CN101511733B - Uzm-22硅铝酸盐沸石、制备方法和使用uzm-22的方法 - Google Patents

Uzm-22硅铝酸盐沸石、制备方法和使用uzm-22的方法 Download PDF

Info

Publication number
CN101511733B
CN101511733B CN200780032656XA CN200780032656A CN101511733B CN 101511733 B CN101511733 B CN 101511733B CN 200780032656X A CN200780032656X A CN 200780032656XA CN 200780032656 A CN200780032656 A CN 200780032656A CN 101511733 B CN101511733 B CN 101511733B
Authority
CN
China
Prior art keywords
ammonium
value
mol ratio
uzm
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780032656XA
Other languages
English (en)
Other versions
CN101511733A (zh
Inventor
M·A·米勒
J·G·莫斯科索
G·J·刘易斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell UOP LLC
Universal Oil Products Co
Original Assignee
Universal Oil Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Oil Products Co filed Critical Universal Oil Products Co
Publication of CN101511733A publication Critical patent/CN101511733A/zh
Application granted granted Critical
Publication of CN101511733B publication Critical patent/CN101511733B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • C07C2/58Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65

Abstract

已经合成了新类型的结晶硅铝酸盐沸石。这些沸石通过经验式(I)表示,Mm n+R+ rAl1-xExSiyOz (I)其中M是碱金属、碱土金属或稀土金属,例如锂和锶,R是单电荷有机铵阳离子,例如胆碱阳离子,且E是骨架元素,例如镓。这些沸石类似于ZSM-18但以独特的x-射线衍射图和组成为特征,并具有用于实施各种烃转化法的催化性质。

Description

UZM-22硅铝酸盐沸石、制备方法和使用UZM-22的方法
技术背景
沸石是结晶硅铝酸盐组合物,它们是微孔的,并由共角AlO2和SiO2四面体形成。天然存在的和合成的许多沸石用在各种工业方法中。合成沸石经由使用合适的Si、Al源和结构导向剂(例如碱金属、碱土金属、胺或有机铵阳离子)的水热合成法制备。结构导向剂留在沸石孔隙中,并且是最终所形成的特定结构的主要原因。这些物质平衡了与铝相关的骨架电荷,并且也可以充当空隙填充剂。沸石的特征在于具有尺寸均匀的孔隙开口,具有显著的离子交换容量,能够可逆地解吸分散在晶体内部空隙中的吸附相且不会明显置换构成永久沸石晶体结构的任何原子。沸石可用作烃转化反应的催化剂,该反应可以在外表面上以及在孔隙内的内表面上进行。 
Ciric在1976年(参见US 3,950,496)首次公开了一种名为ZSM-18的具体沸石。该专利描述了由三季铵盐(triquat)结构导向剂,2,3,4,5,6,7,8,9-八氢-2,2,5,5,8,8-六甲基-1H-苯并[1,2-c:3,4-c:5,6-c]三吡咯鎓三氢氧化物(三季铵盐1)合成ZSM-18。基于环己烷的吸附,发现ZSM-18具有大于 
Figure G200780032656XD00011
的孔隙开口和5至15的Si/Al。Na+也以铝酸纳形式使用,并有助于平衡来自孔隙内的骨架电荷。还注意到,如果反应混合物的Si/Al比率小于10,所得ZSM-18对煅烧就不稳定。直到1990年Lawton等人才报道了ZSM-18的结构,表现为具有预期 
Figure G200780032656XD00012
孔径的一维12元环孔隙以及正交的7元环孔隙体系(参见SCIENCE,247,1319-1322(1990))。该结构还含有在硅铝酸盐中首次观察到的3元环。该作者试图通过将三季铵盐的结构配到12元环孔隙内来研究三季铵阳离子在ZSM-18合成中的作用,发现其只能占据非常特定的位置。这被解释为三季铵盐的强模板化作用,且为了制造观察到的具有该3元环的沸石,可能需要这类大体积的多电荷模板阳离子。 
在1994年,Schmitt(参见US 5,350,570)公开了ZSM-18的新型合成法,其使用一种不同的三季铵盐,[(Me3N+(CH2)2)3N]3OH-(三季铵盐2)。Schmitt指出,由于三季铵盐1非常昂贵且难以制造,并由于煅烧过程中的热分解常常破坏ZSM-18样品,因此,自1976年来对ZSM-18的研究甚少。该新型三季铵盐2也具有令人想起三季铵盐1的大体积3重多电荷结构,这被认为是经由模板效应制造ZSM-18的要求。尽管带有三季铵盐2的ZSM-18的热分解的确成功地产生了ZSM-18的稳定质子形式;但到12年后的今天,对ZSM-18的研究仍然很少。这是因为,尽管三季铵盐2比三季铵盐1更经济,但在’570专利中指出,其来源于精细化学制品,因此仍然太昂贵以致不便使用。在1994年也公开了用于获得ZSM-18的“示构合成”途径(ZEOLITES,14,635-642(1994))。这种在经济合成和三季铵盐1的热降解方面具有与’570专利中列举的相同困难。该论文也提到三季铵盐1模板在12元环孔隙中的“几乎完美配合”,结论是如果存在模板效应,则其存在于ZSM-18中。这种理念因而用于使用各种类型的建模选择三季铵盐1的模板替代品,得到上文提到的三季铵盐2和[(Me3N+(CH2)2)3CH]3OH-三季铵盐3(其与三季铵盐2相同,不同之处在于中心N被C-H替代)。三季铵盐3仅在晶种存在下实现制造ZSM-18,而三季铵盐2直接制造低品质ZSM-18,但在合成中使用晶种时产生高结晶ZSM-18。沸石ZSM-18由于其制备的困难和花费仍未被使用或研究。 
与上述现有技术不同,申请人已经成功制备了被命名为UZM-22的新型材料。该材料的拓扑类似于对ZSM-18观察到的拓扑。该材料如下制备:使用简单的市售结构导向剂,例如氢氧化胆碱,[HO(CH2)2NMe3]+OH-,以及少量Sr2+、Li+、或者Sr2+和Li+,使用用于合成沸石的电荷密度失配法(Charge Density Mismatch Approach)(参见US 2005/0095195)。 
发明概要
如上所述,本发明涉及命名为UZM-22的新型硅铝酸盐沸石。相应地,本发明的一个实施方案是一种微孔结晶沸石,其具有至少AlO2和SiO2四 面体单元的三维骨架,并在合成后但未经进一步处理和无水基础上具有如下述经验式所示的经验组成: 
Mm n+R+ rAl1-xExSiyOz
其中M是至少一种选自由碱金属、碱土金属和稀土金属组成的组的可交换阳离子,“m”是M与(Al+E)的摩尔比并且为0.05至1.2,R是选自由胆碱、乙基三甲铵(ETMA+)、二乙基二甲铵(DEDMA+)、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵、四乙基铵(TEA+)、四丙基铵(TPA+)及其混合物组成的组的单电荷有机铵阳离子,“r”是R与(Al+E)的摩尔比并具有0.25至2.0的值,“n”是M的加权平均化合价并具有1至3的值,E是选自由镓、铁、硼及其混合物组成的组的元素,“x”是E的摩尔分数并具有0至1.0的值,“y”是Si与(Al+E)的摩尔比并且为大于2至12,且“z”是O与(Al+E)的摩尔比并具有由下述公式确定的值: 
z=(m·n+r+3+4·y)/2 
且该沸石的特征在于其具有至少具有如表A中所列的d-间距和强度的x-射线衍射图: 
表A 
Figure G200780032656XD00041
并且直到高于400℃的温度仍然是热稳定的。 
本发明的另一实施方案是制备上述结晶微孔沸石的方法。该方法包括形成含有M、R、Al、Si和任选地E的反应源的反应混合物,并将该反应混合物在60℃至175℃的温度加热足以形成沸石的时间,该反应混合物具有如下以氧化物摩尔比表示的组成: 
aM2/nO∶bR2/pO∶1-cAl2O3∶cE2O3∶dSiO2∶eH2
其中“a”具有0.05至1.25的值,“b”具有1.5至40的值,“c”具有0至1.0的值,“d”具有4至40的值,“e”具有25至4000的值。 
本发明的再一实施方案是使用上述沸石的烃转化法。该方法包括使烃与沸石在转化条件下接触以产生转化的烃。 
发明详述 
申请人制成了一种已被命名为UZM-22的硅铝酸盐沸石,其拓扑结构涉及如International Zeolite Association Structure Commission在http://topaz.ethz.ch/IZA-SC/StdAtlas.htm上提供的ATLAS OF ZEOLITEFRAMEWORK TYPES中所述的MEI。如将要详细描述的那样,UZM-22的许多特征不同于ZSM-18。本发明微孔结晶沸石(UZM-22)在其合成后但未经进一步处理的形式和在无水基础上具有如下述经验式所示的经验组成: 
Mm n+R+ rAl1-xExSiyOz
其中M是至少一种可交换阳离子并选自由碱金属、碱土金属和稀土金属组成的组。M阳离子的具体实例包括但不限于锂、钠、钾、铷、铯、钙、锶、钡、镧、镱及其混合物。R是单电荷有机铵阳离子,其实例包括但不限于胆碱阳离子、[(CH3)3N(CH2)2OH]+、ETMA+、DEDMA+、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵、TEA+、TPA+及其混合物,且“r”是R与(Al+E)的摩尔比并且为0.25至2.0。作为M的加权平均化合价的“n”的值为1至3,而“m”是M与(Al+E)的摩尔比并且为0至1.2。硅与(Al+E)的比率用“y”表示,其为2至12。E是四面体配位的、存在于骨架中的并选自由镓、铁和硼组成的组的元素。E的摩尔分数用“x”表示并具有0至1.0的值,而“z”是O与(Al+E)的摩尔比并通过下述公式给出: 
z=(m·n+r+3+4·y)/2 
如果M仅是一种金属,则加权平均化合价是这一种金属的价态,即+1或+2。但是,当存在多于一种M金属时,总量为: 
M m n + = M m 1 ( n 1 ) + + M m 2 ( n 2 ) + + M m 3 ( n 3 ) + + . . . . .
且加权平均化合价“n”通过下述公式给出: 
n = m 1 · n 1 + m 2 · n 2 + m 3 · n 3 + . . . m 1 + m 2 + m 3 . . .
微孔结晶沸石UZM-22通过反应混合物的水热结晶制备,该反应混合物通过将M、R、铝、硅和任选地E的反应源合并而制成。铝源包括但不限于醇铝、沉淀氧化铝、铝金属、铝盐和铝溶胶。醇铝的具体实例包括但不限于原仲丁醇铝和原异丙醇铝。二氧化硅源包括但不限于四乙基原硅酸酯、胶态二氧化硅、沉淀二氧化硅和碱金属硅酸盐。E元素源包括但不限于碱金属硼酸盐、硼酸、沉淀羟基氧化镓、硫酸镓、硫酸铁和氯化铁。M金属源包括各碱金属或碱土金属的卤化物盐、硝酸盐、乙酸盐和氢氧化物,R是选自由胆碱、ETMA、DEDMA、TEA、TPA、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵及其混合物组成的组的有机铵阳离子,且来源包括氢氧化物、氯化物、溴化物、碘化物和氟化物。具体实例包括但不限于氢氧化胆碱和氯化胆碱、乙基三甲基氢氧化铵、二乙基二甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丙基氯化铵。 
含有所需组分的反应源的反应混合物可以通过下式以氧化物摩尔比描述: 
aM2/nO∶bR2/pO∶1-cAl2O3∶cE2O3∶dSiO2∶eH2
其中“a”为0.05至1.25,“b”为1.5至40,“c”为0至1.0,“d”为4至40,且“e”为25至4000。如果使用醇盐,优选包括蒸馏或蒸发步骤以除去醇水解产物。然后使所述反应混合物在密封反应器中在自压下在60℃至175℃、优选80℃至125℃的温度反应1天至3周,优选4天至14天。在结晶完成后,借助例如过滤或离心将固体产物从非均质混合物中分离出来,然后用去离子水洗涤,并在空气中在环境温度至100℃干燥。应该指出,可任选地将UZM-22晶种添加到反应混合物中以促进沸石形成。 
用于制造UZM-22的优选合成方法采用US 2005/0095195和STUDIES IN SURFACE SCIENCE AND CATALYSIS,(2004),第154A卷,第364-372页中公开的电荷密度失配概念。US 2005/0095195中公开的方法使用氢氧化季铵溶解硅铝酸盐类物质,并通常在单独步骤中引入结晶引发剂,如碱金属和碱土金属,和带较高电荷的有机铵阳离子。一旦使用该方法产生一些UZM-22晶种,这些晶种就可以用在使用例如氢氧化胆碱与碱金属和碱土金属阳离子的组合的UZM-22单步合成中。使用市售胆碱制备UZM-22与之前用于制备具有MEI拓扑的硅铝酸盐的结构导向剂(三季铵盐1和三季铵盐2)相比提供了巨大的经济优势。另外,可以利用电荷密度失配概念,与其它廉价的有机铵氢氧化物一起使用氢氧化物或氯化物形式的胆碱,以进一步降低成本。在发现ZSM-18后超过30年,对该沸石的研究甚少。最后,本文公开的方法如今可实现MEI硅铝酸盐的合成、研究和利用。 
由上述方法获得的UZM-22硅铝酸盐沸石以至少具有下表A中所列的d-间距和相对强度的x-射线衍射图为特征。 
表A 
Figure G200780032656XD00081
如实施例中详细所示,该UZM-22材料直到至少400℃的温度、优选直到600℃仍然是热稳定的。 
在其合成后但未经进一步处理的形式,UZM-22材料在其孔隙中含有一些可交换的或平衡电荷的阳离子。这些可交换阳离子可被交换为其它阳离子,或在是有机阳离子的情况下,它们可以通过在受控条件下加热而被除去。由于UZM-22是大孔沸石,也可以直接通过离子交换除去一些有机阳离子。该UZM-22沸石可以以许多方式改性以使其适用于具体用途。如US 6,776,975 B1(其全文经此引用并入本文)中关于UZM-4的情况所述,改性包括煅烧、离子交换、蒸汽处理、各种酸萃取、六氟硅酸铵处理或其任何组合。被改性的性质包括孔隙率、吸附、Si/Al比率、酸度、热稳定性,等等。
通过′975专利中所述的一种或多种技术改性的UZM-22组合物(本文标作UZM-22HS)在无水基础上通过下述经验式描述: 
M1a n+Al(1-x)ExSiy’Oz”
其中M1是至少一种选自由碱金属、碱土金属、稀土金属、铵离子、氢离子及其混合物组成的组的可交换阳离子,“a”是M1与(Al+E)的摩尔比并且为0.05至50,“n”是M1的加权平均化合价并具有+1至+3的值,E是选自由镓、铁、硼及其混合物组成的组的元素,“x”是E的摩尔分数并且为0至1.0,y′是Si与(Al+E)的摩尔比并且为大于4至几乎纯二氧化硅,且z”是O与(Al+E)的摩尔比并具有通过下述公式确定的值: 
z”=(a·n+3+4·y’)/2 
“几乎纯二氧化硅”是指已经从骨架中除去几乎所有的铝和/或E金属。公知的是,几乎不可能除去所有铝和/或E金属。在数字上,当y′具有至少3,000、优选10,000且最优选20,000的值时,沸石是几乎纯二氧化硅。例如,y’的范围是4至3000,优选为大于10至3000;4至10,000,优选为大于10至10,000,和4至20,000,优选为大于10至20,000。 
在本文中指定沸石原材料的比例或沸石产品的吸附性质等时,除非另有说明,指的是沸石的“无水状态”。术语“无水状态”在本文中用于表示基本不含物理吸附的和化学吸附的水的沸石。 
在一种或多种上述处理后获得的UZM-22HS沸石具有与UZM-22不同的(并因此是独特的)x-射线衍射图。所有UZM-22HS共有的主峰清单列在表B中。 
表B 
UZM-22HS 
本发明的结晶UZM-22沸石可用于分离不同类别分子的混合物、通过离子交换而除去污染物、和催化各种烃转化法。不同类别分子的分离可以基于分子尺寸(动态直径)或基于不同类别分子的极性度。 
本发明的UZM-22沸石也可用作各种烃转化法中的催化剂或催化剂载体。烃转化法是本领域中公知的,并包括裂化、加氢裂化、芳族化合物和异链烷烃的烷基化、异构化、聚合、重整、氢化、脱氢、烷基转移、脱烷基化、水合、脱水、加氢处理、加氢脱氮、加氢脱硫、甲烷化和合成气变换法。这些方法中可用的具体反应条件和进料类型描述于US 4,310,440和US 4,440,871中,它们经此引用并入本文。优选的烃转化法是以氢为组分的那些,例如加氢处理或加氢精制、氢化、加氢裂化、加氢脱氮、加氢脱硫等。 
加氢裂化条件通常包括400°至1200°F(204-649℃),优选600°至950°F(316-510℃)的温度。反应压力为大气压至3,500psig(24,132kPa g),优选200至3000psig(1379-20,685kPa g)。接触时间通常对应于0.1小时-1至15小时-1、优选0.2至3小时-1的液时空速(LHSV)。氢循环速率 为每筒进料1,000至50,000标准立方英尺(scf)(178-8,888标准m3/m3),优选每筒进料2,000至30,000scf(355-5,333标准m3/m3)。合适的加氢处理条件通常在上文列出的加氢裂化条件的宽范围内。 
通常从催化剂床中移出反应区流出物,施以部分冷凝和气液分离,然后分馏以回收其各种组分。将氢,和如果需要,一些或所有未转化的重质材料再循环到反应器中。或者,可以使用两阶段流,其中将未转化的材料通入第二反应器。本发明的催化剂可用在这种方法的仅一个阶段中或可用在两个反应器阶段中。 
优选使用瓦斯油、重质石油脑、脱沥青原油残油等原料用UZM-22组合物进行催化裂化法,其中汽油是主要的所需产物。454℃至593℃(850°至1100°F)的温度条件、0.5至10的LHSV值和0至345kPa(0至50psig)的压力是合适的。 
芳族化合物的烷基化通常包括使芳族化合物(C2至C12)、尤其是苯与单烯烃反应,以制造直链烷基取代的芳族化合物。该方法在5∶1至30∶1的芳族化合物∶烯烃(例如苯∶烯烃)比率、0.3至6小时-1的LHSV、100℃至250℃的温度和1379至6895kPa(200至1000psig)的压力下进行。关于装置的进一步细节可见于US 4,870,222,其经此引用并入本文。 
在-30℃至40℃的温度、大气压至6,894kPa(1,000psig)的压力和0.1至120的重时空速(WHSV)下,进行异链烷烃与烯烃的烷基化,以制造适合作为发动机燃料组分的烷基化物。关于链烷烃烷基化的细节可见于US5,157,196和US 5,157,197,它们经此引用并入本文。 
给出下述实施例以例证本发明,而不是不当地限制如所附权利要求书中列出的本发明的总体上较宽的范围。 
通过x-射线分析法测定本发明的UZM-22沸石的结构。使用标准x-射线粉末衍射技术获得下述实施例中列出的x-射线图。辐射源是在45kV和35ma下运行的高强度x-射线管。通过适当的计算机技术获得来自铜K-α辐射的衍射图。在22°至70°(2θ)连续扫描压平的粉末样品。从表示为θ的衍射峰位置获得以埃为单位的面间距(d),其中θ是从数字化数据中观 察到的布拉格角。由扣减背景后的衍射峰积分面积测定强度,“Io”是最强线或峰的强度,且“I”是各其它峰的强度。 
如本领域技术人员理解的那样,参数2θ的测定具有人为和机械误差,这综合起来在各个报道的2θ值上产生±0.4°的不确定性。这种不确定性当然也表现在由2θ值计算出的报道的d-间距值中。这种不精确性是本领域中常见的,并且不足以排除本结晶材料彼此之间和与现有技术的组合物之间的差异。在一些所示x-射线图中,通过符号vs、s、m和w表示d-间距的相对强度,它们分别代表非常强、强、中和弱。以100×I/Io计,上述符号是指: 
w=0-15;m=15-60;s=60-80和vs=80-100 
在某些情况下,可以参照其x-射线粉末衍射图评估合成产物的纯度。例如,如果样品被描述为纯净,其仅是指该样品的x-射线图不含可归因于结晶杂质的线,而非意味着不存在无定形材料。 
为了更充分例证本发明,描述了下述实施例。要理解的是,这些实施例仅作为示例而非不当地限制如所附权利要求书中列出的本发明的宽保护范围。 
实施例1 
通过首先在剧烈搅拌下混合19.40克氢氧化铝(27.78%Al)和387.3克氢氧化胆碱,50%溶液来制备硅铝酸盐溶液。在充分混合后,加入300.0克LudoxTM AS-40(40%SiO2)。将反应混合物用高速机械搅拌器再均化1小时,并在炉中在100℃放置过夜。分析表明所得硅铝酸盐溶液含有7.45重量%Si和0.73重量%Al,得到9.82的Si/Al比率。 
持续搅拌整个硅铝酸盐溶液(706.7克),并向其中逐滴加入含13.02克制剂LiCl*9H2O和18.19克制剂Sr(NO3)2*20H2O的水溶液。然后将所得反应混合物均化1小时,密封在TeflonTM瓶中,放置在100℃炉中,并反应6小时。 
离心回收固体产物,用去离子水洗涤并在95℃干燥。产物通过xrd被 识别为UZM-22。对产物观察到的代表性衍射线显示在表1中。通过元素分析测定产物组成由下述摩尔比构成:Si/Al=5.10,Li/Al=0.046,Sr/Al=0.149,C/N=5.37,N/Al=0.81。 
扫描电子显微术(SEM)显示出尺寸为大约100×350纳米的圆木形晶体形态。将该样品在560℃在氮气然后空气下煅烧12小时。发现煅烧UZM-22的BET表面积为606平方米/克,微孔体积为0.28立方厘米/克。 
表1 
Figure G200780032656XD00141
实施例2 
通过首先在剧烈搅拌的同时混合19.40克氢氧化铝(27.78%Al)和387.3克氢氧化胆碱(50%溶液)来制备硅铝酸盐反应溶液。在充分混合后,加入300.0克LudoxTM AS-40(SiO2,40%)。将反应混合物用高速机械搅拌器均化1小时,密封在Teflon瓶中,在炉中在100℃放置过夜。分析表 明该硅铝酸盐溶液含有8.22重量%Si和0.81重量%Al(Si/Al=9.76)。 
持续搅拌282.12克部分的上述硅铝酸盐溶液,并向其中逐滴加入含5.20克LiCl*9H2O和7.27克Sr(NO3)2*20H2O的复合水溶液。在加料完成后,将所得反应混合物均化1小时,转移到500毫升的Teflon瓶中,并在100℃反应。在5、6、7和10天取出一部分反应混合物样品。通过离心回收来自所述各样品的固体产物,用去离子水洗涤并在95℃干燥。所有四个反应的产物通过xrd都被识别为UZM-22。表2显示了对反应5天的样品观察到的代表性衍射线。元素分析以下述摩尔比给出了产物组成:Si/Al=5.05,Li/Al=0.07,Sr/Al=0.178,C/N=5.07,N/Al=1.12。 
表2 
Figure G200780032656XD00161
实施例3 
通过首先在剧烈搅拌下混合76.83克氢氧化铝(27.78%Al)和880.37克氢氧化胆碱(47.1%)来制备硅铝酸盐反应溶液。向该混合物中加入640.84克胶态二氧化硅(Ludox AS-40,40%SiO2),然后加入1.95克蒸 馏水。将反应混合物用高速机械搅拌器均化1小时,然后在Teflon瓶中在100℃老化过夜。在老化步骤后,重新合并所得硅铝酸盐溶液并分析,该分析表明含有7.61重量%Si和1.44重量%Al(Si/Al=5.08)。 
将1600克部分的上述硅铝酸盐溶液在剧烈搅拌的同时用含有溶解在250.0克蒸馏水中的26.33克Sr(NO3)2和10.55克LiCl的复合溶液以逐滴方式处理。在均化半小时后,将反应混合物转移到置于100℃炉中的2升Teflon瓶中,并将反应混合物在自压下煮解6天。离心回收固体产物,用去离子水洗涤,并在100℃干燥。 
通过粉末X-射线衍射(XRD)表征固体产物,表明该图中的线是名为UZM-22的材料的线。表3中给出了对该样品观察到的代表性衍射线。扫描电子显微术(SEM)表明该微晶由大约20-300纳米长的杆构成。为了获得该沸石的酸形式,在煅烧前对UZM-22进行铵离子交换以除去碱金属/碱土金属。将沸石在过量1.5M NH4NO3溶液中在75℃搅拌2小时,以实现铵离子交换。发现铵交换产物具有通过元素分析测得的下述摩尔比:Si/Al=4.58,Sr/Al=0.16和Li/Al=0.005。煅烧材料的BET表面积为624平方米/克,且微孔体积为0.283立方厘米/克。 
表3 
Figure G200780032656XD00181
实施例4 
通过首先在剧烈搅拌下混合154.54克氢氧化铝(27.78%Al)和1646.20克氢氧化胆碱(47.1%)来制备硅铝酸盐反应溶液。向该混合物中加入1198.31克胶态二氧化硅(Ludox AS-40,40%SiO2),然后加入0.75克蒸馏水。将反应混合物用高速机械搅拌器均化1小时,然后在Teflon瓶中在 100℃老化过夜。在老化步骤后,重新合并所得硅铝酸盐溶液并分析,该分析表明含有7.62重量%Si和1.43重量%Al(Si/Al=5.12)。 
将1250克部分的上述硅铝酸盐溶液在施加剧烈搅拌的同时用由溶解在150.0克蒸馏水中的21.01克Sr(NO3)2(99%)和4.2克LiCl构成的复合Sr(NO3)2/LiCl溶液以逐滴方式处理。将反应混合物用高速机械搅拌器均化30分钟。将反应混合物转移到2升Parr不锈钢搅拌高压釜中。将该高压釜加热至103℃并在自压下在此温度保持168小时。离心回收固体产物,洗涤,并在100℃干燥。 
经由粉末x-射线衍射表征固体产物,表明该图中的线是名为UZM-22的材料的线。下表4中给出观察到的代表性衍射线。元素分析表明分离出的产物的组成具有如下摩尔比:Si/Al=4.89,Sr/Al=0.34,Li/Al=0.05。扫描电子显微术(SEM)表明该微晶由大约20-300纳米长的杆构成。为了获得该沸石的酸形式,在煅烧前对UZM-22进行铵离子交换,以除去碱金属和碱土金属。通过将沸石在过量1.5M NH4NO3溶液中在75℃搅拌2小时来实现铵离子交换。铵交换产物的组成具有通过元素分析测得的下述摩尔比:Si/Al=5.75,Sr/Al=0.0006且Li/Al=0.001。 
表4 
Figure G200780032656XD00201
实施例5 
此实施例例示了与硅铝酸盐溶液一起使用晶种。将1200克部分的实施例4中制成的硅铝酸盐溶液在剧烈混合下用含有溶解在120.0克蒸馏水中的20.07克Sr(NO3)2(99%)和4.04克LiCl的复合Sr(NO3)2/LiCl溶液以逐滴方式处理。在加料完成后,加入来自先前UZM-22制备的10克UZM-22 晶种。然后将所得反应混合物用高速机械搅拌器均化30分钟。将1400克反应混合物转移到2升Parr不锈钢搅拌高压釜中,在此使混合物在107℃反应120小时。离心回收固体产物,用去离子水洗涤,并在100℃干燥。 
通过粉末x-射线衍射(XRD)表征固体产物,表明该图中的线是名为UZM-22的材料的线。对该样品观察到的代表性衍射线显示在下表5中。通过元素分析测得的分离出的产物的组成具有下述摩尔比:Si/Al=4.77,Sr/Al=0.36且Li/Al=0.06。扫描电子显微术(SEM)表明该微晶由大约20-300纳米长的杆构成。为了获得UZM-22的酸形式,在煅烧前对其进行铵离子交换以除去碱金属和碱土金属。通过将沸石在过量1.5M NH4NO3溶液中在75℃搅拌2小时来实现铵离子交换。铵离子交换产物的组成具有通过元素分析测得的下述摩尔比:Si/Al=4.81,Sr/Al=0.014且Li/Al=0.0009。 
表5 
Figure G200780032656XD00221
实施例6 
此实施例例示了使用UZM-22晶种的凝胶法。通过在剧烈搅拌下将58.74克Al(OH)3(27.78%Al)添加到624.93克氢氧化胆碱(47.1%)中来制备硅铝酸盐反应混合物。在持续搅拌下,加入454.9克胶态二氧化硅(Ludox AS-40,40%SiO2),然后加入含有溶解在188.29克蒸馏水中的19.28克Sr(NO3)2(97%)和3.86克LiCl的复合溶液。将该混合物用高速机械搅拌器进一步均化30分钟。最后,加入5克UZM-22晶种,同时继续混合30分钟。将1400克部分的该反应混合物转移到2升Parr不锈钢搅拌高压釜中,将其加热至107℃,并在此温度保持100小时。离心回收固 体产物,用去离子水洗涤,并在100℃干燥。 
通过粉末x-射线衍射的分析表明该产物具有UZM-22结构。在表6中给出了观察到的衍射图中的代表线。分离出的产物的组成具有下述摩尔比:Si/Al=2.92,Sr/Al=0.61且Li/Al=0.20。扫描电子显微术(SEM)表明该微晶由大约20-300纳米长的杆构成。为了获得UZM-22的酸形式,在煅烧前对其进行铵离子交换以除去碱金属和碱土金属。通过将沸石在过量1.5M NH4NO3溶液中在75℃搅拌2小时来实现铵交换。发现铵离子交换产物的组成具有通过元素分析测得的下述摩尔比:Si/Al=3.15,Sr/Al=0.05且Li/Al=0.069。 
表6 
Figure G200780032656XD00241
实施例7 
在剧烈混合下向1200克部分的实施例4中制成的硅铝酸盐溶液中加入含有溶解在120.0克蒸馏水中的20.17克Sr(NO3)2(99%)和4.04克LiCl的复合Sr(NO3)2/LiCl水溶液。然后加入10克UZM-22晶种,并将反应混 合物再均化30分钟。将1400克部分的反应混合物转移到2升Parr不锈钢搅拌高压釜中,将其加热至115℃并在此温度保持99小时。离心回收固体产物,用去离子水洗涤,并在100℃干燥。 
通过粉末X-射线衍射(XRD)表征,表明该图中的线是名为UZM-22的材料的线。在表7中给出了对该产物观察到的代表性衍射线。分离出的产物的组成具有摩尔比:Si/Al=4.69,Sr/Al=0.25且Li/Al=0.69。扫描电子显微术(SEM)表明该微晶由大约20-300纳米长的杆构成。为了获得UZM-22的酸形式,在煅烧前对其进行铵离子交换以除去碱金属和碱土金属。通过将沸石在过量1.5M NH4NO3溶液中在75℃搅拌2小时来实现铵离子交换。铵离子交换产物的组成具有通过元素分析测得的下述摩尔比:Si/Al=5.08,Sr/Al=0.0017且Li/Al=0.001。 
表7 
Figure G200780032656XD00261
实施例8 
将100.0克部分的实施例4中制成的硅铝酸盐溶液在施加剧烈混合的同时用Sr(NO3)2溶液(1.64克Sr(NO3)2(99%)/15.0克去离子水)以逐滴方式处理。在均化半小时后,将反应混合物转移到100毫升Teflon衬里的高压釜中。将该高压釜置于设在100℃的炉中,在此反应混合物在自压 下反应19小时。离心回收固体产物,用去离子水洗涤,并在100℃干燥。 
通过粉末X-射线衍射(XRD)表征,表明该图中的线是名为UZM-22的材料的线。在下表8中给出了该图的观察到的代表性衍射线。分离出的产物的组成由下述摩尔比构成:Si/Al=4.85,Sr/Al=0.44,Na/Al=0.01,N/Al=0.81。扫描电子显微术(SEM)表明该微晶由大约20-300纳米长的杆构成。 
表8 
Figure G200780032656XD00281
实施例9 
通过首先在剧烈搅拌下将77.94克氢氧化铝(27.78%Al)溶解在826.68 克氢氧化胆碱溶液(50%)中来制备硅铝酸盐溶液,然后加入600.0克胶态二氧化硅(LudoxTM AS-40,40%SiO2),并再均化1小时。将反应混合物密封在Teflon瓶中,并在100℃反应过夜。重新合并所得硅铝酸盐溶液,分析并发现含有7.88重量%Si和1.47重量%Al(Si/Al=5.16)。 
搅拌300.0克上述混合物并向其中加入(逐滴)16.71克氯化锂(LiCl·9H2O)溶液。在添加后,将反应混合物再均化1小时,分布在三个Teflon瓶中,并在100℃反应6和13天,和在80℃反应18天。离心回收固体产物,用去离子水洗涤并在95℃干燥。 
该反应产物最初形成UZM-4(BPH),但经过较长煮解时间转化成UZM-22(MEI)。经由粉末X-射线衍射测定,6天反应的产物表现出主要UZM-4以及可作为次要产物观察到的UZM-22。在100℃下13天后,情况变化成UZM-22是主要产物并被轻微UZM-4杂质污染。类似地,80℃反应在18天煮解后产生UZM-22以及轻微UZM-4杂质。 
实施例10 
此实施例描述了UZM-22材料的改性。将10克UZM-22样品(Si/Al=4.6)在氮气氛中煅烧,以3℃/分钟升至560℃并在此再保持1小时,然后将气氛换成空气并继续再煅烧8小时。通过在120克去离子水中首先稀释2克HNO3(69%)然后溶解10克NH4NO3,制备溶液。将该溶液加热至75℃,然后添加所述经煅烧的UZM-22。将该浆料在75℃搅拌1小时。过滤分离产物,用去离子水洗涤并在100℃干燥12小时。 
产物经由x-射线粉末衍射识别为UZM-22HS。在下表9中给出了观察到的衍射线的代表组合。元素分析证实Si/Al比率升至Si/Al=6.9,而N2吸附测量得到643平方米/克的BET表面积和0.31立方厘米/克的微孔体积。 
表9 
Figure G200780032656XD00301
实施例11 
此实施例例示了UZM-22材料的改性。将40克部分的UZM-22样品(Si/Al=4.6)在氮气氛下通过以3℃/分钟升至560℃并在此再保持1小时来煅烧,然后将气氛换成空气并继续再煅烧8小时。单独地,通过在490克去离子水中稀释8克HNO3(69%)然后溶解40克NH4NO3,制备溶液。将该溶液加热至75℃,然后添加所述经煅烧的UZM-22。将该浆料在75℃搅拌1小时。过滤分离产物,用去离子水洗涤并在100℃干燥12小时。 
产物经由x-射线粉末衍射识别为UZM-22HS。在下表10中给出了观察到的衍射线的代表组合。元素分析证实Si/Al比率升至Si/Al=7.2,而N2吸附测量得到641平方米/克的BET表面积和0.30立方厘米/克的微孔体 积。 
表10 
Figure G200780032656XD00311
实施例12 
通过在含50%水蒸气的空气气氛中以3℃/分钟升至550℃并在此保持6小时,对100克部分的UZM-22样品(Si/Al=4.4)进行水蒸气处理。单独地,通过在650.76克去离子水中稀释30.69克HNO3(69%)然后溶解66.5克NH4NO3,制备溶液。将该溶液加热至75℃,然后添加70克所述经水蒸气处理的UZM-22。将该浆料在75℃搅拌1小时。过滤分离产物,用去离子水洗涤并在100℃干燥12小时。 
产物经由x-射线粉末衍射识别为UZM-22HS。衍射图中观察到的代表线显示在表11中。元素分析证实Si/Al比率升至Si/Al=9.7,而N2吸附测量得出522平方米/克的BET表面积和0.20立方厘米/克的微孔体积。 
表11 
Figure G200780032656XD00321
实施例13 
通过在含50%水蒸气的空气气氛中以3℃/分钟升至550℃并在此保持6小时,对UZM-22样品(125克)(Si/Al=4.8)进行水蒸气处理。通过在976.14克去离子水中稀释46.04克HNO3(69%)然后溶解99.75克NH4NO3,制备溶液。将该溶液加热至75℃,然后添加105克所述经水蒸气处理的UZM-22。将该浆料在75℃搅拌1小时。过滤分离产物,用去离子水洗涤并在100℃干燥12小时。 
产物经由x-射线粉末衍射识别为UZM-22HS。在下表12中给出了观察到的衍射线的代表组合。元素分析证实Si/Al比率升至Si/Al=12.12,而 N2吸附测量得出565平方米/克的BET表面积和0.21立方厘米/克的微孔体积。 
表12 
Figure G200780032656XD00331

Claims (10)

1.一种微孔结晶沸石,其具有至少SiO2四面体单元的三维骨架,且在合成后但未经进一步处理和无水基础上具有如下述经验式所示的经验组成:
    Mm n+RrAl1-xExSiyOz
其中M是至少一种选自由碱金属、碱土金属和稀土金属组成的组的可交换阳离子,“m”是M与(Al+E)的摩尔比并且为0至1.2,R是选自由胆碱、乙基三甲铵(ETMA)、二乙基二甲铵(DEDMA)、四乙基铵(TEA)、四丙基铵(TPA)、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵及其混合物组成的组的单电荷有机铵阳离子,“r”是R与(Al+E)的摩尔比并具有0.25至2.0的值,“n”是M的加权平均化合价并具有1至3的值,E是选自由镓、铁、硼及其混合物组成的组的元素,“x”是E的摩尔分数并具有0至1.0的值,“y”是Si与(Al+E)的摩尔比并且为2至12,且“z”是O与(Al+E)的摩尔比并具有由下述公式确定的值:
z=(m·n+r+3+4·y)/2
且其特征在于其具有至少具有如表A中所列的d-间距和强度的x-射线衍射图:
表A
Figure FSB00000502393400021
并且直到至少400℃的温度仍然是热稳定的。
2.权利要求1的沸石,其中“x”为0。
3.制备微孔结晶沸石的方法,该沸石具有至少SiO2四面体单元的三维骨架,且在合成后但未经进一步处理和无水基础上具有如下述经验式所示的经验组成:
Mm n+RrAl1-xExSiyOz
其中M是至少一种选自由碱金属、碱土金属和稀土金属组成的组的可交换阳离子,“m”是M与(Al+E)的摩尔比并且为0至1.2,R是选自由胆碱、乙基三甲铵(ETMA)、二乙基二甲铵(DEDMA)、四乙基铵(TEA)、四丙基铵(TPA)、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵阳离子及其混合物组成的组的单电荷有机铵阳离子,“r”是R与(Al+E)的摩尔比并具有0.25至2.0的值,“n”是M的加权平均化合价并具有1至3的值,E是选自由镓、铁、硼及其混合物组成的组的元素,“x”是E的摩尔分数并具有0至1.0的值,“y”是Si与(Al+E)的摩尔比并且为2至12,且“z”是O与(Al+E)的摩尔比并具有由下述公式确定的值:
z=(m·n+r+3+4·y)/2
且其特征在于其具有至少具有如表A中所列的d-间距和强度的x-射线衍射图:
表A
Figure FSB00000502393400041
并且直到至少400℃的温度仍然是热稳定的;所述方法包括形成含有M、R、Si、任选地E和任选地Al的反应源的反应混合物,并将该反应混合物在60℃至175℃的温度加热足以形成沸石的时间,该反应混合物具有如下以氧化物摩尔比表示的组成:
aM2/nO∶bR2/pO∶1-cAl2O3∶cE2O3∶dSiO2∶eH2O
其中“a”具有0.05至1.25的值,“b”具有1.5至40的值,“c”具有0至1.0的值,“d”具有4至40的值,“e”具有25至4000的值。
4.权利要求3的方法,其中使所述反应混合物在80℃至125℃的温度反应1天至3周。
5.权利要求3的方法,其中R是胆碱与至少一种选自由TEA、TPA、ETMA、DEDMA、三甲基丙铵、三甲基丁铵或二甲基二乙醇铵组成的组的单电荷有机铵阳离子的组合。
6.权利要求3的方法,进一步包括向所述反应混合物中加入UZM-22晶种。
7.烃转化法,包括使烃流与催化剂在烃转化条件下接触,以产生转化产物,所述催化剂包含选自由UZM-22、UZM-22HS及其混合物组成的组的微孔结晶沸石,其中UZM-22具有至少SiO2四面体单元的三维骨架,且在合成后但未经进一步处理和无水基础上具有如下述经验式所示的经验组成:
Mm n+RrAl1-xExSiyOz
其中M是至少一种选自由碱金属和碱土金属组成的组的可交换阳离子,“m”是M与(Al+E)的摩尔比并且为0至1.2,R是选自由胆碱、ETMA、DEDMA、TEA、TPA、三甲基丙铵、三甲基丁铵、二甲基二乙醇铵及其混合物组成的组的单电荷有机铵阳离子,“r”是R与(Al+E)的摩尔比并具有0.25至2.0的值,“n”是M的加权平均化合价并具有1至3的值,E是选自由镓、铁、硼及其混合物组成的组的元素,“x”是E的摩尔分数并具有0至1.0的值,“y”是Si与(Al+E)的摩尔比并且为2至12,且“z”是O与(Al+E)的摩尔比并具有由下述公式确定的值:
z=(m·n+r+3+4·y)/2
且UZM-22的特征在于其具有至少具有如表A中所列的d-间距和强度的x-射线衍射图:
表A
Figure FSB00000502393400061
并且直到至少400℃的温度仍然是热稳定的;UZM-22HS具有至少SiO2四面体单元的三维骨架和在无水基础上的下述经验组成:
M1a n+Al(1-x)ExSiy’Oz”
其中M1是至少一种选自由碱金属、碱土金属、稀土金属、铵离子、氢离子及其混合物组成的组的可交换阳离子,“a”是M1与(Al+E)的摩尔比并且为0.05至50,“n”是M1的加权平均化合价并具有+1至+3的值,E是选自由镓、铁、硼及其混合物组成的组的元素,“x”是E的摩尔分数并且为0至1.0,y′是Si与(Al+E)的摩尔比并且为4至20,000,且z”是O与(Al+E)的摩尔比并具有通过下述公式确定的值:
z”=(a·n+3+4·y’)/2
该沸石的特征在于其x-射线衍射图至少具有如表B中所列的d-间距和相对强度:
    表B
UZM-22HS
Figure FSB00000502393400071
并且直到至少400℃的温度仍然是热稳定的。
8.权利要求7的方法,其中所述烃转化法选自由烷基化、异构化、烯烃二聚和低聚和脱蜡组成的组。
9.一种微孔结晶沸石,其具有至少SiO2四面体单元的三维骨架和在无水基础上的下述经验组成:
M1a n+Al(1-x)ExSiy’Oz”
其中M1是至少一种选自由碱金属、碱土金属、稀土金属、铵离子、氢离子及其混合物组成的组的可交换阳离子,“a”是M1与(Al+E)的摩尔比并且为0.05至50,“n”是M1的加权平均化合价并具有+1至+3的值,E是选自由镓、铁、硼及其混合物组成的组的元素,“x”是E的摩尔分数并且为0至1.0,y′是Si与(Al+E)的摩尔比并且为4至20,000,且z”是O与(Al+E)的摩尔比并具有通过下述公式确定的值:
z”=(a·n+3+4·y’)/2
该沸石的特征在于其x-射线衍射图至少具有如表B中所列的d-间距和相对强度:
表B
UZM-22HS
Figure FSB00000502393400081
并且直到至少400℃的温度仍然是热稳定的。
10.权利要求9的沸石,其中M1是氢离子。
CN200780032656XA 2006-08-03 2007-08-01 Uzm-22硅铝酸盐沸石、制备方法和使用uzm-22的方法 Expired - Fee Related CN101511733B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/462,056 US7744850B2 (en) 2006-08-03 2006-08-03 UZM-22 aluminosilicate zeolite, method of preparation and processes using UZM-22
US11/462,056 2006-08-03
PCT/US2007/074972 WO2008016974A2 (en) 2006-08-03 2007-08-01 Uzm-22 aluminosilicate zeolite, method of preparation and processes using uzm-22

Publications (2)

Publication Number Publication Date
CN101511733A CN101511733A (zh) 2009-08-19
CN101511733B true CN101511733B (zh) 2011-11-16

Family

ID=38997837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780032656XA Expired - Fee Related CN101511733B (zh) 2006-08-03 2007-08-01 Uzm-22硅铝酸盐沸石、制备方法和使用uzm-22的方法

Country Status (6)

Country Link
US (1) US7744850B2 (zh)
EP (1) EP2046684A4 (zh)
JP (1) JP5271266B2 (zh)
CN (1) CN101511733B (zh)
RU (1) RU2397954C1 (zh)
WO (1) WO2008016974A2 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349291B2 (en) * 2006-08-03 2013-01-08 Uop Llc Calcined UZM-22 and UZM-22HS aluminosilicate zeolites
FR2911866B1 (fr) * 2007-01-30 2009-03-06 Inst Francais Du Petrole Solide cristalise izm-1 et son procede de preparation.
US7922997B2 (en) * 2008-09-30 2011-04-12 Uop Llc UZM-35 aluminosilicate zeolite, method of preparation and processes using UZM-35
WO2011017183A2 (en) * 2009-08-04 2011-02-10 Uop Llc Uzm-29 family of crystalline zeolitic compositions and a method of preparing the compositions
US8518847B2 (en) * 2009-09-30 2013-08-27 Uop Llc Aromatic alkylation catalyst
CN102811950B (zh) * 2010-03-31 2015-01-07 环球油品公司 Uzm-37硅铝酸盐沸石
US8058496B2 (en) * 2010-03-31 2011-11-15 Uop Llc Process for xylene and ethylbenzene isomerization using UZM-35
CN102947224A (zh) * 2010-06-21 2013-02-27 环球油品公司 Uzm-35沸石组合物、制备方法和工艺
US8597611B2 (en) * 2010-07-01 2013-12-03 Uop Llc UZM-45 aluminosilicate zeolite, method of preparation and processes using UZM-45
SG11201402970RA (en) * 2011-12-22 2014-11-27 Uop Llc Uzm-39 aluminosilicate zeolite
CN104271508B (zh) 2012-05-08 2016-12-14 埃克森美孚化学专利公司 沸石zsm‑18、其合成与其用途
AU2013314978B2 (en) * 2012-09-14 2017-10-26 China Petroleum & Chemical Corporation Catalytic cracking catalyst of rare earth-containing Y-type molecular sieve and preparation method therefor
US9233856B2 (en) * 2013-04-20 2016-01-12 Uop Llc Use of zeolitic materials for removing mercury (+2) ions from liquid streams
JP6338493B2 (ja) * 2014-09-18 2018-06-06 国立大学法人広島大学 Mei型ゼオライトの製造方法、およびリンを含有するmei型ゼオライト
US10010878B2 (en) * 2015-03-03 2018-07-03 Uop Llc High meso-surface area, low Si/Al ratio pentasil zeolite
ES2589059B1 (es) * 2015-05-05 2017-08-17 Consejo Superior De Investigaciones Cientificas SÍNTESIS DIRECTA DE Cu-CHA MEDIANTE LA COMBINACIÓN DE UN COMPLEJO DE Cu Y TETRAETILAMONIO, Y APLICACIONES EN CATÁLISIS
CN108928832B (zh) * 2017-05-22 2020-08-07 中国石油化工股份有限公司 无锗iwr沸石分子筛的制备方法
JP7056658B2 (ja) 2017-06-15 2022-04-19 三菱ケミカル株式会社 アンモニアの分離方法およびゼオライト
CN109694091B (zh) * 2017-10-20 2020-10-30 中国石油化工股份有限公司 Iwr/cdo共结晶沸石分子筛的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950496A (en) * 1973-05-29 1976-04-13 Mobil Oil Corporation Synthetic zeolite ZSM-18
US4209499A (en) * 1977-10-21 1980-06-24 Mobil Oil Corporation Crystalline zeolite ZSM-43 synthesis thereof
US5350570A (en) * 1993-09-29 1994-09-27 Mobil Oil Corp. Synthesis of crystalline ZSM-18
US6419895B1 (en) * 2000-11-03 2002-07-16 Uop Llc Crystalline aluminosilicate zeolitic composition: UZM-4
US6776975B2 (en) * 2002-05-09 2004-08-17 Uop Llc Crystalline aluminosilicate zeolitic composition: UZM-4M

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086186A (en) * 1976-11-04 1978-04-25 Mobil Oil Corporation Crystalline zeolite ZSM-34 and method of preparing the same
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4683214A (en) * 1984-09-06 1987-07-28 Mobil Oil Corporation Noble metal-containing catalysts
US4735929A (en) 1985-09-03 1988-04-05 Uop Inc. Catalytic composition for the isomerization of paraffinic hydrocarbons
US5157197A (en) 1990-09-26 1992-10-20 Catalytica, Inc. Isoparaffin alkylation using a lewis acid promoted transition alumina catalyst
US5157196A (en) 1990-12-24 1992-10-20 Chemical Research & Licensing Company Paraffin alkylation process
US6632767B2 (en) * 2000-12-19 2003-10-14 Praxair Technology, Inc. Stabilization of molecular sieves by salt addition
US7578993B2 (en) 2003-10-31 2009-08-25 Uop Llc Process for preparing crystalline aluminosilicate compositions using charge density matching

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950496A (en) * 1973-05-29 1976-04-13 Mobil Oil Corporation Synthetic zeolite ZSM-18
US4209499A (en) * 1977-10-21 1980-06-24 Mobil Oil Corporation Crystalline zeolite ZSM-43 synthesis thereof
US5350570A (en) * 1993-09-29 1994-09-27 Mobil Oil Corp. Synthesis of crystalline ZSM-18
US6419895B1 (en) * 2000-11-03 2002-07-16 Uop Llc Crystalline aluminosilicate zeolitic composition: UZM-4
US6776975B2 (en) * 2002-05-09 2004-08-17 Uop Llc Crystalline aluminosilicate zeolitic composition: UZM-4M

Also Published As

Publication number Publication date
US20080031810A1 (en) 2008-02-07
EP2046684A4 (en) 2010-11-24
RU2397954C1 (ru) 2010-08-27
WO2008016974A3 (en) 2008-03-20
CN101511733A (zh) 2009-08-19
JP2009545511A (ja) 2009-12-24
WO2008016974A2 (en) 2008-02-07
EP2046684A2 (en) 2009-04-15
JP5271266B2 (ja) 2013-08-21
US7744850B2 (en) 2010-06-29

Similar Documents

Publication Publication Date Title
CN101511733B (zh) Uzm-22硅铝酸盐沸石、制备方法和使用uzm-22的方法
CN102171146B (zh) Uzm-35硅铝酸盐沸石、制备方法和使用uzm-35的方法
CN1972868B (zh) 结晶铝硅酸盐沸石组合物:uzm-15
KR100935047B1 (ko) 결정질 알루미노실리케이트 제올라이트 조성물 : uzm-9
CN102822125B (zh) 使用uzm-37硅铝酸盐沸石的芳烃烷基化法
CN102811950B (zh) Uzm-37硅铝酸盐沸石
CN102958840B (zh) Uzm-45硅铝酸盐沸石、制备方法和使用uzm-45的方法
CN102822127B (zh) 使用uzm-35的二甲苯和乙基苯异构化方法
CN102947224A (zh) Uzm-35沸石组合物、制备方法和工艺
WO2010080242A2 (en) Uzm-27 family of crystalline aluminosilicate compositions, a method of preparing the compositions and methods of using the compositions
CN101072728A (zh) Uzm-12和uzm-12hs:结晶硅铝酸盐沸石组合物及该组合物的制备和使用方法
EP1330412A1 (en) Crystalline aluminosilicate zeolitic composition: uzm-4 and processes using the composition
WO2010074889A2 (en) Uzm-26 family of crystalline aluminosilicate compositions, method of preparing the compositions and processes using the compositions
EP1664245A1 (en) Crystalline aluminosilicates: uzm-13, uzm-17, uzm-19 and uzm-25
CN104854032A (zh) Uzm-44硅铝酸盐沸石
CN102482176A (zh) 使用uzm-35来进行芳烃烷基化的方法
CN101014536B (zh) Uzm-16:结晶铝硅酸盐沸石材料
US7763764B2 (en) Hydrocarbon conversion processes using the UZM-27 family of crystalline aluminosilicate compositions
WO2011017183A2 (en) Uzm-29 family of crystalline zeolitic compositions and a method of preparing the compositions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111116

Termination date: 20160801