可对于每个视角重新渲染,向用户提供他或她正绕着占据真实空间的对象走动的感知。如果头戴式显示器用于在虚拟空间(例如,丰富的虚拟世界)中呈现多个对象,则头部姿态(即,用户的头部的位置和朝向)的测量可用于重新渲染场景以匹配用户的动态变化的头部位置和朝向,并提供增加的虚拟空间沉浸感。类似地,当AR技术的用户在与虚拟世界交互时,他或她可以使用物体或他/她的手指向对象或选择选项。为了这一交互的发生,物体或用户的手的定位达到精确的程度也很重要。因此,头部姿态和“手的姿态”二者都是关键的,并且定位技术必须使用以便准确地向用户描绘虚拟内容。
在AR系统中,头部姿态和/或手的姿态的检测和/或计算可以促进AR显示系统渲染虚拟对象,以使得它们看起来以与真实世界的对象一致的方式占据真实世界中的空间。真实地呈现AR场景以使得虚拟内容相对于一个或多个真实对象不会看起来不和谐/混乱改善了用户对AR体验的享受。此外,诸如手持式装置(其也可称为“图腾装置(totem)”)、触觉装置或其它真实物理对象的真实对象相对于用户的头部或AR系统的位置和/或朝向的检测也可以促进显示系统向用户呈现显示信息,以使用户能够有效地与AR系统的某些方面进行交互。
应当理解,在AR应用中,虚拟对象在空间相对于物理对象的放置(例如,被呈现以看起来在空间上在两个或三个维度接近物理对象)是重要的问题。例如,头部运动可使虚拟对象在周围环境的视图中的放置明显复杂。无论是视图被捕获成周围环境的图像,然后投影或显示给终端用户,还是终端用户直接感知周围环境的视图,这可能都是真的。例如,头部运动可能导致用户的视场改变。反过来,这可要求更新各种虚拟对象在终端用户的视场中显示的位置。类似地,手的运动(在手持式物体的情况下)在用于与系统交互时提出了同样的挑战。这些运动可能很快,通常需要以高的刷新率和低的延迟来准确地检测和定位。
另外,头部和/或手的运动可以在各种范围和速度下发生。速度可不仅在不同类型的头部运动之间变化,还可在单个运动的范围内或在单个运动的范围上变化。例如,头部运动的速度可一开始从起点增加(例如,线性等),并可以在到达终点时降低,在头部运动的起点和终点之间的某处获得最大速度。快速移动甚至可能超过特定显示或投影技术向终端用户渲染看起来均匀和/或平滑运动的图像的能力。
头部或手跟踪精度和延迟(即,用户移动他或她的头部/手时与图像获得更新并显示给用户时之间经过的时间)已经成为VR和AR系统的挑战。特别是对于用虚拟元素填充用户的视野的大部分的显示系统,关键是跟踪精度高并且从第一次运动检测到由显示器传递到用户的视觉系统的光的更新的总系统延迟非常低。如果延迟高,则系统可造成用户的前庭神经和视觉感觉系统之间的不匹配,并产生可导致晕动症或模拟器综合症的用户感知场景。如果系统延迟高,则虚拟对象的视在位置在快速头部运动期间可出现不稳定。
除了头戴式显示系统之外,其它显示系统也可受益于准确和低延迟的头部姿态检测。这些可包括头部跟踪显示系统,其中显示器不佩戴在用户的身体上,而是例如安装在墙或其它表面上。头部跟踪显示器可以像窗口一样作用在场景上,并且当用户相对于“窗口”移动他的头部时,场景被重新渲染以匹配用户的变化的视点。其它系统可以包括头戴式投影系统,其中头戴式显示器将光投影到真实世界中。
另外,为了提供真实的AR体验,AR系统可被设计成与用户交互。例如,多个用户可以用虚拟球和/或其它虚拟对象来玩球类游戏。一个用户可以“抓住”虚拟球,并将球扔回给另一个用户。在另一个实施例中,第一用户可配备图腾装置(例如,可通信地耦合到AR系统的物理“球棒”)以击中虚拟球。在其它实施例中,可向AR用户呈现虚拟用户界面,以允许用户选择多个选项中的一个。用户可以使用图腾装置、触觉装置、可穿戴组件、或仅仅触摸虚拟屏以与系统交互。
检测用户(例如,用户的头部和手)的姿态和朝向以及检测空间中真实对象的物理位置可使得AR系统能够以有效且愉快的方式显示虚拟内容。然而,这种头部和手的姿态的准确检测可能难以实现。换句话说,AR系统必须识别真实对象(例如,用户的头部、图腾装置、触觉装置、可穿戴组件、用户的手等)的物理位置,并将真实对象的物理坐标与对应于向用户显示的一个或多个虚拟对象的虚拟坐标相关联。该过程可通过快速跟踪一个或多个对象的位置和朝向的高精度传感器和传感器识别系统来改进。目前的方法不能以令人满意的速度或精度标准来执行定位。
因此,需要在AR和VR设备的上下文中的更好的定位系统。
发明内容
本发明的实施例涉及用于促进一个或多个用户的虚拟现实和/或增强现实交互的装置、系统和方法。
在一个方面,增强现实(AR)显示系统包括:电磁场发射器,其用于发射已知磁场;电磁传感器,其用于测量与在电磁传感器处测量的磁通量有关的参数,作为所发射的已知磁场结果,其中电磁传感器的世界坐标是已知的;控制器,其至少部分地基于所测量的与在所述电磁传感器处测量的磁通量有关的参数,确定相对于电磁场发射器的姿态信息;以及显示系统,其至少部分地基于所确定的相对于电磁场发射器的姿态信息,向用户显示虚拟内容。
在一个或多个实施例中,电磁场发射器位于AR显示系统的移动组件中。在一个或多个实施例中,移动组件是手持式组件。在一个或多个实施例中,移动组件是图腾装置。
在一个或多个实施例中,移动组件是AR显示系统的头戴式组件。在一个或多个实施例中,AR显示系统进一步包括容纳显示系统的头戴式组件,其中,电磁传感器可操作性地耦合到头戴式组件。在一个或多个实施例中,电磁传感器的世界坐标至少部分地基于被执行以确定头部姿态信息的SLAM分析而是已知的,其中,电磁传感器可操作性地耦合到容纳显示系统的头戴式组件。
在一个或多个实施例中,AR显示系统进一步包括可操作性地耦合到头戴式组件的一个或多个照相机,其中,SLAM分析至少基于由一个或多个照相机捕获的数据来执行。在一个或多个实施例中,电磁传感器包括一个或多个惯性测量单元(IMU)。
在一个或多个实施例中,姿态信息至少对应于电磁场发射器相对于世界的位置和朝向。在一个或多个实施例中,分析姿态信息以确定与电磁场发射器对应的世界坐标。在一个或多个实施例中,控制器至少部分地基于与电磁场发射器对应的姿态信息来检测与一个或多个虚拟内容的交互。
在一个或多个实施例中,显示系统至少部分地基于所检测的交互,向用户显示虚拟内容。在一个或多个实施例中,电磁传感器包括至少三个线圈以测量三个方向的磁通量。在一个或多个实施例中,至少三个线圈被一起容纳在基本上相同的位置,电磁传感器耦合到AR显示系统的头戴式组件。
在一个或多个实施例中,至少三个线圈被容纳在AR显示系统的头戴式组件的不同位置处。
根据权利要求1的AR显示系统进一步包括控制和快速释放模块,用于解耦由电磁场发射器发射的磁场。在一个或多个实施例中,AR显示系统进一步包括确定电磁场发射器的世界坐标的附加定位资源。在一个或多个实施例中,附加定位资源包括GPS接收器。在一个或多个实施例中,附加定位资源包括信标。
在一个或多个实施例中,电磁传感器包括非实心铁氧体立方体。在一个或多个实施例中,电磁传感器包括一堆铁氧体盘。在一个或多个实施例中,电磁传感器包括多个铁氧体棒,其每一个具有聚合物涂层。在一个或多个实施例中,电磁传感器包括时分复用开关。
在另一个方面,显示增强现实的方法包括:通过电磁场发射器发射已知磁场;通过电磁传感器测量与在电磁传感器处测量的磁通量有关的参数,作为所发射的已知磁场的结果,其中电磁传感器的世界坐标是已知的;至少部分地基于所测量的与在电磁传感器处测量的磁通量有关的参数,确定相对于电磁场发射器的姿态信息;以及至少部分地基于所确定的相对于电磁场发射器的姿态信息,向用户显示虚拟内容。
在一个或多个实施例中,电磁场发射器位于AR显示系统的移动组件中。在一个或多个实施例中,移动组件是手持式组件。在一个或多个实施例中,移动组件是图腾装置。在一个或多个实施例中,移动组件是AR显示系统的头戴式组件。
在一个或多个实施例中,该方法进一步包括将显示系统容纳在头戴式组件中,其中,电磁传感器可操作性地耦合到头戴式组件。在一个或多个实施例中,电磁传感器的世界坐标至少部分地基于被执行以确定头部姿态信息的SLAM分析而是已知的,其中,电磁传感器可操作性地耦合到容纳显示系统的头戴式组件。
在一个或多个实施例中,进一步包括通过可操作性地耦合到头戴式组件的一个或多个照相机捕获图像数据,其中,SLAM分析至少基于由一个或多个照相机捕获的数据执行。在一个或多个实施例中,电磁传感器包括一个或多个惯性测量单元(IMU)。
在一个或多个实施例中,姿态信息至少对应于电磁场发射器相对于世界的位置和朝向。在一个或多个实施例中,分析姿态信息以确定与电磁场发射器对应的世界坐标。在一个或多个实施例中,该方法进一步包括至少部分地基于与电磁场发射器对应的姿态信息,检测与一个或多个虚拟内容的交互。
在一个或多个实施例中,该方法进一步包括至少部分地基于所检测的交互,向用户显示虚拟内容。在一个或多个实施例中,电磁传感器包括至少三个线圈以测量三个方向的磁通量。在一个或多个实施例中,至少三个线圈被一起容纳在基本上相同的位置,电磁传感器耦合到AR显示系统的头戴式组件。在一个或多个实施例中,至少三个线圈被容纳在AR显示系统的头戴式组件的不同位置处。
在一个或多个实施例中,该方法进一步包括通过控制和快速释放模块解耦由电磁场发射器发射的磁场。在一个或多个实施例中,该方法进一步包括通过附加定位资源来确定电磁场发射器的世界坐标。在一个或多个实施例中,附加定位资源包括GPS接收器。在一个或多个实施例中,附加定位资源包括信标。
在再一个方面,增强现实显示系统包括:容纳电磁场发射器的手持式组件;发射已知磁场的电磁场发射器;具有向用户显示虚拟内容的显示系统的头戴式组件,该头戴式组件耦合到一个或多个电磁传感器,电磁传感器检测由容纳在手持式组件中的电磁场发射器发射的磁场,其中头部姿态是已知的;以及可通信地耦合到手持式组件和头戴式组件的控制器,该控制器从手持式组件接收磁场数据,并从头戴式组件接收传感器数据,其中,控制器至少部分地基于所接收的磁场数据和所接收的传感器数据来确定手的姿态,其中,显示系统至少部分地基于所确定的手的姿态修改显示给用户的虚拟内容。
在一个或多个实施例中,手持式组件是移动的。在一个或多个实施例中,手持组件是图腾装置。在一个或多个实施例中,手持式组件是游戏组件。在一个或多个实施例中,头部姿态至少部分地基于SLAM分析而是已知的。
在一个或多个实施例中,AR显示系统进一步包括可操作性地耦合到头戴式组件的一个或多个照相机,其中,SLAM分析至少基于由一个或多个照相机捕获的数据来执行。在一个或多个实施例中,电磁传感器包括一个或多个惯性测量单元(IMU)。
在一个或多个实施例中,头部姿态至少对应于电磁传感器相对于世界的位置和朝向。在一个或多个实施例中,分析手的姿态以确定与手持式组件对应的世界坐标。在一个或多个实施例中,控制器至少部分地基于所确定的手的姿态来检测与一个或多个虚拟内容的交互。
在一个或多个实施例中,显示系统至少部分地基于所检测的交互来向用户显示虚拟内容。在一个或多个实施例中,电磁传感器包括至少三个线圈以测量三个方向的磁通量。在一个或多个实施例中,至少三个线圈被一起容纳在基本相同的位置。在一个或多个实施例中,至少三个线圈被容纳在头戴式组件的不同位置处。
在一个或多个实施例中,AR显示系统进一步包括控制和快速释放模块,用于解耦由电磁场发射器发射的磁场。在一个或多个实施例中,AR显示系统进一步包括用于确定手的姿态的附加定位资源。在一个或多个实施例中,附加定位资源包括GPS接收器。在一个或多个实施例中,附加定位资源包括信标。
本发明的附加和其它目的、特征和优点在具体实施方式、附图和权利要求中描述。
本发明的附加和其它目的、特征和优点在具体实施方式、附图和权利要求中描述。
附图说明
附图示出了本发明的各种实施例的设计和使用。应当注意,附图未按比例绘制,并且在所有附图中,相似的结构或功能的元件由相同的参考标记表示。为了更好地了解如何获得本发明的各种实施例的上述和其它优点和目的,将通过参考在附图中示出的具体实施例来对上面简要描述的本发明进行更详细的描述。应当理解,这些附图仅描绘了本发明的典型实施例,因此不应被认为限制其范围,通过使用附图本发明将以附加的特征和细节来描述和解释,在附图中:
图1示出了根据一个实施例的向AR系统的用户显示的AR场景的平面图;
图2A-2D示出了可穿戴AR装置的各种实施例;
图3示出了可穿戴AR装置的用户与AR系统的一个或多个云服务器交互的示例实施例;
图4示出了电磁跟踪系统的示例实施例;
图5示出了根据一个示例实施例的确定传感器的位置和朝向的示例方法;
图6示出了利用电磁跟踪系统确定头部姿态的示例图;
图7示出了基于所检测的头部姿态将虚拟内容传送给用户的示例方法;
图8示出了根据一个实施例的具有电磁发射器和电磁传感器的AR系统的各种组件的示意图;
图9A-9F示出了控制和快速释放模块的各种实施例;
图10示出了AR装置的一个简化实施例;
图11A和图11B示出了电磁传感器在头戴式AR系统上的布置的各种实施例;
图12A-12E示出将被耦合到电磁传感器的铁氧体立方体的各种实施例;
图13A-13C示出电磁传感器的电路的各种实施例;
图14示出了使用电磁跟踪系统以检测头部姿态和手的姿态的示例方法;
图15示出了使用电磁跟踪系统以检测头部姿态和手的姿态的另一示例方法。
具体实施方式
参考图2A-2D,示出了一些通用的组件选项。在图2A-2D的说明之后的详细描述的部分,提供了用于实现向人类VR和/或AR提供高质量的感知舒适的显示系统的目的的各种系统、子系统和组件。
如图2A所示,描绘了佩戴头戴式组件58的AR系统用户60,该头戴式组件58以与位于用户的眼睛前面的显示系统62连接的框架64结构为特征。在所描绘的配置中,扬声器66连接到框架64,并位于用户的耳道附近(在一个实施例中,另一个扬声器(未示出)位于用户的另一个耳道附近以提供立体声/可成形声音控制)。显示器62可以诸如通过有线引线或无线连接而可操作地连接68到本地处理和数据模块70,该本地处理和数据模块70可以按各种配置来安装,诸如固定地附接到框架64、固定地附接到如图2B的实施例所示的头盔或帽子80、嵌入在头戴式耳机中、以如图2C的实施例所示的背包式配置可移除地附着到用户60的躯干82、或者以如图2D的实施例所示的腰带耦接式配置可移除地附着到用户60的髋部84。
本地处理和数据模块70可以包括低功耗处理器或控制器以及诸如闪存的数字存储器,它们二者都可以用于协助数据的处理、缓存和存储,其中数据可以是:(a)从可操作性地耦合到框架64的传感器捕获的,诸如图像捕获装置(例如照相机)、麦克风、惯性测量单元、加速度计、罗盘、GPS单元、无线装置和/或陀螺仪;和/或(b)使用远程处理模块72和/或远程数据存储库74来获取和/或处理的,可用于在这种处理或检索之后传送到显示器62。本地处理和数据模块70可诸如经由有线或无线通信链路可操作性地耦合(76,78)到远程处理模块72和远程数据存储库74,以使得这些远程模块(72,74)可操作性地彼此耦合,并可用作本地处理和数据模块70的资源。
在一个实施例中,远程处理模块72可以包括被配置为分析和处理数据和/或图像信息的一个或多个相对强大的处理器或控制器。在一个实施例中,远程数据存储库74可以包括相对大规模的数字数据存储设施,其可以通过互联网或采用“云”资源配置的其它联网配置可用。在一个实施例中,可以在本地处理和数据模块中存储所有数据并以执行所有计算,允许来自任何远程模块的完全自主使用。
现在参考图3,示意图示出了云计算资产46与本地处理资产之间的协同,本地处理资产例如可位于耦合到用户的头部120的头戴式组件58和耦合到用户的腰带308的本地处理和数据模块70中;因此,组件70也可以被称为“腰带包”70,如图3所示。在一个实施例中,云资产46(诸如可操作性地耦合115的一个或多个云服务器系统110)例如经由有线或无线网络(无线优选用于移动性,有线优选用于可能需要的某些高带宽或高数据量传输)直接耦合(40,42)到本地计算资产中的一个或两者,诸如如上所述耦合到用户的头部120和腰带308的处理器和存储器配置。用户本地的这些计算资产也可经由有线和/或无线连接配置44,诸如下面参考图8所述的有线耦合68,彼此可操作性地耦合。在一个实施例中,为了维护安装在用户的头部120的低惯性小尺寸子系统,用户和云46之间的主要传输可以经由安装在腰带308的子系统与云之间的链路,而头戴式子系统120主要使用如当前在例如个人计算外围连接应用中采用的诸如超宽带(UWB)连接的无线连接来将数据绑定到基于腰带的子系统308。
采用有效的本地和远程处理协同以及用于用户的适当的显示装置,诸如图2A中所示的用户接口或用户显示系统62或其变形,与用户的当前实际或虚拟位置有关的一个世界的各方面可以被传送或“传递”给用户并以有效的方式更新。换句话说,世界的地图可以在存储位置处不断地更新,该存储位置可部分位于用户的AR系统上并且部分位于云资源中。地图(也称为“可传递世界模型”)可以是包括有关真实世界的光栅图像、3D点和2D点、参数信息和其它信息的大型数据库。随着越来越多的AR用户持续捕获有关其真实环境的信息(例如,通过照相机、传感器、IMU等),地图变得越来越准确和完整。
采用如上所述的配置,存在可以位于云计算资源上并从云服务器分发的一个世界的“模型”,这种世界可以采用相对低的带宽的形式被传递给一个或多个用户。这对于将实时视频数据或类似的复杂信息从一个AR系统传送到另一个AR系统可以是优选的。站在雕像附近的人(即,如图1所示)的增强体验可以由基于云的世界模型通知,该世界模型的子集可以被下传到人的本地显示装置以完成视图。坐在远程显示装置(例如,在桌子上的个人计算机)的人可以有效地从云下载该相同的信息部分并使其呈现在个人计算机显示器上。在另一个实施例中,另一个用户可以在公园处实时存在,并且可与通过共享的AR和/或VR体验加入用户的朋友(例如,在个人计算机处的人)在该公园中一起散步。为了向朋友渲染公园场景,AR系统可以检测街道的位置、公园中树木的位置、雕像的位置等。该位置可以上传到云中的可传递世界模型,朋友(在个人计算机处)可从云中下载可传递世界的该部分,然后在公园中与AR用户一起开始“散步”。当然,在一些实施例中,对于公园中的AR用户,该朋友可被渲染为可传递世界模型中的化身,以使得AR用户可与虚拟朋友在公园中行走。
更具体地,为了捕获世界的细节,以使得它可被传递到云(并随后传递给其他AR用户),与各种对象有关的3D点可以从环境中捕获,并可以确定捕获那些图像或点的照相机的姿态(即,相对于世界的矢量和/或初始位置信息)。这些3D点可以用该姿态信息“标记”或与该姿态信息相关联。应当理解,在任何给定环境中可以存在捕获相同点的大量AR系统。例如,由(第二AR系统的)第二照相机捕获的点可用于确定第二照相机的头部姿态。换句话说,可以基于与来自第一照相机的所标记的图像的比较来确定第二照相机的方法和/或定位第二照相机。然后,该信息可用于提取纹理、制作地图和创建真实世界的一个或多个虚拟副本。
在一个或多个实施例中,AR系统可用于捕获3D点和产生点的2D图像。如上所述,在一些实施例中,这些点和图像可被发送到云存储和处理资源(例如,图3的服务器110)。在其它实施例中,该信息可与嵌入式姿态信息(即,所标记的图像)在本地缓存,以使得所标记的2D图像可与3D点一起发送到云。如果用户正在观察动态场景,则该用户也可以向云服务器发送附加信息。在一个或多个实施例中,目标识别器可(在云资源上或在本地系统上)运行以便在所捕获的点中识别一个或多个对象。关于对象识别器和可传递世界模型的更多信息可以在美国专利申请No.14/205,126“SYSTEM AND METHOD FOR AUTMENTED AND VIRTUALREALITY(用于增强和虚拟现实的系统和方法)”中找到。与诸如由佛罗里达州劳德代尔堡的Magic Leap公司开发的增强和虚拟现实系统有关的进一步信息公开在美国专利申请No.14/641,376、美国专利申请No.14/555,585、美国专利申请No.14/212,961;美国专利申请No.14/690,401、美国专利申请No.13/663,466和美国专利申请No.13/684,489中。
为了捕获可用于创建“可传递世界模型”的点,准确地知道用户相对于世界的位置、姿态和朝向是有帮助的。更具体地,用户的位置必须定位到颗粒度,因为知道用户的头部姿态以及手的姿态(如果用户正在抓住手持式组件、做手势等)是重要的。在一个或多个实施例中,GPS和其它定位信息可以用作这种处理的输入。在处理从特定AR系统中导出的图像和点时,并且也为了向用户显示适当的虚拟内容,用户的头部、图腾装置、手势、触觉装置等的高精度定位是期望的。
一种实现高精度定位的方式可以包含使用与电磁传感器耦合的电磁场,该电磁传感器被策略地放置在用户的AR头戴式耳机、腰带包和/或其它辅助装置(例如,图腾装置、触觉装置、游戏工具等)上。电磁跟踪系统通常至少包括电磁场发射器和至少一个电磁场传感器。电磁传感器可以测量具有已知分布的电磁场。基于这些测量,确定场传感器相对于发射器的位置和朝向。
现在参考图4,示出了电磁跟踪系统的示例系统(例如,由诸如强生公司的Biosense(RTM)部门、佛蒙特州的科尔切斯特市的Polhemus(RTM)公司的组织开发并由加利福尼亚州的洛斯盖多斯的Sixense(RTM)娱乐公司和其它跟踪公司制造的那些系统)。在一个或多个实施例中,电磁跟踪系统包括被配置为发射已知磁场的电磁场发射器402。如图4所示,电磁场发射器402可以耦合到电源410(例如,电流、电池等)以向电磁场发射器402提供电力。
在一个或多个实施例中,电磁场发射器402包括产生磁场的若干线圈(例如,彼此垂直以在x、y和z方向产生场的至少三个线圈)。这些磁场用于建立坐标空间。这可允许系统映射传感器404相对于已知磁场的位置,这有助于确定传感器404的位置和/或朝向。在一个或多个实施例中,电磁传感器404a、404b等可被附接到一个或多个真实对象。电磁传感器404可以包括更小的线圈,其中电流可通过所发射的电磁场而感应。通常,“传感器”组件404可以包括被定位/朝向以捕获来自由电磁发射器402发射的磁场的进入磁通量的小的线圈或环,诸如一组三个不同朝向(即,诸如相对于彼此正交朝向)的线圈,这些线圈被一起耦合在诸如立方体或其它容器的小的结构内。通过比较通过这些线圈感应的电流,并通过知道线圈相对于彼此的相对位置和朝向,可以计算传感器404相对于电磁发射器402的相对位置和朝向。
可以测量与电磁跟踪传感器404中的线圈和可操作性地耦合到电磁跟踪传感器404的惯性测量单元(IMU)组件的行为有关的一个或多个参数,以便检测传感器404(及其所附接的对象)相对于电磁场发射器402所耦合的坐标系的位置和/或朝向。当然,该坐标系可以转换成世界坐标系,以便确定电磁场发射器在真实世界中的位置或姿态。在一个或多个实施例中,可以使用与电磁发射器402有关的多个传感器404以检测每一个传感器404在与电磁场发射器402相关联的坐标空间内的位置和朝向。
应当理解,在一些实施例中,头部姿态可能已经基于AR系统的头戴式组件上的传感器和基于通过头戴式AR系统捕获的传感器数据和图像数据执行的SLAM分析而是已知的。然而,重要的是知道用户的手(例如,类似图腾装置的手持式组件等)相对于已知的头部姿态的位置。换句话说,重要的是知道相对于头部姿态的手的姿态。一旦头部(假设传感器放置在头戴式组件上)和手之间的关系是已知的,则可以容易地计算出手相对于世界(例如,世界坐标)的位置。
在一个或多个实施例中,电磁跟踪系统可以提供传感器404的3D位置(即,X、Y和Z方向),并可进一步提供传感器404在两个或三个方向角上的位置信息。在一个或多个实施例中,IMU的测量可以与线圈的测量进行比较,以确定传感器404的位置和朝向。在一个或多个实施例中,电磁(EM)数据和IMU数据两者以及各种其它数据源(诸如照相机、深度传感器和其它传感器)可以组合以确定电磁传感器404的位置和朝向。
在一个或多个实施例中,该信息可以被发送(例如,无线通信、蓝牙等)到控制器406。在一个或多个实施例中,与传感器404对应的姿态信息(例如,位置和朝向)可以以相对高的刷新率向控制器406报告。通常,电磁发射器402可以耦接到相对稳定和大的对象,诸如桌子、操作台、墙壁或天花板等,一个或多个传感器404可以耦接到较小的对象,诸如医疗装置、手持式游戏组件、图腾装置、头戴式AR系统的框架等。
可替代地,如下面参考图6所述,可以采用电磁跟踪系统的各种特征来产生一种配置,其中,在空间中移动的两个对象之间的位置和/或朝向相对于更稳定的全局坐标系的变化或增量可被跟踪。换句话说,图6示出了一种配置,其中电磁跟踪系统的变化可用于跟踪头戴式组件和手持式组件之间的位置变化和朝向变化,而相对于全局坐标系(比如,用户的本地房间环境)的头部姿态另外确定,诸如通过使用可以耦合到AR系统的头戴式组件的向外拍摄照相机的即时定位和地图构建(SLAM)技术。
返回参考图4,控制器406可以控制电磁场发射器402,并且也可以捕获来自各种电磁传感器404的测量数据。应当理解,系统的各种组件可以通过任何机电或无线/蓝牙方式彼此耦合。控制器406还可以存储关于已知磁场的数据和与磁场有关的坐标空间。该信息然后可用于检测传感器404相对于与已知电磁场对应的坐标空间的位置和朝向,然后,该位置和朝向可用于确定用户的手的世界坐标(例如,电磁发射器的位置)。
电磁跟踪系统的一个优点是可以以最小延迟和高分辨率产生高精度的跟踪结果。此外,电磁跟踪系统并不必需依赖于光学跟踪器,从而使得跟踪不在用户的视线范围内的传感器/对象更容易。
应当理解,电磁场的强度(v)随着与线圈发射器(例如,电磁场发射器402)的距离(r)的立方函数而下降。一个或多个算法可以基于传感器与电磁场发射器的距离来用公式表示。控制器406可被配置有这种算法,以确定在距离电磁场发射器不同距离处的传感器/对象的位置和朝向。假定随着越来越远离电磁发射器,电磁场的强度急剧下降,可以在较近的距离处实现在精度、效率和低延迟方面的改进结果。在典型的电磁跟踪系统中,电磁场发射器由电流(例如,插入式电源)供电,并且具有位于距离电磁场发射器20英尺半径内的传感器。在包括AR应用的许多应用中,传感器和场发射器之间的较短半径是更期望的。
现在参考图5,简要说明描述典型的电磁跟踪系统的功能的示例流程图。在502处,发射已知电磁场。在一个或多个实施例中,电磁场发射器可以产生磁场。换句话说,发射器的每个线圈可以在一个方向(例如,x、y或z)上产生电场。可以产生具有任意波形的磁场。在一个或多个实施例中,每个轴可以以稍微不同的频率振荡。
在504处,可以确定与电磁场对应的坐标空间。例如,图4的控制器406可以基于电磁场的参数自动确定在电磁发射器周围的坐标空间。在506处,可以检测/测量在传感器(其可以附接到已知对象)处的线圈的行为。例如,可以测量在线圈处感应的电流。在其它实施例中,线圈的旋转或其它可量化的行为可被追踪和测量。在508处,该测量可用于确定/计算传感器和/或已知对象的位置和朝向。例如,控制器可以参考将在传感器处的线圈的行为与各种位置或朝向相关的映射表。基于这些计算,可以确定传感器(或与其附接的对象)在坐标空间内的位置和朝向。在一些实施例中,可以在传感器处确定姿态/位置信息。在另一实施例中,传感器将在传感器处检测到的数据传送到控制器,控制器可以参考映射表以确定相对于已知磁场的姿态信息(例如,相对于手持式组件的坐标)。
在AR系统的上下文中,可能需要修改电磁跟踪系统的一个或多个组件,以便于移动组件的精确跟踪。如上所述,跟踪用户的头部姿态和朝向在许多AR应用中是有帮助的。准确确定用户的头部姿态和朝向允许AR系统在AR显示器中的适当位置向用户显示正确的虚拟内容。例如,虚拟场景可包括隐藏在真实建筑物的后面的怪物。根据用户的头部相对于建筑物的姿态和朝向,可能需要修改虚拟怪物的视图,以使得提供真实的AR体验。
在其它实施例中,图腾装置、触觉装置或一些其它与虚拟内容交互的装置的位置和/或朝向对于使AR用户能够与AR系统交互是重要的。例如,在许多游戏应用中,AR系统必须检测真实物体相对于虚拟内容的位置和朝向。或者,当显示虚拟界面时,图腾装置、用户的手、触觉装置或任何其它被配置用于与AR系统交互的真实物体相对于所显示的虚拟界面的位置必须是已知的,以便系统理解命令等。包括光学跟踪的传统定位方法和其它方法通常被高延迟和低分辨率问题困扰,这使得渲染虚拟内容在许多AR应用中具有挑战性。
在一个或多个实施例中,以上讨论的电磁跟踪系统可适用于AR系统以检测一个或多个对象相对于所发射的电磁场的位置和朝向。典型的电磁系统倾向于具有大而笨重的电磁发射器(例如,图4中的402),这可使它们在AR应用中的使用不理想。然而,较小的电磁发射器(例如,在毫米范围内的)可用于在AR系统的上下文中发射已知电磁场。
现在参考图6,电磁跟踪系统可以并入如图所示的AR系统中,其中电磁场发射器602被并入作为手持式控制器606的一部分。在一个或多个实施例中,手持式控制器可以是在游戏应用中使用的图腾装置。在其它实施例中,手持式控制器可以是可用于与AR系统(例如,经由虚拟用户界面)交互的触觉装置。在其它实施例中,电磁场发射器可以仅仅被并入作为腰带包70的一部分,如图2D所示。手持式控制器606可以包括电池610或其它向电磁场发射器602供电的电源。
应当理解,电磁场发射器602还可以包括或者耦合到IMU组件650,该IMU组件650被配置为协助确定电磁场发射器602相对于其它组件的位置和/或朝向。这在电磁场发射器602和传感器604都是移动的情况下(在下面进一步详细讨论)是有用的。在一些实施例中,将电磁场发射器602放置在手持式控制器中而不是在腰带包中,如图6的实施例所示,确保电磁场发射器不竞争在腰带包处的资源,而是使用在手持式控制器606处它自己的电池电源。
在一个或多个实施例中,电磁传感器604可以与诸如一个或多个IMU或附加磁通量捕获线圈608的其它传感装置一起放置在用户的头戴式耳机58上的一个或多个位置上。例如,如在图6中所示,传感器604、608可以放置在头戴式耳机58的任一侧上。由于这些传感器604、608被设计成相当小(并因此在一些情况下可能不太敏感),因此,重要的是包括多个传感器,以便提高测量的效率和精度。
在一个或多个实施例中,一个或多个传感器604、608也可以被放置在腰带包620或用户的身体的任何其它部分上。传感器604、608可以与计算设备607(例如,控制器)无线或通过通信,该计算设备607确定传感器604、608(和它们所附接的AR头戴式耳机58)相对于由电磁场发射器602发射的已知磁场的姿态和朝向。在一个或多个实施例中,如图6所示,计算设备607可位于腰带包620处。在其它实施例中,计算设备607可位于头戴式耳机58本身或甚至手持式控制器604处。在一个或多个实施例中,计算设备607可以接收传感器604、608的测量,并确定传感器604、608相对于由电磁场发射器602发射的已知电磁场的位置和朝向。
在一个或多个实施例中,可以参考映射数据库632以确定传感器604、608的位置坐标。在一些实施例中,映射数据库632可位于腰带包620中。在所示的实施例中,映射数据库632位于云资源630上。如图6所示,计算设备607与云资源630进行无线通信。然后,所确定的姿态信息结合由AR系统收集的点和图像被传送到云资源630,并被添加到可传递世界模型634。
如上所述,传统的电磁发射器对于在AR装置中使用可能太笨重。因此,与传统的系统相比,电磁场发射器可以被设计得紧凑,使用较小的线圈。然而,假定电磁场的强度随着距离场发射器的距离的立方函数而减小,则与传统系统(诸如在图4中详述的系统)相比,电磁传感器604和电磁场发射器602之间的较短半径(例如,大约3-3.5英尺)可以减小功耗,同时保持可接受的场强。
在一个或多个实施例中,该特征可用于延长向控制器606和电磁场发射器602供电的电池610的寿命。可替代地,该特征可用于减小在电磁场发射器602处的产生磁场的线圈的尺寸。然而,为了获得相同的磁场强度,可能需要增加电磁场发射器602的功率。这允许电磁场发射器单元602可紧凑地安装在手持式控制器606处。
当将电磁跟踪系统用于AR装置时,可以进行若干其它改变。在一个或多个实施例中,可以使用基于IMU的姿态跟踪。在这种实施例中,尽可能稳定地保持IMU提高了姿态检测过程的效率。IMU可被设计以使得它们保持稳定达到50-100毫秒,这导致具有10-20Hz的姿态更新/报告速率的稳定信号。应当理解,一些实施例可以利用外部姿态评估模块(因为IMU可能随时间漂移),这可使姿态更新能够以10-20Hz的速率报告。通过在合理的时间内保持IMU稳定,姿态更新的速率可以显著地降低到10-20Hz(如与传统系统中的较高频相比)。
节省AR系统的功率的另一种方法可以是以10%的占空比(例如,每100毫秒仅对地面进行ping)运行电磁跟踪系统。换句话说,电磁跟踪系统在每100毫秒内工作10毫秒以生成姿态估计。这直接转化成省电,这进而可以影响AR装置的尺寸、电池寿命和成本。
在一个或多个实施例中,占空比的这种减小可通过提供两个手持式控制器(未示出)而不是仅仅一个手持式控制器来策略性地利用。例如,用户可能正在玩需要两个图腾装置等的游戏。或者,在多用户游戏中,两个用户可以有自己的图腾装置/手持式控制器来玩游戏。当使用两个控制器(例如,每个手的对称控制器)而不是一个控制器时,控制器可以按偏移占空比工作。相同的概念例如也可应用于由在玩多玩家游戏的两个不同的用户使用的控制器。
现在参考图7,说明描述在AR装置的上下文中的电磁跟踪系统的示例流程图。在702处,手持式控制器606发射磁场。在704处,电磁传感器604(放置在头戴式耳机58、腰带包620等上)检测磁场。在706处,基于在传感器604处的线圈/IMU 608的行为来确定头戴式耳机/腰带的位置和朝向。在一些实施例中,所检测的传感器604的行为被传送到计算设备607,该计算设备607确定传感器604相对于电磁场的位置和朝向(例如,相对于手持式组件的坐标)。当然,应当理解,这些坐标然后可被转换成世界坐标,因为相对于世界的头部姿态可通过SLAM处理而知道,如上所述。
在708处,姿态信息被传送到计算设备607(例如,在腰带包620或头戴式耳机58处)。在710处,可选地,可参考可传递世界模型634,以基于所确定的头部姿态和手的姿态来确定将要显示给用户的虚拟内容。在712处,基于相关性,虚拟内容可在AR头戴式耳机58传递给用户。应当理解,上述流程图仅用于说明的目的,而不应被视为限制。
有利地,使用类似于图6中概述的电磁跟踪系统,能够以更高的刷新速率和更低的延迟进行姿态跟踪(例如,头部位置和朝向、图腾装置的位置和朝向、以及其它控制器)。这允许AR系统以更高的精度和更低的延迟来投影虚拟内容,与用于计算姿态信息的光学跟踪技术相比。
参考图8,示出了以与上述的传感器类似的许多传感组件为特征的系统配置。应当理解,图2A-2D和图6的参考标记在图8中重复。示出了头戴式可穿戴组件58可操作性地耦合68到本地处理和数据模块70,诸如腰带包(类似于图2D),这里使用物理多芯引线,其也以如下参考图9A-9F所述的控制和快速释放模块86为特征。本地处理和数据模块70可以可操作性地耦合100到手持式组件606(类似于图6)。在一个或多个实施例中,本地处理模块70可以通过无线连接(诸如低功率)耦合到手持式组件606。在一个或多个实施例中,手持式组件606也可以可操作性地直接耦合到头戴式可穿戴组件58,诸如通过无线连接(诸如低功率)。
通常,在传输IMU数据以便检测各种组件的姿态信息的情况下,高频连接是期望的,诸如在数百或数千周期/秒或更高的范围内。另一方面,数十周期每秒可能足够用于电磁定位感测,诸如通过传感器604和发射器602的配对。还示出了全局坐标系10,代表在用户周围的真实世界中的固定对象,诸如墙壁8。云资源46也可以可操作性地分别耦合42、40、88、90到本地处理和数据模块70、头戴式可穿戴组件58、可耦合到墙壁8或相对于全局坐标系10固定的其它物品的资源。耦合到墙壁8或具有已知的相对于全局坐标系10的位置和/或朝向的资源可包括Wi-Fi收发器114、电磁发射器602和/或接收器604、被配置为发射或反射给定类型的辐射的信标或反射器112(诸如红外LED信标)、蜂窝网络收发器110、雷达发射器或检测器108、激光雷达发射器或检测器106、GPS收发器118、具有已知的可检测图案122的海报或标志物、以及照相机124。
头戴式可穿戴组件58以如图所示的相似组件为特征,加上被配置为辅助照相机124检测器的光发射器130,诸如用于红外照相机124的红外发射器130。在一个或多个实施例中,头戴式可穿戴组件58可以进一步包括一个或多个应变计116,其可以固定地耦合到头戴式可穿戴组件58的框架或机械平台,并被配置为确定这种平台在诸如电磁接收器传感器604或显示元件62的组件之间的偏转,其中,理解平台的弯曲是否在诸如平台的变薄部分(诸如图8所示的眼镜状平台的鼻子上方的部分)已发生是有价值的。
头戴式可穿戴组件58还可以包括处理器128和一个或多个IMU 102。优选地,每个组件可操作性地耦合到处理器128。示出以类似组件为特征的手持式组件606以及本地处理和数据模块70。如图8所示,采用这么多传感和连接装置,这种系统很可能很重、很大、相对贵,并且很可能耗电量大。然而,为了说明性的目的,这种系统可用于提供非常高水平的连接性、系统组件集成和位置/朝向跟踪。例如,采用这种配置,可以使用Wi-Fi、GPS或蜂窝信号三角算法,在相对于全局坐标系的位置方面来定位各种主要移动组件(58,70,606);信标、电磁跟踪(如上所述)、雷达和激光雷达系统可以提供进一步的位置和/或朝向信息和反馈。标志物和照相机也可用于提供关于相对和绝对位置和朝向的进一步信息。例如,诸如所示的耦合到头戴式可穿戴组件58的各种照相机组件124可用于捕获可在即时定位和地图构建(SLAM)协议中使用的数据,以确定组件58相对于其它组件的位置以及它相对于其它组件如何朝向。
参考图9A-9F,示出了控制和快速释放模块86的各个方面。参考图9A,两个外壳134组件使用磁耦合配置耦合在一起,其可用机械闭锁来增强。可以包括用于关联系统的操作的按钮136。图9B示出了局部剖视图,其示出了按钮136和在下面的顶层印刷电路板138。参考图9C,除去按钮136和在下面的顶层印刷电路板138,母头引脚阵列140可见。参考图9D,除去外壳134的相对部分,底层印刷电路板142可见。如图9E所示,除去底层印刷电路板142,公头引脚阵列144可见。
参考图9F的截面图,至少一个公头引脚或母头引脚被配置成弹簧支撑,以使得它们可以沿着每个引脚的纵轴被压缩。在一个或多个实施例中,引脚可以称为“弹簧引脚”,并通常可包括高导电性材料,诸如铜或金。当组装时,所示的配置可以将46个公头引脚与母头引脚配对,整个组装件可以通过手动拉开它并克服使用围绕引脚阵列140、144的周边取向的北磁体和南磁体而产生的磁性界面146负载来快速解耦成一半。
在一个实施例中,压缩46个弹簧引脚的大约2kg的负载用大约4kg的闭合维持力抗衡。在一个实施例中,阵列140、144中的引脚可以分开大约1.3mm,引脚可以可操作性地耦合到各种类型的导线(诸如双绞线或其它支持USB 3.0、HDMI 2.0、I2S信号、GPIO和MIPI配置的组合)以及被配置为高达约4安培/5伏的大电流模拟线路和地。
参考图10,使最小化组件/特征集能够最小化各种组件的重量和体积并得到相对纤薄的头戴式组件(例如,在图10中特征化的头戴式组件58的那些组件)是有益的。因此,可以利用在图8中所示的各种组件的各种排列和组合。
参考图11A,示出了电磁感测线圈组装件(604,例如,耦合到壳体的3个单独的线圈)耦合到头戴式组件58。这种配置在整体组装件上添加了额外的几何结构(即,突出物),这可能不是期望的。参考图11B,并不是像图11A的配置那样将线圈容纳在盒子或单个壳体中,单独的线圈可被集成到头戴式组件58的各种结构中,如图11B所示。例如,x轴线圈148可以放置在头戴式组件58的一个部分(例如,框架的中心)。类似地,y轴线圈150可以放置在头戴式组件58的另一个部分(例如,框架的任一底侧)。类似地,z轴线圈152可以放置在头戴式组件58的再一个部分(例如,框架的任一顶侧)。
图12A-12E示出了用于以耦合到电磁传感器以增加磁场灵敏度的铁氧体磁芯为特征的各种配置。参考图12A,铁氧体磁芯可以是实心立方体1202。虽然实心立方体在增加磁场灵敏度方面可能是最有效的,但是当与图12B-12E所示的其余配置相比时,它也可能是最重的。参考图12B,多个铁氧体盘1204可以耦合到电磁传感器。类似地,参考图12C,具有单轴空气芯的实心立方体1206可以耦合到电磁传感器。如图12C所示,可以沿着一个轴在实心立方体中形成开放空间(即空气芯)。这可以减小立方体的重量,同时仍然提供必要的磁场灵敏度。在另一个实施例中,参考图12D,具有三轴空气芯的实心立方体1208可以耦合到电磁传感器。在该配置中,实心立方体沿着所有三个轴被挖空,从而显著地减小立方体的重量。参考图12E,具有塑料壳体的铁氧体棒1210也可以耦合到电磁传感器。如上所述,应当理解,图12B-12E的实施例在重量上比图12A的实芯配置更轻,可用于节省质量,如上所述。
参考图13A-13C,时分复用(TDM)也可用于节省质量。例如,参考图13A,示出了传统的用于3线圈电磁接收器传感器的本地数据处理配置,其中,模拟电流从X、Y和Z线圈(1302,1304和1306)的每一个进入,然后进入单独的前置放大器1308,进入单独的带通滤波器1310、单独的前置放大器1312,通过模数转换器1314,并最终进入数字信号处理器1316。
参考图13B的发射器配置和图13C的接收器配置,时分复用可用于共享硬件,以使得每个线圈传感器链不需要自己的放大器等。这可以通过TDM开关1320实现,如图13B所示,该TDM开关1320促进使用同一组硬件组件(放大器等)处理去往多个发射器和来自多个接收器的信号。除了去除传感器壳体和复用以节省硬件开销之外,信噪比可通过具有超过一组电磁传感器来增加,每一组电磁传感器相对于单个大线圈组来说相对小。此外,通常需要具有很靠近的多个感测线圈的低频极限可以改进以利于改进带宽需求。应当注意,可以存在复用的权衡,因为复用通常在时间上扩展射频信号的接收,这导致通常较宽的信号。因此,复用系统可能需要更大的线圈直径。例如,如果复用系统可能需要9mm边长的立方线圈传感器盒,则对于类似的性能,非复用系统可能仅需要7mm边长的立方线圈盒。因此,应当注意,在最小化几何形状和质量中存在权衡。
在另一个实施例中,诸如头戴式组件58的特定系统组件以两个或更多个电磁线圈传感器组为特征,则该系统可被配置为选择性地利用彼此最接近的传感器和电磁发射器的配对来优化系统的性能。
参考图14,在一个实施例中,在用户开启他或她的可穿戴计算系统160后,头戴式组件组装件可以捕获IMU数据和照相机数据(照相机数据例如用于SLAM分析,诸如在其中存在更多RAW处理能力的腰带包处理器处)的组合以确定和更新相对于真实世界全局坐标系162的头部姿态(即,位置和朝向)。用户也可以启动手持式组件以例如玩增强现实游戏164,手持式组件可包括可操作性地耦合到腰带包和头戴式组件166中的一个或两者的电磁发射器。耦合到头戴式组件的一个或多个电磁场线圈接收器组(例如,一组是3个不同朝向的独立线圈)可用于捕获来自电磁发射器的磁通量。该捕获的磁通量可用于确定头戴式组件和手持式组件之间的位置或朝向差(或增量)168。
在一个或多个实施例中,辅助确定相对于全局坐标系的姿态的头戴式组件和辅助确定手持式组件相对于头戴式组件的相对位置和朝向的手持式组件的组合允许系统通常确定每个组件相对于全局坐标系所处的位置,因此,用户的头部姿态和手持姿态可优选地以相对低的延迟跟踪,以用于呈现增强现实图像特征和使用手持式组件的移动和旋转进行交互170。
参考图15,示出了与图14的实施例有些相似的实施例,除了该系统具有更多的感测装置和配置可用于辅助确定头戴式组件172和手持式组件176、178的姿态,以使得用户的头部姿态和手持姿态可优选地以相对低的延迟来跟踪,以用于呈现增强现实图像特征和使用手持式组件的移动和旋转进行交互180。
具体地,在用户开启他或她的可穿戴计算系统160后,头戴式组件捕获IMU数据和用于SLAM分析的照相机数据的组合,以便确定和更新相对于真实世界全局坐标系的头部姿态。该系统可以进一步被配置为检测环境中其它定位资源的存在172,如Wi-Fi、蜂窝、信标、雷达、激光雷达、GPS、标志物和/或其它可与全局坐标系的各个方面或者一个或多个可移动组件连接的照相机。
用户也可以启动手持式组件以例如玩增强现实游戏174,手持式组件可以包括可操作性地耦合到腰带包和头戴式组件176中的一个或两者的电磁发射器。其它定位资源也可以类似地利用。耦合到头戴式组件的一个或多个电磁场线圈接收器组(例如,一组是3个不同朝向的独立线圈)可用于捕获来自电磁发射器的磁通量。该捕获的磁通量可用于确定头戴式组件和手持式组件之间的位置或朝向差(或增量)178。
因此,用户的头部姿态和手持姿态可以相对低的延迟来跟踪,以用于呈现AR内容和/或用于使用手持式组件的移动或旋转与AR系统进行交互180。
在此描述了本发明的各种示例性实施例。在非限制性意义上参考这些示例。提供这些示例以说明本发明的更广泛的应用方面。可以在不脱离本发明的精神和范围的情况下,可以对所描述的发明进行各种改变并可替换等同物。此外,可以进行许多修改以使特定情况、材料、物质的组成、过程、过程动作或步骤适应于本发明的目标、精神或范围。此外,如本领域技术人员将理解的,在不脱离本发明的范围或精神的情况下,在此所描述和示出的各个变型中的每一个具有分离的组件和特征,其可以容易地与其它若干实施例中的任一特征分离或组合。所有这些修改旨在处于与本公开相关联的权利要求的范围内。
本发明包括可以使用主题装置执行的方法。该方法可以包括提供这种合适的装置的动作。这种提供可以由终端用户执行。换句话说,“提供”动作仅仅需要终端用户获得、访问、接近、定位、设置、激活、开启或以其它方式提供在该方法中的必要装置。在此所述的方法可以按逻辑上可能的所述事件的任何顺序以及按照所记载的事件顺序进行。
以上已经阐述了本发明的示例性方面以及关于材料选择和制造的细节。关于本发明的其它细节,可以结合上述参考的专利和出版物以及本领域技术人员通常所知或理解的来理解这些。关于根据本发明的基础方法的方面在通常或逻辑上利用的附加动作方面同样可以成立。
另外,虽然已经参考可选地并入各种特征的若干示例描述了本发明,但是本发明不限于针对本发明的每个变型所构想的描述或指示的发明。在不脱离本发明的实际精神和范围的情况下,可以对所描述的本发明进行各种改变,并且可以替代等同物(为了简洁起见,不论在此是否包括)。此外,在提供了值的范围的情况下,应当理解,在该范围的上限和下限之间的每个中间值以及在该所述范围内的任何其它所述或中间值都包含在本发明内。
另外,可构想的是所描述的本发明变形的任何可选特征可独立地或与在此所描述的特征中的任何一个或多个相结合来陈述和要求权利。引用单数项包括可能存在相同项的复数。更具体地,如在此和关联权利要求书所使用的,单数形式“一”、“一个”、“所述”和“该”包括复数对象,除非另有明确说明。换句话说,在上述描述以及与本公开关联的权利要求中,允许使用冠词的“至少一个”目标项。进一步应注意,可以起草这种权利要求以排除任何可选要素。因此,结合权利要求要素或使用“否定”限制,本声明旨在作为使用“独家”、“仅”等排他性术语的先行基础。
在不使用这种排他性术语的情况下,与本公开相关联的权利要求中的术语“包括”应允许包括任何附加元素,不考虑在这种权利要求中是否列举了给定数量的要素或添加特征可以被认为是改变在权利要求中所述的元素的性质。除了在此具体定义之外,应在保持权利要求有效性的同时给定在此使用的所有技术和科学术语尽可能广泛的通常理解含义。
本发明的广度不限于提供的实施例和/或主题说明书,而是仅由与本公开相关联的权利要求语言的范围限定。

Claims (26)

1.一种显示增强现实的方法,包括:
通过电磁场发射器发射已知磁场;
通过电磁传感器测量与在所述电磁传感器处的磁通量有关的参数,作为所发射的已知磁场的结果,其中,所述电磁传感器的世界坐标是已知的;
至少部分地基于所测量的与在所述电磁传感器处的所述磁通量有关的参数,确定相对于所述电磁场发射器的姿态信息;以及
至少部分地基于所确定的相对于所述电磁场发射器的姿态信息,向用户显示虚拟内容。
2.根据权利要求1所述的方法,其中,所述电磁场发射器位于AR显示系统的移动组件中。
3.根据权利要求2所述的方法,其中,所述移动组件是手持式组件。
4.根据权利要求2所述的方法,其中,所述移动组件是图腾装置。
5.根据权利要求2所述的方法,其中,所述移动组件是所述AR显示系统的头戴式组件。
6.根据权利要求1所述的方法,进一步包括:将显示系统容纳在头戴式组件中,其中,所述电磁传感器操作性地耦合到所述头戴式组件。
7.根据权利要求1所述的方法,其中,所述电磁传感器的世界坐标至少部分地基于被执行以确定头部姿态信息的SLAM分析而是已知的,其中,所述电磁传感器操作性地耦合到容纳显示系统的头戴式组件。
8.根据权利要求7所述的方法,通过操作性地耦合到所述头戴式组件的一个或多个照相机来捕获图像数据,其中,所述SLAM分析至少基于由所述一个或多个照相机捕获的数据来执行。
9.根据权利要求1所述的方法,其中,所述电磁传感器包括一个或多个惯性测量单元(IMU)。
10.根据权利要求1所述的方法,其中,所述姿态信息至少对应于所述电磁场发射器相对于世界的位置和朝向。
11.根据权利要求1所述的方法,其中,所述姿态信息被分析以确定与所述电磁场发射器对应的世界坐标。
12.根据权利要求1所述的方法,进一步包括:至少部分地基于于所述电磁场发射器对应的所述姿态信息来检测与一个或多个虚拟内容的交互。
13.根据权利要求12所述的方法,进一步包括:至少部分地基于所检测的交互,向所述用户显示虚拟内容。
14.根据权利要求1所述的方法,其中,所述电磁传感器包括至少三个线圈以测量三个方向的磁通量。
15.根据权利要求14所述的方法,其中,所述至少三个线圈被一起容纳在基本相同的位置处,所述电磁传感器耦合到AR显示系统的头戴式组件。
16.根据权利要求14所述的方法,其中,所述至少三个线圈被容纳在AR显示系统的头戴式组件的不同位置处。
17.根据权利要求1所述的方法,进一步包括:通过控制和快速释放模块解耦由所述电磁场发射器发射的磁场。
18.根据权利要求1所述的方法,进一步包括:通过附加定位资源来确定所述电磁场发射器的世界坐标。
19.根据权利要求18所述的方法,其中,所述附加定位资源包括GPS接收器。
20.根据权利要求18所述的方法,其中,所述附加定位资源包括信标。
21.根据权利要求1所述的方法,其中,所述电磁传感器包括非实心铁氧体立方体。
22.根据权利要求1所述的方法,其中,所述电磁传感器包括一堆铁氧体盘。
23.根据权利要求1所述的方法,其中,所述电磁传感器包括多个铁氧体棒,其每一个具有聚合物涂层。
24.根据权利要求1所述的方法,其中,所述电磁传感器包括时分复用开关。
25.根据权利要求1-24任意一项所述的方法,被实现为具有用于实现所述方法的步骤的装置的系统。
26.根据权利要求1-24任意一项所述的方法,被实现为包括计算机可用存储介质的计算机程序产品,所述存储介质具有执行所述方法的步骤的可执行代码。
CN201680025479.1A 2015-03-05 2016-03-05 用于增强现实的系统和方法 Active CN107533233B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110029355.3A CN112764536A (zh) 2015-03-05 2016-03-05 用于增强现实的系统和方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562128993P 2015-03-05 2015-03-05
US62/128,993 2015-03-05
US201662292185P 2016-02-05 2016-02-05
US62/292,185 2016-02-05
PCT/US2016/021095 WO2016141373A1 (en) 2015-03-05 2016-03-05 Systems and methods for augmented reality

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110029355.3A Division CN112764536A (zh) 2015-03-05 2016-03-05 用于增强现实的系统和方法

Publications (2)

Publication Number Publication Date
CN107533233A true CN107533233A (zh) 2018-01-02
CN107533233B CN107533233B (zh) 2021-01-29

Family

ID=56848278

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110029355.3A Pending CN112764536A (zh) 2015-03-05 2016-03-05 用于增强现实的系统和方法
CN201680025479.1A Active CN107533233B (zh) 2015-03-05 2016-03-05 用于增强现实的系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110029355.3A Pending CN112764536A (zh) 2015-03-05 2016-03-05 用于增强现实的系统和方法

Country Status (10)

Country Link
US (4) US20160259404A1 (zh)
EP (1) EP3265866B1 (zh)
JP (2) JP7136558B2 (zh)
KR (1) KR102331164B1 (zh)
CN (2) CN112764536A (zh)
AU (1) AU2016225963B2 (zh)
CA (1) CA2979560C (zh)
IL (3) IL296028A (zh)
NZ (1) NZ735465A (zh)
WO (1) WO2016141373A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108427199A (zh) * 2018-03-26 2018-08-21 京东方科技集团股份有限公司 一种增强现实设备、系统及方法
CN108471533A (zh) * 2018-03-21 2018-08-31 阿瑞思科技(成都)有限责任公司 一种适用于ar的高精度定位方法
CN109613983A (zh) * 2018-12-26 2019-04-12 青岛小鸟看看科技有限公司 头戴显示系统中手柄的定位方法、装置和头戴显示系统
CN109633632A (zh) * 2018-12-26 2019-04-16 青岛小鸟看看科技有限公司 一种头戴显示设备,手柄及其定位追踪方法
CN110058187A (zh) * 2018-01-19 2019-07-26 阿森松技术公司 校准磁变送器
CN110275602A (zh) * 2018-03-13 2019-09-24 脸谱科技有限责任公司 人工现实系统和头戴式显示器
CN110275603A (zh) * 2018-03-13 2019-09-24 脸谱科技有限责任公司 分布式人造现实系统、手镯设备和头戴式显示器
CN110520945A (zh) * 2018-02-06 2019-11-29 谷歌有限责任公司 中空芯电磁线圈
CN110622022A (zh) * 2018-02-06 2019-12-27 谷歌有限责任公司 电磁位置追踪系统的功率管理
CN111200745A (zh) * 2019-12-31 2020-05-26 歌尔股份有限公司 视点信息采集方法、装置、设备和计算机存储介质
CN111742284A (zh) * 2018-02-23 2020-10-02 苹果公司 基于磁传感器的接近感测
WO2020207487A1 (zh) * 2019-04-12 2020-10-15 华为技术有限公司 一种处理方法、装置和系统
CN111796665A (zh) * 2019-04-02 2020-10-20 阿森松技术公司 修正畸变
CN111966213A (zh) * 2020-06-29 2020-11-20 青岛小鸟看看科技有限公司 图像处理方法、装置、设备及存储介质
CN112354171A (zh) * 2020-10-20 2021-02-12 上海恒润文化科技有限公司 一种轨道车及其执行机构的执行控制方法和装置
CN112753006A (zh) * 2019-04-12 2021-05-04 谷歌有限责任公司 电磁跟踪的三维空中鼠标
CN113168004A (zh) * 2018-11-21 2021-07-23 瑞典爱立信有限公司 与用户可佩戴的头戴式耳机连接的移动电子设备的校准
CN113383294A (zh) * 2019-01-28 2021-09-10 奇跃公司 用于解决六自由度姿态测量中的半球模糊的方法和系统

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
AU2016225963B2 (en) 2015-03-05 2021-05-13 Magic Leap, Inc. Systems and methods for augmented reality
US10838207B2 (en) 2015-03-05 2020-11-17 Magic Leap, Inc. Systems and methods for augmented reality
US10180734B2 (en) 2015-03-05 2019-01-15 Magic Leap, Inc. Systems and methods for augmented reality
US10551916B2 (en) * 2015-09-24 2020-02-04 Facebook Technologies, Llc Detecting positions of a device based on magnetic fields generated by magnetic field generators at different positions of the device
WO2017096396A1 (en) 2015-12-04 2017-06-08 Magic Leap, Inc. Relocalization systems and methods
US9904357B2 (en) * 2015-12-11 2018-02-27 Disney Enterprises, Inc. Launching virtual objects using a rail device
WO2017127571A1 (en) 2016-01-19 2017-07-27 Magic Leap, Inc. Augmented reality systems and methods utilizing reflections
US10815145B2 (en) 2016-03-31 2020-10-27 Corning Incorporated High index glass and devices incorporating such
EP3458167B1 (en) 2016-04-26 2022-10-19 Magic Leap, Inc. Electromagnetic tracking with augmented reality systems
US10254546B2 (en) 2016-06-06 2019-04-09 Microsoft Technology Licensing, Llc Optically augmenting electromagnetic tracking in mixed reality
US20170352184A1 (en) * 2016-06-06 2017-12-07 Adam G. Poulos Optically augmenting electromagnetic tracking in mixed reality
AU2017305227B2 (en) 2016-08-02 2021-12-16 Magic Leap, Inc. Fixed-distance virtual and augmented reality systems and methods
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
CN114706478A (zh) * 2016-09-26 2022-07-05 奇跃公司 虚拟现实或增强现实显示系统中磁传感器和光学传感器的校准
US10599217B1 (en) 2016-09-26 2020-03-24 Facebook Technologies, Llc Kinematic model for hand position
US11185763B2 (en) 2016-10-11 2021-11-30 Valve Corporation Holding and releasing virtual objects
US10898797B2 (en) 2016-10-11 2021-01-26 Valve Corporation Electronic controller with finger sensing and an adjustable hand retainer
US10987573B2 (en) 2016-10-11 2021-04-27 Valve Corporation Virtual reality hand gesture generation
US10549183B2 (en) 2016-10-11 2020-02-04 Valve Corporation Electronic controller with a hand retainer, outer shell, and finger sensing
US10307669B2 (en) 2016-10-11 2019-06-04 Valve Corporation Electronic controller with finger sensing and an adjustable hand retainer
US10691233B2 (en) 2016-10-11 2020-06-23 Valve Corporation Sensor fusion algorithms for a handheld controller that includes a force sensing resistor (FSR)
US10888773B2 (en) 2016-10-11 2021-01-12 Valve Corporation Force sensing resistor (FSR) with polyimide substrate, systems, and methods thereof
US10391400B1 (en) 2016-10-11 2019-08-27 Valve Corporation Electronic controller with hand retainer and finger motion sensing
US11625898B2 (en) 2016-10-11 2023-04-11 Valve Corporation Holding and releasing virtual objects
US10649583B1 (en) 2016-10-11 2020-05-12 Valve Corporation Sensor fusion algorithms for a handheld controller that includes a force sensing resistor (FSR)
US10134192B2 (en) 2016-10-17 2018-11-20 Microsoft Technology Licensing, Llc Generating and displaying a computer generated image on a future pose of a real world object
EP3545385B1 (en) 2016-11-25 2021-07-14 Sensoryx AG Wearable motion tracking system
US10248191B2 (en) * 2016-12-12 2019-04-02 Microsoft Technology Licensing, Llc Virtual rigid framework for sensor subsystem
US10139934B2 (en) * 2016-12-22 2018-11-27 Microsoft Technology Licensing, Llc Magnetic tracker dual mode
US10451439B2 (en) 2016-12-22 2019-10-22 Microsoft Technology Licensing, Llc Dynamic transmitter power control for magnetic tracker
US10241587B2 (en) 2016-12-22 2019-03-26 Microsoft Technology Licensing, Llc Magnetic tracker power duty cycling
US10812936B2 (en) 2017-01-23 2020-10-20 Magic Leap, Inc. Localization determination for mixed reality systems
US10405374B2 (en) * 2017-03-17 2019-09-03 Google Llc Antenna system for head mounted display device
US10861237B2 (en) 2017-03-17 2020-12-08 Magic Leap, Inc. Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same
JP7055815B2 (ja) 2017-03-17 2022-04-18 マジック リープ, インコーポレイテッド 仮想コンテンツをワーピングすることを伴う複合現実システムおよびそれを使用して仮想コンテンツを生成する方法
CN117873313A (zh) 2017-03-17 2024-04-12 奇跃公司 具有彩色虚拟内容扭曲的混合现实系统及使用该系统生成虚拟内容的方法
CN106951262B (zh) * 2017-03-28 2023-07-21 联想(北京)有限公司 一种显示处理方法及装置
WO2018201067A1 (en) 2017-04-27 2018-11-01 Magic Leap, Inc. Light-emitting user input device
CN110431468B (zh) * 2017-04-28 2022-12-06 惠普发展公司,有限责任合伙企业 确定用于显示系统的用户躯干的位置和取向
US10620335B2 (en) 2017-05-02 2020-04-14 Ascension Technology Corporation Rotating frequencies of transmitters
US10760931B2 (en) 2017-05-23 2020-09-01 Microsoft Technology Licensing, Llc Dynamic control of performance parameters in a six degrees-of-freedom sensor calibration subsystem
WO2018232375A1 (en) * 2017-06-16 2018-12-20 Valve Corporation Electronic controller with finger motion sensing
KR20200010437A (ko) * 2017-06-17 2020-01-30 텍추얼 랩스 컴퍼니 센서를 사용한 객체의 6 자유도 트래킹
US10908680B1 (en) 2017-07-12 2021-02-02 Magic Leap, Inc. Pose estimation using electromagnetic tracking
US10830572B2 (en) * 2017-10-12 2020-11-10 Google Llc Hemisphere ambiguity correction in electromagnetic position tracking systems
ES2800201T3 (es) 2017-11-27 2020-12-28 Premo Sa Dispositivo inductor con configuración ligera
US10514545B2 (en) * 2017-12-08 2019-12-24 Facebook Technologies, Llc Selective tracking of a head-mounted display
US10558260B2 (en) 2017-12-15 2020-02-11 Microsoft Technology Licensing, Llc Detecting the pose of an out-of-range controller
CN108200189A (zh) * 2018-01-18 2018-06-22 吴静 一种基于虚拟现实的智能房屋租赁系统
US10534454B2 (en) * 2018-02-02 2020-01-14 Sony Interactive Entertainment Inc. Head-mounted display to controller clock synchronization over EM field
WO2019156992A2 (en) * 2018-02-06 2019-08-15 Magic Leap, Inc. Systems and methods for augmented reality
CA3031276A1 (en) 2018-02-08 2019-08-08 Ascension Technology Corporation Compensating for distortion in an electromagnetic tracking system
CA3139648A1 (en) 2018-03-07 2019-09-12 Magic Leap, Inc. Visual tracking of peripheral devices
WO2019236096A1 (en) * 2018-06-08 2019-12-12 Hewlett-Packard Development Company, L.P. Computing input devices with sensors concealed in articles of clothing
US10549186B2 (en) * 2018-06-26 2020-02-04 Sony Interactive Entertainment Inc. Multipoint SLAM capture
JP7413345B2 (ja) 2018-07-23 2024-01-15 マジック リープ, インコーポレイテッド フィールド順次ディスプレイにおけるフィールド内サブコードタイミング
WO2020023383A1 (en) 2018-07-23 2020-01-30 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
USD930614S1 (en) 2018-07-24 2021-09-14 Magic Leap, Inc. Totem controller having an illumination region
USD918176S1 (en) 2018-07-24 2021-05-04 Magic Leap, Inc. Totem controller having an illumination region
EA201990800A1 (ru) * 2018-09-12 2020-05-27 Общество с ограниченной ответственностью "ТрансИнжКом" Способ и система для формирования изображений совмещенной реальности
CA3237053A1 (en) * 2018-09-21 2020-03-26 Penumbra, Inc. Systems and methods for generating complementary data for visual display
US10937191B2 (en) * 2018-10-23 2021-03-02 Dell Products, Lp Predictive simultaneous localization and mapping system using prior user session positional information
CN113227879A (zh) 2018-10-26 2021-08-06 奇跃公司 用于电磁跟踪的环境电磁失真校正
CN109634427B (zh) * 2018-12-24 2022-06-14 陕西圆周率文教科技有限公司 基于头部追踪的ar眼镜控制系统及控制方法
KR102241829B1 (ko) * 2019-01-10 2021-04-19 제이에스씨(주) Vr과 ar을 기반으로 하는 정신건강 및 심리상담 콘텐츠 제공 시스템
JP2020129263A (ja) * 2019-02-08 2020-08-27 セイコーエプソン株式会社 表示システム、情報処理装置の制御プログラム、及び情報処理装置の制御方法
WO2020176779A1 (en) * 2019-02-28 2020-09-03 Magic Leap, Inc. Method and system utilizing phased array beamforming for six degree of freedom tracking for an emitter in augmented reality systems
WO2020214272A1 (en) 2019-04-15 2020-10-22 Magic Leap, Inc. Sensor fusion for electromagnetic tracking
US11206505B2 (en) 2019-05-06 2021-12-21 Universal City Studios Llc Systems and methods for dynamically loading area-based augmented reality content
CN110164440B (zh) * 2019-06-03 2022-08-09 交互未来(北京)科技有限公司 基于捂嘴动作识别的语音交互唤醒电子设备、方法和介质
US10936874B1 (en) * 2019-08-13 2021-03-02 Dell Products, L.P. Controller gestures in virtual, augmented, and mixed reality (xR) applications
US11298623B1 (en) * 2019-11-08 2022-04-12 Facebook Technologies, Llc Battery retention methods and mechanisms for handheld controllers
US11207599B2 (en) * 2020-02-26 2021-12-28 Disney Enterprises, Inc. Gameplay system with play augmented by merchandise
WO2021236170A1 (en) * 2020-05-18 2021-11-25 Google Llc Low-power semi-passive relative six-degree-of-freedom tracking
EP4172740A1 (en) * 2020-06-30 2023-05-03 Snap Inc. Augmented reality eyewear with speech bubbles and translation
US11642589B2 (en) * 2020-07-23 2023-05-09 Microsoft Technology Licensing, Llc Virtual-projectile delivery in an expansive environment
US11176756B1 (en) * 2020-09-16 2021-11-16 Meta View, Inc. Augmented reality collaboration system
US11756225B2 (en) * 2020-09-16 2023-09-12 Campfire 3D, Inc. Augmented reality collaboration system with physical device
CN116868151A (zh) * 2021-02-12 2023-10-10 奇跃公司 激光雷达同时定位和地图构建
TWI800856B (zh) * 2021-06-25 2023-05-01 宏碁股份有限公司 擴增實境系統及其操作方法
GB2608186A (en) * 2021-06-25 2022-12-28 Thermoteknix Systems Ltd Augmented reality system
USD1014499S1 (en) 2022-03-10 2024-02-13 Campfire 3D, Inc. Augmented reality headset
USD1029076S1 (en) 2022-03-10 2024-05-28 Campfire 3D, Inc. Augmented reality pack
USD1024198S1 (en) 2022-03-10 2024-04-23 Campfire 3D, Inc. Augmented reality console
CN114489346B (zh) * 2022-03-16 2023-08-18 连云港市规划展示中心 基于vr技术的姿态同步的展馆展示系统和展示方法
CN114415840B (zh) * 2022-03-30 2022-06-10 北京华建云鼎科技股份公司 一种虚拟现实交互系统
US12008451B1 (en) * 2023-12-21 2024-06-11 Ishita Agrawal AI-assisted remote guidance using augmented reality

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462165A (en) * 1983-01-31 1984-07-31 The Boeing Company Three axis orientation sensor for an aircraft or the like
CA2358682A1 (en) * 1992-08-14 1994-03-03 British Telecommunications Public Limited Company Position location system
US5831260A (en) * 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
CN1323571A (zh) * 1999-10-28 2001-11-28 北方数字股份有限公司 确定一个或多个目标的空间位置和/或方向的系统
CN1334915A (zh) * 1998-12-17 2002-02-06 株式会社东金 朝向角检测器
US6377401B1 (en) * 1999-07-28 2002-04-23 Bae Systems Electronics Limited Head tracker system
US6611141B1 (en) * 1998-12-23 2003-08-26 Howmedica Leibinger Inc Hybrid 3-D probe tracked by multiple sensors
CN1495411A (zh) * 2002-09-13 2004-05-12 ������������ʽ���� 图像显示装置和方法、测量装置和方法、识别方法
US20040201857A1 (en) * 2000-01-28 2004-10-14 Intersense, Inc., A Delaware Corporation Self-referenced tracking
US20050107870A1 (en) * 2003-04-08 2005-05-19 Xingwu Wang Medical device with multiple coating layers
CN101067716A (zh) * 2007-05-29 2007-11-07 南京航空航天大学 具有视线跟踪功能的增强现实自然交互式头盔
CN101530325A (zh) * 2008-02-29 2009-09-16 韦伯斯特生物官能公司 具有虚拟触摸屏的定位系统
US20100309292A1 (en) * 2007-11-29 2010-12-09 Gwangju Institute Of Science And Technology Method and apparatus for generating multi-viewpoint depth map, method for generating disparity of multi-viewpoint image
US20110238399A1 (en) * 2008-11-19 2011-09-29 Elbit Systems Ltd. System and a method for mapping a magnetic field
US20120236030A1 (en) * 2010-02-28 2012-09-20 Osterhout Group, Inc. See-through near-eye display glasses including a modular image source
CN102692607A (zh) * 2011-03-25 2012-09-26 深圳光启高等理工研究院 一种磁场识别装置
US20140139226A1 (en) * 2012-11-16 2014-05-22 Halliburton Energy Services, Inc. Optical push-pull interferometric sensors for electromagnetic sensing
CN104011788A (zh) * 2011-10-28 2014-08-27 奇跃公司 用于增强和虚拟现实的系统和方法
US20140267646A1 (en) * 2013-03-15 2014-09-18 Orcam Technologies Ltd. Apparatus connectable to glasses
WO2015018876A1 (fr) * 2013-08-06 2015-02-12 Valotec Dispositif de localisation d'un ou plusieurs elements mobiles dans une zone predeterminee, et procede mis en oeuvre dans un tel dispositif
CN104361608A (zh) * 2014-10-27 2015-02-18 浙江大学宁波理工学院 一种工业用柔性导管内窥镜的定位跟踪方法
EP2887311A1 (en) * 2013-12-20 2015-06-24 Thomson Licensing Method and apparatus for performing depth estimation
US20160026253A1 (en) * 2014-03-11 2016-01-28 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality

Family Cites Families (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047952A (en) 1988-10-14 1991-09-10 The Board Of Trustee Of The Leland Stanford Junior University Communication system for deaf, deaf-blind, or non-vocal individuals using instrumented glove
US6701296B1 (en) 1988-10-14 2004-03-02 James F. Kramer Strain-sensing goniometers, systems, and recognition algorithms
US5913820A (en) * 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
US5583974A (en) 1993-05-10 1996-12-10 Apple Computer, Inc. Computer graphics system having high performance multiple layer Z-buffer
JP3772151B2 (ja) * 1994-04-21 2006-05-10 オリンパス株式会社 挿入部位置検出装置
TW275590B (en) * 1994-12-09 1996-05-11 Sega Enterprises Kk Head mounted display and system for use therefor
US5930741A (en) 1995-02-28 1999-07-27 Virtual Technologies, Inc. Accurate, rapid, reliable position sensing using multiple sensing technologies
US5592401A (en) 1995-02-28 1997-01-07 Virtual Technologies, Inc. Accurate, rapid, reliable position sensing using multiple sensing technologies
US5684498A (en) 1995-06-26 1997-11-04 Cae Electronics Ltd. Field sequential color head mounted display with suppressed color break-up
CA2238693C (en) 1995-11-27 2009-02-24 Cae Electronics Ltd. Method and apparatus for displaying a virtual environment on a video display
US6064749A (en) * 1996-08-02 2000-05-16 Hirota; Gentaro Hybrid tracking for augmented reality using both camera motion detection and landmark tracking
JP3558104B2 (ja) * 1996-08-05 2004-08-25 ソニー株式会社 3次元仮想物体表示装置および方法
US5784115A (en) 1996-12-31 1998-07-21 Xerox Corporation System and method for motion compensated de-interlacing of video frames
US6163155A (en) * 1999-01-28 2000-12-19 Dresser Industries, Inc. Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivities and relative dip angle in anisotropic earth formations
US6407736B1 (en) 1999-06-18 2002-06-18 Interval Research Corporation Deferred scanline conversion architecture
JP2001208529A (ja) * 2000-01-26 2001-08-03 Mixed Reality Systems Laboratory Inc 計測装置及びその制御方法並びに記憶媒体
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
US7445550B2 (en) 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
EP1297691A2 (en) 2000-03-07 2003-04-02 Sarnoff Corporation Camera pose estimation
US6891533B1 (en) 2000-04-11 2005-05-10 Hewlett-Packard Development Company, L.P. Compositing separately-generated three-dimensional images
US6738044B2 (en) 2000-08-07 2004-05-18 The Regents Of The University Of California Wireless, relative-motion computer input device
US6590536B1 (en) * 2000-08-18 2003-07-08 Charles A. Walton Body motion detecting system with correction for tilt of accelerometers and remote measurement of body position
US6753828B2 (en) * 2000-09-25 2004-06-22 Siemens Corporated Research, Inc. System and method for calibrating a stereo optical see-through head-mounted display system for augmented reality
US20020180727A1 (en) 2000-11-22 2002-12-05 Guckenberger Ronald James Shadow buffer control module method and software construct for adjusting per pixel raster images attributes to screen space and projector features for digital warp, intensity transforms, color matching, soft-edge blending, and filtering for multiple projectors and laser projectors
US6691074B1 (en) 2001-02-08 2004-02-10 Netmore Ltd. System for three dimensional positioning and tracking
US6861982B2 (en) * 2001-08-16 2005-03-01 Itt Manufacturing Enterprises, Inc. System for determining position of an emitter
US7113618B2 (en) 2001-09-18 2006-09-26 Intel Corporation Portable virtual reality
JP2003337963A (ja) 2002-05-17 2003-11-28 Seiko Epson Corp 画像処理装置および画像処理方法、ならびに、画像処理プログラムおよびその記録媒体
US7190331B2 (en) * 2002-06-06 2007-03-13 Siemens Corporate Research, Inc. System and method for measuring the registration accuracy of an augmented reality system
US9153074B2 (en) 2011-07-18 2015-10-06 Dylan T X Zhou Wearable augmented reality eyeglass communication device including mobile phone and mobile computing via virtual touch screen gesture control and neuron command
JP3984907B2 (ja) 2002-11-29 2007-10-03 キヤノン株式会社 画像観察システム
US20070155589A1 (en) 2002-12-04 2007-07-05 Philip Feldman Method and Apparatus for Operatively Controlling a Virtual Reality Scenario with an Isometric Exercise System
JP2004213350A (ja) 2002-12-27 2004-07-29 Seiko Epson Corp 力覚提示装置及び画像補正方法
US7643025B2 (en) 2003-09-30 2010-01-05 Eric Belk Lange Method and apparatus for applying stereoscopic imagery to three-dimensionally defined substrates
US7443154B1 (en) * 2003-10-04 2008-10-28 Seektech, Inc. Multi-sensor mapping omnidirectional sonde and line locator
CA2450837A1 (en) * 2003-11-25 2005-05-25 University Of New Brunswick Induction magnetometer
US9229540B2 (en) 2004-01-30 2016-01-05 Electronic Scripting Products, Inc. Deriving input from six degrees of freedom interfaces
US20160098095A1 (en) 2004-01-30 2016-04-07 Electronic Scripting Products, Inc. Deriving Input from Six Degrees of Freedom Interfaces
US7653883B2 (en) 2004-07-30 2010-01-26 Apple Inc. Proximity detector in handheld device
JP4508820B2 (ja) 2004-10-19 2010-07-21 株式会社ワコム 3次元情報検出システム及び3次元情報入力装置
EP1814101A1 (en) 2004-11-19 2007-08-01 Daem Interactive, Sl Personal device with image-acquisition functions for the application of augmented reality resources and corresponding method
IL165314A (en) * 2004-11-21 2009-08-03 Elbit Ltd Electromagnetic tracker
EP1851750A4 (en) 2005-02-08 2010-08-25 Oblong Ind Inc SYSTEM AND METHOD FOR CONTROL SYSTEM BASED ON GESTURES
JP2008539675A (ja) 2005-04-26 2008-11-13 アイマックス コーポレイション 電子投影システムおよび方法
US8308563B2 (en) 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
US8157651B2 (en) 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
JP4437228B2 (ja) 2005-11-07 2010-03-24 大学共同利用機関法人情報・システム研究機構 焦点ぼけ構造を用いたイメージング装置及びイメージング方法
KR100722229B1 (ko) 2005-12-02 2007-05-29 한국전자통신연구원 사용자 중심형 인터페이스를 위한 가상현실 상호작용 인체모델 즉석 생성/제어 장치 및 방법
US9823747B2 (en) 2006-02-08 2017-11-21 Oblong Industries, Inc. Spatial, multi-modal control device for use with spatial operating system
US8531396B2 (en) 2006-02-08 2013-09-10 Oblong Industries, Inc. Control system for navigating a principal dimension of a data space
US9910497B2 (en) 2006-02-08 2018-03-06 Oblong Industries, Inc. Gestural control of autonomous and semi-autonomous systems
US8537111B2 (en) 2006-02-08 2013-09-17 Oblong Industries, Inc. Control system for navigating a principal dimension of a data space
US8370383B2 (en) 2006-02-08 2013-02-05 Oblong Industries, Inc. Multi-process interactive systems and methods
JP4151982B2 (ja) 2006-03-10 2008-09-17 任天堂株式会社 動き判別装置および動き判別プログラム
JP4684147B2 (ja) 2006-03-28 2011-05-18 任天堂株式会社 傾き算出装置、傾き算出プログラム、ゲーム装置およびゲームプログラム
JP4196302B2 (ja) 2006-06-19 2008-12-17 ソニー株式会社 情報処理装置および方法、並びにプログラム
JP4804256B2 (ja) 2006-07-27 2011-11-02 キヤノン株式会社 情報処理方法
US8194088B1 (en) 2006-08-03 2012-06-05 Apple Inc. Selective composite rendering
US7921120B2 (en) 2006-11-30 2011-04-05 D&S Consultants Method and system for image recognition using a similarity inverse matrix
CN101093586A (zh) * 2007-07-12 2007-12-26 上海交通大学 面向复杂场景实时交互操作的并行碰撞检测方法
US8165352B1 (en) 2007-08-06 2012-04-24 University Of South Florida Reconstruction of biometric image templates using match scores
US10095815B2 (en) * 2008-11-19 2018-10-09 Elbit Systems Ltd. System and a method for mapping a magnetic field
US20090115406A1 (en) 2007-11-01 2009-05-07 General Electric Company System and method for minimizing mutual inductance coupling between coils in an electromagnetic tracking system
US9013505B1 (en) 2007-11-27 2015-04-21 Sprint Communications Company L.P. Mobile system representing virtual objects on live camera image
US7795596B2 (en) 2008-01-03 2010-09-14 Alcatel-Lucent Usa Inc. Cloaking device detection system
WO2009091563A1 (en) 2008-01-18 2009-07-23 Thomson Licensing Depth-image-based rendering
DE112009000180T5 (de) 2008-01-23 2011-03-31 Swift-Foot Graphics Ab Verfahren, Vorrichtung und Computerprogrammprodukt für eine verbesserte Grafikperformance
US20090184825A1 (en) 2008-01-23 2009-07-23 General Electric Company RFID Transponder Used for Instrument Identification in an Electromagnetic Tracking System
US9740293B2 (en) 2009-04-02 2017-08-22 Oblong Industries, Inc. Operating environment with gestural control and multiple client devices, displays, and users
US9952673B2 (en) 2009-04-02 2018-04-24 Oblong Industries, Inc. Operating environment comprising multiple client devices, multiple displays, multiple users, and gestural control
US9740922B2 (en) 2008-04-24 2017-08-22 Oblong Industries, Inc. Adaptive tracking system for spatial input devices
US9684380B2 (en) 2009-04-02 2017-06-20 Oblong Industries, Inc. Operating environment with gestural control and multiple client devices, displays, and users
US9495013B2 (en) 2008-04-24 2016-11-15 Oblong Industries, Inc. Multi-modal gestural interface
US8723795B2 (en) 2008-04-24 2014-05-13 Oblong Industries, Inc. Detecting, representing, and interpreting three-space input: gestural continuum subsuming freespace, proximal, and surface-contact modes
US8446426B2 (en) 2008-04-28 2013-05-21 Apple Inc. Technique for visually compositing a group of graphical objects
KR20090120159A (ko) 2008-05-19 2009-11-24 삼성전자주식회사 영상합성장치 및 영상합성방법
US8929877B2 (en) 2008-09-12 2015-01-06 Digimarc Corporation Methods and systems for content processing
JP5415054B2 (ja) 2008-10-28 2014-02-12 セイコーエプソン株式会社 駆動方法および電気光学装置
WO2010055737A1 (ja) 2008-11-14 2010-05-20 株式会社ソニー・コンピュータエンタテインメント 操作デバイス
US8188745B2 (en) 2008-12-05 2012-05-29 Metrotech Corporation Inc. Precise location and orientation of a concealed dipole transmitter
US9465129B1 (en) 2009-03-06 2016-10-11 See Scan, Inc. Image-based mapping locating system
US8860723B2 (en) 2009-03-09 2014-10-14 Donya Labs Ab Bounded simplification of geometrical computer data
JP5177078B2 (ja) 2009-05-26 2013-04-03 富士通モバイルコミュニケーションズ株式会社 情報処理装置
US9933852B2 (en) 2009-10-14 2018-04-03 Oblong Industries, Inc. Multi-process interactive systems and methods
US8775424B2 (en) 2010-01-26 2014-07-08 Xerox Corporation System for creative image navigation and exploration
US8581905B2 (en) 2010-04-08 2013-11-12 Disney Enterprises, Inc. Interactive three dimensional displays on handheld devices
TWI399688B (zh) 2010-06-08 2013-06-21 Waltop Int Corp 整合電磁式及電容感應輸入裝置
JP2012043308A (ja) 2010-08-20 2012-03-01 Canon Inc 位置姿勢決定方法、位置姿勢決定装置、物体モデル生成方法、物体モデル生成装置、およびプログラム
JP5820366B2 (ja) 2010-10-08 2015-11-24 パナソニック株式会社 姿勢推定装置及び姿勢推定方法
US20120086630A1 (en) 2010-10-12 2012-04-12 Sony Computer Entertainment Inc. Using a portable gaming device to record or modify a game or application in real-time running on a home gaming system
US9122053B2 (en) 2010-10-15 2015-09-01 Microsoft Technology Licensing, Llc Realistic occlusion for a head mounted augmented reality display
FR2966251B1 (fr) 2010-10-19 2014-04-25 Astrium Sas Systeme d'orientation et de positionnement d'un recepteur electromagnetique
US8660369B2 (en) 2010-10-25 2014-02-25 Disney Enterprises, Inc. Systems and methods using mobile devices for augmented reality
US8745061B2 (en) 2010-11-09 2014-06-03 Tibco Software Inc. Suffix array candidate selection and index data structure
EP2668617A1 (en) 2011-01-27 2013-12-04 Metaio GmbH Method for determining correspondences between a first and a second image, and method for determining the pose of a camera
US8587583B2 (en) 2011-01-31 2013-11-19 Microsoft Corporation Three-dimensional environment reconstruction
JP5776201B2 (ja) * 2011-02-10 2015-09-09 ソニー株式会社 情報処理装置、情報共有方法、プログラム及び端末装置
JP5724544B2 (ja) 2011-03-31 2015-05-27 ソニー株式会社 画像処理装置、画像処理方法及びプログラム
US9206007B2 (en) 2011-05-31 2015-12-08 Twist-Ease Inc. Bag dispenser
US20120306850A1 (en) 2011-06-02 2012-12-06 Microsoft Corporation Distributed asynchronous localization and mapping for augmented reality
US20120327116A1 (en) 2011-06-23 2012-12-27 Microsoft Corporation Total field of view classification for head-mounted display
US8933913B2 (en) 2011-06-28 2015-01-13 Microsoft Corporation Electromagnetic 3D stylus
US20150100380A1 (en) 2011-07-20 2015-04-09 Raymond P. Jones, JR. Systems and methods for providing financial controls for aggregated weather-based work
US20150040074A1 (en) 2011-08-18 2015-02-05 Layar B.V. Methods and systems for enabling creation of augmented reality content
US20150070347A1 (en) 2011-08-18 2015-03-12 Layar B.V. Computer-vision based augmented reality system
US8749396B2 (en) 2011-08-25 2014-06-10 Satorius Stedim Biotech Gmbh Assembling method, monitoring method, communication method, augmented reality system and computer program product
US9400941B2 (en) 2011-08-31 2016-07-26 Metaio Gmbh Method of matching image features with reference features
EP2756328A2 (en) 2011-09-13 2014-07-23 Sadar 3D, Inc. Synthetic aperture radar apparatus and methods
US8821286B2 (en) 2011-09-29 2014-09-02 Wms Gaming, Inc. Wagering game system having motion sensing controllers
US9286711B2 (en) 2011-09-30 2016-03-15 Microsoft Technology Licensing, Llc Representing a location at a previous time period using an augmented reality display
KR102376368B1 (ko) 2011-11-23 2022-03-17 매직 립, 인코포레이티드 3차원 가상 및 증강 현실 디스플레이 시스템
US9330468B2 (en) 2012-02-29 2016-05-03 RetailNext, Inc. Method and system for analyzing interactions
US9075824B2 (en) 2012-04-27 2015-07-07 Xerox Corporation Retrieval system and method leveraging category-level labels
US9098229B2 (en) 2012-05-04 2015-08-04 Aaron Hallquist Single image pose estimation of image capture devices
US9116666B2 (en) 2012-06-01 2015-08-25 Microsoft Technology Licensing, Llc Gesture based region identification for holograms
US10629003B2 (en) 2013-03-11 2020-04-21 Magic Leap, Inc. System and method for augmented and virtual reality
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9384737B2 (en) 2012-06-29 2016-07-05 Microsoft Technology Licensing, Llc Method and device for adjusting sound levels of sources based on sound source priority
JP2014049934A (ja) 2012-08-31 2014-03-17 Sony Corp ヘッドマウントディスプレイ
EP2704055A1 (en) 2012-08-31 2014-03-05 Layar B.V. Determining space to display content in augmented reality
US9134954B2 (en) 2012-09-10 2015-09-15 Qualcomm Incorporated GPU memory buffer pre-fetch and pre-back signaling to avoid page-fault
EP2711670B1 (en) 2012-09-21 2019-01-30 NavVis GmbH Visual localisation
GB201217372D0 (en) 2012-09-28 2012-11-14 Ucl Business Plc A system and method for annotating images by propagating information
US9132342B2 (en) * 2012-10-31 2015-09-15 Sulon Technologies Inc. Dynamic environment and location based augmented reality (AR) systems
US9177404B2 (en) 2012-10-31 2015-11-03 Qualcomm Incorporated Systems and methods of merging multiple maps for computer vision based tracking
US9160727B1 (en) 2012-11-30 2015-10-13 Microstrategy Incorporated Providing credential information
US9026847B2 (en) 2012-12-21 2015-05-05 Advanced Micro Devices, Inc. Hardware based redundant multi-threading inside a GPU for improved reliability
US20140176591A1 (en) 2012-12-26 2014-06-26 Georg Klein Low-latency fusing of color image data
WO2014105385A1 (en) 2012-12-27 2014-07-03 The Regents Of The University Of California Anamorphic stretch image compression
US9788714B2 (en) 2014-07-08 2017-10-17 Iarmourholdings, Inc. Systems and methods using virtual reality or augmented reality environments for the measurement and/or improvement of human vestibulo-ocular performance
US9898866B2 (en) * 2013-03-13 2018-02-20 The University Of North Carolina At Chapel Hill Low latency stabilization for head-worn displays
KR102458124B1 (ko) 2013-03-15 2022-10-21 매직 립, 인코포레이티드 디스플레이 시스템 및 방법
US20160103487A1 (en) * 2013-03-15 2016-04-14 Glen J. Anderson Brain computer interface (bci) system based on gathered temporal and spatial patterns of biophysical signals
US9269003B2 (en) 2013-04-30 2016-02-23 Qualcomm Incorporated Diminished and mediated reality effects from reconstruction
US20140323148A1 (en) 2013-04-30 2014-10-30 Qualcomm Incorporated Wide area localization from slam maps
US9367960B2 (en) 2013-05-22 2016-06-14 Microsoft Technology Licensing, Llc Body-locked placement of augmented reality objects
US10254855B2 (en) 2013-06-04 2019-04-09 Wen-Chieh Geoffrey Lee High resolution and high sensitivity three-dimensional (3D) cursor maneuvering device
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
US9129430B2 (en) 2013-06-25 2015-09-08 Microsoft Technology Licensing, Llc Indicating out-of-view augmented reality images
US9443355B2 (en) 2013-06-28 2016-09-13 Microsoft Technology Licensing, Llc Reprojection OLED display for augmented reality experiences
US9712473B2 (en) 2013-07-11 2017-07-18 Facebook, Inc. Methods, systems, and user interfaces for community-based location ratings
US10228242B2 (en) 2013-07-12 2019-03-12 Magic Leap, Inc. Method and system for determining user input based on gesture
WO2015006784A2 (en) 2013-07-12 2015-01-15 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9514571B2 (en) 2013-07-25 2016-12-06 Microsoft Technology Licensing, Llc Late stage reprojection
JP6192010B2 (ja) 2013-09-05 2017-09-06 国立大学法人 東京大学 重み設定装置および方法
US9729864B2 (en) 2013-09-30 2017-08-08 Sony Interactive Entertainment Inc. Camera based safety mechanisms for users of head mounted displays
US20150097719A1 (en) * 2013-10-03 2015-04-09 Sulon Technologies Inc. System and method for active reference positioning in an augmented reality environment
JP6353214B2 (ja) 2013-11-11 2018-07-04 株式会社ソニー・インタラクティブエンタテインメント 画像生成装置および画像生成方法
EP4220999A3 (en) 2013-11-27 2023-08-09 Magic Leap, Inc. Virtual and augmented reality systems and methods
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
US11402629B2 (en) 2013-11-27 2022-08-02 Magic Leap, Inc. Separated pupil optical systems for virtual and augmented reality and methods for displaying images using same
US9354778B2 (en) 2013-12-06 2016-05-31 Digimarc Corporation Smartphone-based methods and systems
EP3084682B1 (en) 2013-12-19 2019-07-24 Avigilon Fortress Corporation System and method for identifying faces in unconstrained media
US9360935B2 (en) * 2013-12-20 2016-06-07 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Integrated bi-sensing optical structure for head mounted display
US20160147063A1 (en) 2014-11-26 2016-05-26 Osterhout Group, Inc. See-through computer display systems
US10254856B2 (en) 2014-01-17 2019-04-09 Osterhout Group, Inc. External user interface for head worn computing
US9448409B2 (en) 2014-11-26 2016-09-20 Osterhout Group, Inc. See-through computer display systems
US9405122B2 (en) 2014-01-29 2016-08-02 Ricoh Co., Ltd Depth-disparity calibration of a binocular optical augmented reality system
WO2015134475A2 (en) 2014-03-04 2015-09-11 Google Inc. Map personalization based on social clues
US20160203624A1 (en) 2014-03-05 2016-07-14 Google Inc. System and Method for Providing Combined Multi-Dimensional Map Views
WO2015134958A1 (en) 2014-03-07 2015-09-11 Magic Leap, Inc. Virtual and augmented reality systems and methods
US9953243B2 (en) 2014-04-25 2018-04-24 Google Llc Electronic device localization based on imagery
CN105005457B (zh) 2014-04-25 2019-04-09 腾讯科技(深圳)有限公司 地理位置展示方法及装置
US9652893B2 (en) 2014-04-29 2017-05-16 Microsoft Technology Licensing, Llc Stabilization plane determination based on gaze location
US9727341B2 (en) 2014-05-09 2017-08-08 Samsung Electronics Co., Ltd. Control flow in a thread-based environment without branching
WO2015185110A1 (en) 2014-06-03 2015-12-10 Metaio Gmbh Method and system for presenting a digital information related to a real object
US20150358539A1 (en) 2014-06-06 2015-12-10 Jacob Catt Mobile Virtual Reality Camera, Method, And System
US20150379772A1 (en) 2014-06-30 2015-12-31 Samsung Display Co., Ltd. Tracking accelerator for virtual and augmented reality displays
WO2016002409A1 (ja) 2014-07-01 2016-01-07 シャープ株式会社 フィールドシーケンシャル画像表示装置および画像表示方法
US10056054B2 (en) 2014-07-03 2018-08-21 Federico Fraccaroli Method, system, and apparatus for optimising the augmentation of radio emissions
US10198865B2 (en) 2014-07-10 2019-02-05 Seiko Epson Corporation HMD calibration with direct geometric modeling
US10162177B2 (en) * 2014-07-11 2018-12-25 Sixense Entertainment, Inc. Method and apparatus for self-relative body tracking for virtual reality systems using magnetic tracking
US9363644B2 (en) 2014-07-16 2016-06-07 Yahoo! Inc. System and method for detection of indoor tracking units
US9719871B2 (en) 2014-08-09 2017-08-01 Google Inc. Detecting a state of a wearable device
CN107111894B (zh) 2014-09-08 2022-04-29 西姆克斯有限责任公司 用于专业和教育训练的增强或虚拟现实模拟器
JP2017532847A (ja) 2014-09-09 2017-11-02 ノキア テクノロジーズ オーユー 立体録画及び再生
US10216750B2 (en) 2014-10-14 2019-02-26 Microsoft Technology Licensing, Llc Annotated geometry
US9478029B2 (en) 2014-10-23 2016-10-25 Qualcomm Incorporated Selection strategy for exchanging map information in collaborative multi-user SLAM systems
US10650574B2 (en) 2014-10-31 2020-05-12 Fyusion, Inc. Generating stereoscopic pairs of images from a single lens camera
WO2016073557A1 (en) 2014-11-04 2016-05-12 The University Of North Carolina At Chapel Hill Minimal-latency tracking and display for matching real and virtual worlds
US20160131904A1 (en) 2014-11-07 2016-05-12 Osterhout Group, Inc. Power management for head worn computing
US9818170B2 (en) 2014-12-10 2017-11-14 Qualcomm Incorporated Processing unaligned block transfer operations
US9836641B2 (en) 2014-12-17 2017-12-05 Google Inc. Generating numeric embeddings of images
US9696549B2 (en) 2014-12-22 2017-07-04 International Business Machines Corporation Selectively pairing an application presented in virtual space with a physical display
US9746921B2 (en) * 2014-12-31 2017-08-29 Sony Interactive Entertainment Inc. Signal generation and detector systems and methods for determining positions of fingers of a user
US9846968B2 (en) 2015-01-20 2017-12-19 Microsoft Technology Licensing, Llc Holographic bird's eye view camera
AU2016225963B2 (en) 2015-03-05 2021-05-13 Magic Leap, Inc. Systems and methods for augmented reality
US10180734B2 (en) 2015-03-05 2019-01-15 Magic Leap, Inc. Systems and methods for augmented reality
EP4332612A2 (en) 2015-03-07 2024-03-06 Verity AG Distributed localization systems and methods and self-localizing apparatus
US9874932B2 (en) 2015-04-09 2018-01-23 Microsoft Technology Licensing, Llc Avoidance of color breakup in late-stage re-projection
US9814430B1 (en) 2015-04-17 2017-11-14 Bertec Corporation System and method for measuring eye movement and/or eye position and postural sway of a subject
NZ775650A (en) 2015-05-04 2023-06-30 Magic Leap Inc Separated pupil optical systems for virtual and augmented reality and methods for displaying images using same
CN104866829B (zh) 2015-05-25 2019-02-19 苏州大学 一种基于特征学习的跨年龄人脸验证方法
US10721280B1 (en) 2015-05-29 2020-07-21 Sprint Communications Company L.P. Extended mixed multimedia reality platform
US20160378863A1 (en) 2015-06-24 2016-12-29 Google Inc. Selecting representative video frames for videos
US10062010B2 (en) 2015-06-26 2018-08-28 Intel Corporation System for building a map and subsequent localization
US10192361B2 (en) 2015-07-06 2019-01-29 Seiko Epson Corporation Head-mounted display device and computer program
US10750161B2 (en) 2015-07-15 2020-08-18 Fyusion, Inc. Multi-view interactive digital media representation lock screen
US9875427B2 (en) 2015-07-28 2018-01-23 GM Global Technology Operations LLC Method for object localization and pose estimation for an object of interest
US10888389B2 (en) 2015-09-10 2021-01-12 Duke University Systems and methods for arbitrary viewpoint robotic manipulation and robotic surgical assistance
GB201518112D0 (en) 2015-10-13 2015-11-25 Bae Systems Plc Improvements in and relating to displays
US10338677B2 (en) 2015-10-28 2019-07-02 Microsoft Technology Licensing, Llc Adjusting image frames based on tracking motion of eyes
US10026212B2 (en) 2015-11-20 2018-07-17 Google Llc Electronic display stabilization using pixel velocities
US20170161853A1 (en) 2015-12-03 2017-06-08 James Carroll Gossweiler Mapping system that identifies site-specific real estate due diligence professionals and related service providers
WO2017096396A1 (en) 2015-12-04 2017-06-08 Magic Leap, Inc. Relocalization systems and methods
US10241569B2 (en) 2015-12-08 2019-03-26 Facebook Technologies, Llc Focus adjustment method for a virtual reality headset
FR3046261B1 (fr) 2015-12-24 2018-08-31 Starbreeze Paris Element mobile hybride, procede et dispositif pour interfacer une pluralite d'elements mobiles hybrides avec un systeme informatique, et ensemble pour systeme de realite virtuelle ou augmentee
US10130429B1 (en) 2016-01-06 2018-11-20 Ethicon Llc Methods, systems, and devices for controlling movement of a robotic surgical system
KR20180110051A (ko) 2016-02-05 2018-10-08 매직 립, 인코포레이티드 증강 현실을 위한 시스템들 및 방법들
US10334076B2 (en) 2016-02-22 2019-06-25 Google Llc Device pairing in augmented/virtual reality environment
WO2017147178A1 (en) 2016-02-22 2017-08-31 Google Inc. Separate time-warping for a scene and an object for display of virtual reality content
US10788791B2 (en) 2016-02-22 2020-09-29 Real View Imaging Ltd. Method and system for displaying holographic images within a real object
US9639935B1 (en) 2016-05-25 2017-05-02 Gopro, Inc. Apparatus and methods for camera alignment model calibration
WO2017210111A1 (en) 2016-05-29 2017-12-07 Google Llc Time-warping adjustment based on depth information in a virtual/augmented reality system
US10366536B2 (en) 2016-06-28 2019-07-30 Microsoft Technology Licensing, Llc Infinite far-field depth perception for near-field objects in virtual environments
AU2017305227B2 (en) 2016-08-02 2021-12-16 Magic Leap, Inc. Fixed-distance virtual and augmented reality systems and methods
US11017712B2 (en) 2016-08-12 2021-05-25 Intel Corporation Optimized display image rendering
CA2976464A1 (en) 2016-08-16 2018-02-16 Sergi Berna Sague Method and system for wireless location and movement mapping, tracking and analytics
JP6880174B2 (ja) 2016-08-22 2021-06-02 マジック リープ, インコーポレイテッドMagic Leap,Inc. 仮想現実、拡張現実、および複合現実システムおよび方法
US10318115B2 (en) 2016-10-14 2019-06-11 OneMarket Network LLC System and method for presenting optimized map labels
CN108241142B (zh) * 2016-12-26 2021-05-11 宏达国际电子股份有限公司 追踪系统及追踪方法
US10330936B2 (en) 2017-01-19 2019-06-25 Facebook Technologies, Llc Focal surface display
US10812936B2 (en) 2017-01-23 2020-10-20 Magic Leap, Inc. Localization determination for mixed reality systems
CN117873313A (zh) 2017-03-17 2024-04-12 奇跃公司 具有彩色虚拟内容扭曲的混合现实系统及使用该系统生成虚拟内容的方法
JP7055815B2 (ja) 2017-03-17 2022-04-18 マジック リープ, インコーポレイテッド 仮想コンテンツをワーピングすることを伴う複合現実システムおよびそれを使用して仮想コンテンツを生成する方法
US10861237B2 (en) 2017-03-17 2020-12-08 Magic Leap, Inc. Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same
WO2018203232A1 (en) 2017-05-01 2018-11-08 Pure Depth Inc. Head tracking based field sequential saccadic breakup reduction
US10620710B2 (en) 2017-06-15 2020-04-14 Microsoft Technology Licensing, Llc Displacement oriented interaction in computer-mediated reality
GB201709752D0 (en) 2017-06-19 2017-08-02 Advanced Risc Mach Ltd Graphics processing systems
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US10403032B2 (en) 2017-08-22 2019-09-03 Qualcomm Incorporated Rendering an image from computer graphics using two rendering computing devices
US10445922B2 (en) 2017-08-31 2019-10-15 Intel Corporation Last-level projection method and apparatus for virtual and augmented reality
US10529086B2 (en) 2017-11-22 2020-01-07 Futurewei Technologies, Inc. Three-dimensional (3D) reconstructions of dynamic scenes using a reconfigurable hybrid imaging system
US10481689B1 (en) 2018-01-10 2019-11-19 Electronic Arts Inc. Motion capture glove
US10861215B2 (en) 2018-04-30 2020-12-08 Qualcomm Incorporated Asynchronous time and space warp with determination of region of interest
WO2020023383A1 (en) 2018-07-23 2020-01-30 Magic Leap, Inc. Mixed reality system with virtual content warping and method of generating virtual content using same
US11176901B1 (en) 2019-08-13 2021-11-16 Facebook Technologies, Llc. Pan-warping and modifying sub-frames with an up-sampled frame rate
US10843067B1 (en) 2019-10-04 2020-11-24 Varjo Technologies Oy Input device, system, and method

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462165A (en) * 1983-01-31 1984-07-31 The Boeing Company Three axis orientation sensor for an aircraft or the like
CA2358682A1 (en) * 1992-08-14 1994-03-03 British Telecommunications Public Limited Company Position location system
US5831260A (en) * 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
CN1334915A (zh) * 1998-12-17 2002-02-06 株式会社东金 朝向角检测器
US6611141B1 (en) * 1998-12-23 2003-08-26 Howmedica Leibinger Inc Hybrid 3-D probe tracked by multiple sensors
US6377401B1 (en) * 1999-07-28 2002-04-23 Bae Systems Electronics Limited Head tracker system
CN1323571A (zh) * 1999-10-28 2001-11-28 北方数字股份有限公司 确定一个或多个目标的空间位置和/或方向的系统
US20040201857A1 (en) * 2000-01-28 2004-10-14 Intersense, Inc., A Delaware Corporation Self-referenced tracking
CN1495411A (zh) * 2002-09-13 2004-05-12 ������������ʽ���� 图像显示装置和方法、测量装置和方法、识别方法
US20050107870A1 (en) * 2003-04-08 2005-05-19 Xingwu Wang Medical device with multiple coating layers
CN101067716A (zh) * 2007-05-29 2007-11-07 南京航空航天大学 具有视线跟踪功能的增强现实自然交互式头盔
US20100309292A1 (en) * 2007-11-29 2010-12-09 Gwangju Institute Of Science And Technology Method and apparatus for generating multi-viewpoint depth map, method for generating disparity of multi-viewpoint image
CN101530325A (zh) * 2008-02-29 2009-09-16 韦伯斯特生物官能公司 具有虚拟触摸屏的定位系统
US20110238399A1 (en) * 2008-11-19 2011-09-29 Elbit Systems Ltd. System and a method for mapping a magnetic field
US20120236030A1 (en) * 2010-02-28 2012-09-20 Osterhout Group, Inc. See-through near-eye display glasses including a modular image source
CN102692607A (zh) * 2011-03-25 2012-09-26 深圳光启高等理工研究院 一种磁场识别装置
CN104011788A (zh) * 2011-10-28 2014-08-27 奇跃公司 用于增强和虚拟现实的系统和方法
US20140139226A1 (en) * 2012-11-16 2014-05-22 Halliburton Energy Services, Inc. Optical push-pull interferometric sensors for electromagnetic sensing
US20140267646A1 (en) * 2013-03-15 2014-09-18 Orcam Technologies Ltd. Apparatus connectable to glasses
WO2015018876A1 (fr) * 2013-08-06 2015-02-12 Valotec Dispositif de localisation d'un ou plusieurs elements mobiles dans une zone predeterminee, et procede mis en oeuvre dans un tel dispositif
EP2887311A1 (en) * 2013-12-20 2015-06-24 Thomson Licensing Method and apparatus for performing depth estimation
US20160026253A1 (en) * 2014-03-11 2016-01-28 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
CN104361608A (zh) * 2014-10-27 2015-02-18 浙江大学宁波理工学院 一种工业用柔性导管内窥镜的定位跟踪方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姜萍萍等: "用于体内胶囊式遥测系统的电磁跟踪定位方法", 《光学精密工程》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11604057B2 (en) 2018-01-19 2023-03-14 Northern Digital Inc. Calibrating a magnetic transmitter
CN110058187A (zh) * 2018-01-19 2019-07-26 阿森松技术公司 校准磁变送器
CN110520945A (zh) * 2018-02-06 2019-11-29 谷歌有限责任公司 中空芯电磁线圈
CN110520945B (zh) * 2018-02-06 2021-10-08 谷歌有限责任公司 中空芯电磁线圈
CN110622022A (zh) * 2018-02-06 2019-12-27 谷歌有限责任公司 电磁位置追踪系统的功率管理
CN111742284A (zh) * 2018-02-23 2020-10-02 苹果公司 基于磁传感器的接近感测
CN110275603A (zh) * 2018-03-13 2019-09-24 脸谱科技有限责任公司 分布式人造现实系统、手镯设备和头戴式显示器
CN110275602A (zh) * 2018-03-13 2019-09-24 脸谱科技有限责任公司 人工现实系统和头戴式显示器
CN108471533A (zh) * 2018-03-21 2018-08-31 阿瑞思科技(成都)有限责任公司 一种适用于ar的高精度定位方法
CN108427199A (zh) * 2018-03-26 2018-08-21 京东方科技集团股份有限公司 一种增强现实设备、系统及方法
CN113168004A (zh) * 2018-11-21 2021-07-23 瑞典爱立信有限公司 与用户可佩戴的头戴式耳机连接的移动电子设备的校准
CN113168004B (zh) * 2018-11-21 2023-01-06 瑞典爱立信有限公司 与用户可佩戴的头戴式耳机连接的移动电子设备的校准
CN109633632A (zh) * 2018-12-26 2019-04-16 青岛小鸟看看科技有限公司 一种头戴显示设备,手柄及其定位追踪方法
CN109613983A (zh) * 2018-12-26 2019-04-12 青岛小鸟看看科技有限公司 头戴显示系统中手柄的定位方法、装置和头戴显示系统
US11294189B2 (en) 2018-12-26 2022-04-05 Qingdao Pico Technology Co., Ltd. Method and device for positioning handle in head mounted display system and head mounted display system
CN113383294A (zh) * 2019-01-28 2021-09-10 奇跃公司 用于解决六自由度姿态测量中的半球模糊的方法和系统
CN111796665A (zh) * 2019-04-02 2020-10-20 阿森松技术公司 修正畸变
CN111796665B (zh) * 2019-04-02 2024-06-04 北方数字化技术公司 修正畸变
CN112753006A (zh) * 2019-04-12 2021-05-04 谷歌有限责任公司 电磁跟踪的三维空中鼠标
CN111818115A (zh) * 2019-04-12 2020-10-23 华为技术有限公司 一种处理方法、装置和系统
CN111818115B (zh) * 2019-04-12 2021-10-22 华为技术有限公司 一种处理方法、装置和系统
WO2020207487A1 (zh) * 2019-04-12 2020-10-15 华为技术有限公司 一种处理方法、装置和系统
CN112753006B (zh) * 2019-04-12 2024-06-07 谷歌有限责任公司 电磁跟踪的三维空中鼠标
CN111200745A (zh) * 2019-12-31 2020-05-26 歌尔股份有限公司 视点信息采集方法、装置、设备和计算机存储介质
CN111966213A (zh) * 2020-06-29 2020-11-20 青岛小鸟看看科技有限公司 图像处理方法、装置、设备及存储介质
CN112354171A (zh) * 2020-10-20 2021-02-12 上海恒润文化科技有限公司 一种轨道车及其执行机构的执行控制方法和装置
CN112354171B (zh) * 2020-10-20 2023-08-25 上海恒润文化科技有限公司 一种轨道车及其执行机构的执行控制方法和装置

Also Published As

Publication number Publication date
EP3265866A4 (en) 2018-11-14
CN112764536A (zh) 2021-05-07
US11429183B2 (en) 2022-08-30
CN107533233B (zh) 2021-01-29
KR102331164B1 (ko) 2021-11-24
CA2979560C (en) 2023-11-07
US11619988B2 (en) 2023-04-04
US20220350400A1 (en) 2022-11-03
NZ735465A (en) 2021-07-30
US20210116994A1 (en) 2021-04-22
AU2016225963B2 (en) 2021-05-13
KR20170126482A (ko) 2017-11-17
IL254300A0 (en) 2017-10-31
WO2016141373A1 (en) 2016-09-09
JP7305690B2 (ja) 2023-07-10
JP2023134530A (ja) 2023-09-27
IL284939A (en) 2021-08-31
AU2016225963A1 (en) 2017-10-05
JP7136558B2 (ja) 2022-09-13
IL284939B (en) 2022-10-01
JP2018511122A (ja) 2018-04-19
EP3265866A1 (en) 2018-01-10
JP2021101251A (ja) 2021-07-08
IL284939B2 (en) 2023-02-01
IL254300B (en) 2021-08-31
US20230195216A1 (en) 2023-06-22
CA2979560A1 (en) 2016-09-09
US20160259404A1 (en) 2016-09-08
IL296028A (en) 2022-10-01
EP3265866B1 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
CN107533233A (zh) 用于增强现实的系统和方法
US10678324B2 (en) Systems and methods for augmented reality
JP7297028B2 (ja) 拡張現実のためのシステムおよび方法
US11531072B2 (en) Calibration of magnetic and optical sensors in a virtual reality or augmented reality display system
JP2022529245A (ja) 電磁追跡のためのセンサ融合
US11256090B2 (en) Systems and methods for augmented reality
NZ735802A (en) Traffic diversion signalling system and method
JP7513808B2 (ja) 拡張現実のためのシステムおよび方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant