CN101501962A - 磁悬浮电动机和泵 - Google Patents

磁悬浮电动机和泵 Download PDF

Info

Publication number
CN101501962A
CN101501962A CNA2007800168852A CN200780016885A CN101501962A CN 101501962 A CN101501962 A CN 101501962A CN A2007800168852 A CNA2007800168852 A CN A2007800168852A CN 200780016885 A CN200780016885 A CN 200780016885A CN 101501962 A CN101501962 A CN 101501962A
Authority
CN
China
Prior art keywords
mentioned
magnetic
rotor
permanent magnet
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800168852A
Other languages
English (en)
Other versions
CN101501962B (zh
Inventor
小沼弘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwaki Co Ltd
Original Assignee
Iwaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwaki Co Ltd filed Critical Iwaki Co Ltd
Publication of CN101501962A publication Critical patent/CN101501962A/zh
Application granted granted Critical
Publication of CN101501962B publication Critical patent/CN101501962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0487Active magnetic bearings for rotary movement with active support of four degrees of freedom
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings

Abstract

本发明提供一种磁悬浮电动机和泵,定子在两个磁力轴承部之间夹设电动机部,构成磁力轴承部的磁力轴承磁轭在转子的侧面以设置预定间隔的方式呈圆周状等间距地配置,磁力轴承磁轭具有与转子的侧面相对的两个凸极,在一个凸极上卷绕磁力轴承用线圈,在另一个凸极上设置第一永磁体,在设于电动机部侧的凸极和电动机部的电动机磁轭之间设置第二永磁体,一个磁力轴承部的设在电动机部侧的所有凸极是卷绕有磁力轴承用线圈的凸极,或者是设有第一永磁体的凸极,另一个磁力轴承部的设上述电动机部侧的所有凸极,是卷绕有磁力轴承用线圈的凸极,或者是设有第一永磁体的凸极。

Description

磁悬浮电动机和泵
技术领域
本发明涉及一种磁悬浮电动机的制造和控制,特别是涉及双偏置永磁体式的混合型磁悬浮电动机的技术。
背景技术
近年来,作为磁悬浮电动机,提出了双偏置永磁体式的混合型磁悬浮电动机。
专利文献1的5自由度式混合磁力轴承是这样的装置:采用偏置磁通发生用永磁体,使得用于形成泵叶轮等的长轴转子以5自由度高效地磁悬浮并旋转。对偏置磁通的磁路进行改进就能够产生比只采用电磁石的磁悬浮系统要高的磁悬浮力。
根据专利文献2,双偏置式磁力轴承(支承控制),通过准备多个以往的混合型磁力轴承的偏置磁体就能够进一步产生磁悬浮力。此外,用初级偏置永磁体感应次级偏置永磁体的磁通流量,以实现更强力的混合型磁力轴承。
但是,当将专利文献1的技术用于泵的情况下,由于在转子两端面具有用于控制轴向位置的凸极,因此泵的入口和出口结构变得复杂,从而不容易组装。而且,由于液体的流路变得复杂,所以存在吸入和排出损失变大的问题。
此外,根据专利文献2,由于是将配置在磁力轴承的圆周方向上的凸极的极性交替变换为NSNS的结构,所以存在当转子旋转时产生涡电流,从而转子的旋转损失变大的问题。
专利文献1:日本特开2006—14528号公报。
专利文献2:日本特开2007—120635号公报。
发明内容
本发明是鉴于上述的情况而完成的,其目的在于提供一种结构简单且能够抑制在磁力轴承部产生涡电流以降低转子的旋转损失的磁悬浮电动机和使用了该磁悬浮电动机的泵。
本发明是一种磁悬浮电动机,该磁悬浮电动机具有由磁力轴承部和电动机部构成的定子和设置于上述定子中的转子。
上述定子在上述两个磁力轴承部之间夹设上述电动机部。构成上述磁力轴承部的磁力轴承磁轭,在上述转子的侧面以设置预定间隔的方式呈圆周状等间距地配置。上述磁力轴承磁轭具有与上述转子的侧面相对的两个凸极,在上述一个凸极上卷绕磁力轴承用线圈,在上述另一个凸极上设置第一永磁体,在设于上述电动机部侧的上述凸极和上述电动机部的电动机磁轭之间设置第二永磁体。上述一个磁力轴承部的设在上述电动机部侧的所有凸极,是卷绕有上述磁力轴承用线圈的凸极,或者是设有上述第一永磁体的凸极。
上述另一个磁力轴承部的设在上述电动机部侧的所有凸极,是卷绕有上述磁力轴承用线圈的凸极,或者是设有上述第一永磁体的凸极。
上述一个磁力轴承部的与上述转子相对设置的上述凸极上的上述第一永磁体的磁极,在上述转子侧相同,隔着上述电动机部而设置的上述另一个磁力轴承部的与上述转子相对设置的上述凸极的上述第一永磁体的磁极,在上述转子侧与上述一个磁力轴承部的上述第一永磁体的上述转子侧的磁极相反,上述第二永磁体的上述电动机部侧的磁极,与设置在上述相同磁力轴承磁轭上的上述第一永磁体的上述转子侧的磁极相同。
或者,上述一个磁力轴承部的与上述转子相对设置的上述凸极的上述第一永磁体的磁极,在上述转子侧相同。隔着上述电动机部而设置的上述另一个磁力轴承部的与上述转子相对设置的上述凸极的上述第一永磁体的磁极,在上述转子侧与上述一个磁力轴承部的上述第一永磁体的上述转子侧的磁极相同。上述第二永磁体的上述电动机部侧的磁极,与设置在上述相同磁力轴承磁轭上的上述第一永磁体的上述转子侧的磁极相同。
通过上述构成,虽然是简单的结构,但是能够抑制在磁力轴承部产生的涡电流,从而能够降低转子的旋转损耗。
优选的是,上述电动机部具有电动机磁轭凸极,该电动机磁轭凸极从上述电动机磁轭沿上述转子的径向突出并与上述转子之间设有预定间隔,在上述电动机磁轭凸极上卷绕电动机用线圈。在上述转子的表面设置电动机用永磁体。
优选的是,上述电动机部是交替型。
优选的是,将上述第一永磁体分割并设置在上述凸极上。
优选的是,在上述凸极的每一个上卷绕上述磁力轴承用线圈。
此外,在上述磁力轴承部设置用于检测上述转子的位置的传感器,根据上述传感器的测量值向上述磁力轴承用线圈供给控制电流。
此外,上述的磁悬浮电动机可以用于泵。
此外,也可以只由上述磁力轴承部构成磁力轴承。
附图说明
图1是示出了实施例1的结构的立体图。
图2是示出了第一永磁体8(8a~8d)的位于转子2侧的磁极与第一永磁体8(8e~8h)的位于转子2侧的磁极相反的情况下所产生的磁力线方向的立体剖视图。
图3是示出了朝向第一永磁体8(8a~8d)的转子2的磁极与第一永磁体8(8e~8h)的转子2侧的磁极相同的情况下所产生的磁力线方向的立体剖视图。
图4是转子的结构为表面磁体型的情况下的X—Y平面剖面的立体图。
图5是转子的结构为交替型的情况下的用X—Y平面、Z—X平面剖切而成的剖面的立体图。
图6是实施例1的变形例的图。
图7是实施例1的变形例的图。
图8是示出了磁力轴承部的控制部的框图。
图9是表示使用了实施例1的磁悬浮电动机的泵的剖面图的图。
具体实施方式
(原理说明)
本发明的磁悬浮电动机由定子和圆柱状或圆筒状的转子构成,上述定子由配置在转子的侧面(内表面或外表面)的磁力轴承部和电动机部构成,且磁力轴承与电动机成为一体。
磁力轴承部构成为凸极朝着转子侧面的电磁体等间隔地配置成圆周状。
电磁体由具有永磁体(第一永磁体)的凸极(第二凸极)和卷绕有磁力轴承用线圈的凸极(第一凸极)构成。
电动机部由具有朝向转子侧面的凸极的电动机磁轭和在这些凸极上卷绕了电动机线圈的电磁体构成。在磁力轴承部的电磁体和电动机部的电磁体之间配置第二永磁体。
这里,磁力轴承部的第一凸极和第二凸极在轴向上并列配置,配置成圆周状的磁力轴承部的第一凸极的第一永磁体的磁极(N极、S极),采用使相同的磁极(N极或S极)朝向转子的方式配置。磁力轴承部和电动机部之间的第二永磁体采用使与第一永磁体的朝向转子的磁极相同的磁极朝向电动机部的方式设置。
由此,能够成为向磁力轴承部供给更多的偏置磁通的双偏置结构,从而能够实现小型化、高效率化,而且还由于磁力轴承部的凸极的磁极在圆周方向上相同而能够实现涡电流损耗的降低。
此外,通过位于转子的径向的凸极上的永磁体的偏置磁通产生的吸力,来抑制转子在轴向上的变动,并且将转子限定在预定位置。即,通过在轴向被动地处于稳定(被动稳定性)来实现控制的简化。
下面根据附图来说明本发明的实施方式。
(实施例1)
图1是示出了本发明的实施例1的结构的图。实施例1的磁悬浮电动机由定子1和转子2构成。
定子1由磁力轴承部和电动机部构成。另外,方便起见,将定子的标号“1”标注在后述的磁力轴承磁轭3d上。
磁力轴承部以在圆筒状结构的转子2的侧面(曲面)的两端(5a、5b)具有预定间隔的方式进行配置。
磁力轴承部具有各磁力轴承磁轭3(3a~3h。)在本例中,磁力轴承磁轭3a和3e隔着电动机磁轭4进行设置,同样地,磁力轴承磁轭3b和3f、磁力轴承磁轭3c和3g、磁力轴承磁轭3d和3h隔着电动机磁轭4进行设置。
在各磁力轴承磁轭3(3a~3h)上具有第一凸极6(6a~6h),并且第一凸极6(6a~6h)朝着转子2侧面的径向呈圆周状等间隔地配置。此外,在各磁力轴承磁轭3(3a~3h)上卷绕着磁力轴承用线圈11(11a~11h)。另外,虽然优选为在第一凸极6(6a~6h)上卷绕磁力轴承用线圈11(11a~11h),但是并不限定于此。
进而,在各磁力轴承磁轭3(3a~3h)上具有第二凸极7(7a~7h)。第二凸极7(7a~7h)朝着转子2侧面的径向呈圆周状等间隔地配置,在第二凸极7上具有第一永磁体8(8a~8h)。这里,各第二凸极7与各第一凸极6对应地设置。优选第二凸极7和第一凸极6平行地设置。
此外,在各个磁力轴承磁轭3的电动机部侧的凸极(在图1中为第二凸极7(7a~7h))和电动机部的电动机磁轭4之间,配置有第二永磁体9(9a~9h)。
第二凸极7(7a~7d)的第一永磁体8(8a~8d)采用使相同的磁极朝向转子2的方式配置。此外,第二凸极7(7e~7h)的第一永磁体8(8e~8h)采用使相同的磁极朝向转子2的方式配置。第一永磁体8(8a~8d)和第一永磁体8(8e~8h)的朝向转子2的磁极也可以不同。
第二永磁体9(9a~9h)采用使与第一永磁体8的朝向转子的磁极相反的磁极朝向电动机磁轭4的方式配置。此时,第二永磁体9(9a~9d)采用使相同的磁极朝向电动机磁轭4的方式而配置。另外,第二永磁体9(9e~9h)采用使相同的磁极朝向电动机磁轭4的方式而配置。第二永磁体9(9a~9d)和第二永磁体9(9e~9h)的朝向电动机磁轭4的磁极,根据第一永磁体8的朝向转子的磁极的方向而有可能不同。
在电动机部,以在转子2的侧面的中央部5c具有预定间隔的方式配置有电动机磁轭4。在电动机部的电动机磁轭4上具有朝向转子2侧面的中央部5c的凸极,在电动机磁轭4和这些凸极上卷绕有电动机用线圈12。此外,在转子2的中央部5c配置有与电动机部的凸极相对的电动机用永磁体10。另外,在电动机部,也可以在圆筒状的电动机磁轭4的侧面配置电动机用线圈12,以通过洛伦茨力进行驱动。
将第二凸极7配置在电动机磁轭4侧,将第一凸极6配置在转子2的底面侧(端部侧),但它们也可以颠倒配置。
这里,上述说明的第一永磁体8、第二永磁体9、电动机用永磁体10的材质例如使用钕—铁—硼、钐—钴、钐—铁—氮等强磁性材料。定子1的磁力轴承磁轭3和电动机磁轭4、转子2的转子磁轭5的材质例如使用磁性软铁、磁性不锈钢、压粉磁芯、硅钢板等软磁性材料。另外,并不限于上述说明的材料。
作为实现上述实施例的形状,根据第一永磁体8和第二永磁体9的磁极的朝向考虑如下的结构。
(磁力轴承构成例1)
作为构成例1,图2示出了第一永磁体8(8a~8d)位于转子2侧的磁极和第一永磁体8(8e~8h)位于转子2侧的磁极相反的情况下的结构,以及示出了从A—A’看到的由该结构产生的磁力线方向的立体剖视图。
另外,将第二凸极7配置在电动机磁轭4侧,将第一凸极6配置在转子2的两端侧,但是作为结构,也可以是将第一凸极6配置在电动机磁轭4侧,将第二凸极7配置在转子2的两端侧。
如图2所示,第一永磁体8的偏置磁通20形成“—第一永磁体8—第二凸极7—转子磁轭5—第一凸极6—”的磁路。第二永磁体9的偏置磁通19形成“—第二永磁体9—电动机磁轭4—第二永磁体9—第一凸极6—转子磁轭5—第一凸极6—”的磁路。磁力轴承用线圈11的控制磁通21形成“—磁力轴承用线圈11—第一凸极6—转子磁轭5—第二凸极7—”的磁路。
第一永磁体8的偏置磁通20和第二永磁体9的偏置磁通19以同方向重复地供给到第一凸极6与转子2的间隙中。与第二凸极7和转子2的间隙反向的偏置磁通由第一永磁体8供给到第一凸极6和转子2的间隙中。
关于由磁力轴承用线圈11产生的控制磁通21,当控制磁通21根据控制电流的朝向(正电流、负电流)以与各自的偏置磁通19、20相同的方向在第一凸极6与转子2的间隙和第二凸极7与转子2的间隙中流过时,各个间隙中的磁通密度增加,作用于转子2的那些凸极方向的磁吸力增加。
相反,在第一凸极6与转子2的间隙中和第二凸极7与转子2的间隙中,若控制磁通21以与各自的偏置磁通19、20相反的方向流过,各个间隙中的磁通密度减小,作用于转子2的那些凸极方向的磁吸力减小。
基于转子2的位置检测传感器13(13a~13h)的测量值,通过调整控制电流来控制磁吸力的增加/减小,以进行转子2的位置控制。例如,当转子2向图2的—X方向发生位移时,在—X侧的磁力轴承用线圈11(11d、11h)中,控制电流沿着使第一凸极6(6d、6h)与转子磁轭5之间和第二凸极7(7d、7h)与转子磁轭5之间的间隙中的磁通密度减少的方向流过,在+X侧的磁力轴承用线圈11(11b、11f)中,控制电流沿着使第一凸极6(6b、6f)与转子磁轭5之间和第二凸极7(7b、7f)与转子磁轭5之间的间隙中的磁通密度增加的方向流过。其结果是,基于各个第一凸极6和第二凸极7的磁吸力的合力在转子2上为+X方向,从而能够使转子2向+X方向移动。
此外,在图2中,当转子2逆时针倾斜时,在电磁体用线圈11(11d、11f)中,控制电流沿着使第一凸极6(6d、6f)与转子之间和第二凸极7(7d、7f)与转子之间的间隙中的磁通密度减小的方向流过,在电磁体用线圈11(11b、11h)中,控制电流沿着使第一凸极6(6b、6h)与转子之间和第二凸极7(7b、7h)与转子之间的间隙中的磁通密度增加的方向流过。其结果是,基于各个第一凸极6和第二凸极7的磁吸力的合力在转子2上产生顺时针的转矩,从而能够使转子2的倾斜归位。
这样,根据转子2的位置检测传感器13(13a~13h)的测量值,来调整施加在各个磁力轴承用线圈11上的控制电流的方向和大小,由此能够控制转子2在径向上的位置和倾斜。
此外,第二永磁体9的偏置磁通19通过电动机磁轭4,而不流经电动机磁轭4与转子2的间隙,因此不会干涉转子2的驱动。
(磁力轴承构成例2)
作为构成例2,图3示出了第一永磁体8(8a~8d)朝向转子2的磁极与第一永磁体8(8e~8h)朝向转子2侧的磁极相同的情况下的结构,以及示出了从A—A’看到的由该结构产生的磁力线的方向的立体剖视图。
在构成例2中,第一永磁体8位于转子2侧的磁极和第二永磁体9位于电动机磁轭4侧的磁极为N极,但是,第一永磁体8位于转子2侧的磁极和第二永磁体9位于电动机磁轭4侧的磁极也可以为S极。
此外,将第二凸极7配置在电动机磁轭4侧,将第一凸极6配置在转子2的两端侧,但是,也可以将第一凸极6配置在电动机磁轭4侧,将第二凸极7配置在转子2的两端侧。
在图3中,第一永磁体8的偏置磁通20形成“—第一永磁体8—第二凸极7—转子磁轭5—第一凸极6—”的磁路。第二永磁体9的偏置磁通19形成“—第二永磁体9—电动机磁轭4—转子磁轭5—第一凸极6—”的磁路。由磁力轴承用线圈11产生的控制磁通21形成“—磁力轴承用线圈11—第一凸极6—转子磁轭5—第二凸极7—”的磁路。
第一永磁体8的偏置磁通20和第二永磁体9的偏置磁通19以同方向重复地供给到第一凸极6与转子2的间隙中。与第二凸极7和转子2的间隙反向的偏置磁通由第一永磁体8供给到第一凸极6和转子2的间隙中。
关于由磁力轴承用线圈11产生的控制磁通21,当控制磁通21根据控制电流的朝向(正电流、负电流)以与各自的偏置磁通相同的方向在第一凸极6与转子2的间隙中和第二凸极7与转子2的间隙中流过时,各个间隙中的磁通密度增加,作用于转子2的那些凸极方向的磁吸力增加。相反,在第一凸极6与转子2的间隙中和第二凸极7与转子2的间隙中,若控制磁通21以与各自的偏置磁通19、20相反的方向流过,各个间隙中的磁通密度减小,作用于转子2的那些凸极方向的磁吸力减小。
基于转子2的位置检测传感器13(13a~13h)的测量值,通过调整控制电流来控制磁吸力的增加/减小,以进行转子2的位置控制。例如,当转子2沿着图3的—X方向发生位移时,在—X侧的磁力轴承用线圈11(11d、11h)中,控制电流沿着使第一凸极6(6d、6h)与转子2之间和第二凸极7(7d、7h)与转子2之间的间隙中的磁通密度增加的方向流过,在+X侧的磁力轴承用线圈11(11b、11f)中,控制电流沿着使第一凸极6(6b、6f)与转子2之间和第二凸极7(7b、7f)与转子2之间的间隙中的磁通密度减少的方向流过,由此,基于各个第一凸极6和第二凸极7的磁吸力的合力在转子2上为+X方向,从而能够使转子2向+X方向移动。
此外,在图3中,当转子2逆时针倾斜时,在电磁体用线圈11(11d、11f)中,控制电流沿着使第一凸极6(6d、6f)与转子之间和第二凸极7(7d、7f)与转子之间的间隙中的磁通密度减小的方向流过,在电磁体用线圈11(11b、11h)中,控制电流沿着使第一凸极6(6b、6h)与转子之间和第二凸极7(7b、7h)与转子之间的间隙中的磁通密度增加的方向流过。其结果是,基于各个第一凸极6和第二凸极7的磁吸力的合力在转子2上产生顺时针的转矩,从而能够使转子2的倾斜归位。
这样,根据转子2的位置检测传感器13(13a~13h)的测量值,来调整施加在各个第一凸极6和第二凸极7上的控制电流21的方向和大小,由此能够控制转子2在径向上的位置和倾斜。
此外,第二永磁体9的偏置磁通19也供给到电动机磁轭4和转子2之间的间隙中。因此,电动机部的设计是需要考虑第二永磁体9的偏置磁通的。
作为磁力轴承构成例1和磁力轴承构成例2的转子2的形状,可以考虑采用了电动机用永磁体10的表面永磁体型、内置永磁体型、交替型等。此外,在不采用电动机用永磁体10的情况下,也可以是步进电动机、笼式电动机等的结构。
(转子2的构成例1)
作为采用了永磁体的转子2的形状,采用了表面永磁体型时的说明如下。
图4示出了转子2的结构为表面磁体型的情况下的X—Y平面剖面的立体图。在图4中,用虚线箭头示出电动机用永久磁体10的磁路22。此外,图4所示的电动机部和转子是磁力轴承构成例1中所说明的结构。
由磁力轴承构成例1的第二永磁体9产生的偏置磁通19,不会从电动机磁轭4的凸极流到转子2,所以不会干涉由电动机用永磁体10实现的电动机驱动及电动机部在径向上的负弹力(由于永磁体的磁吸力而将转子2向电动机部吸引的力)。
此外,由磁力轴承构成例2的第二永磁体9产生的偏置磁通19,从电动机磁轭4的凸极流到转子2,于是电动机用永磁体10的磁通分布产生偏置,若电动机用永磁体10的N极、S极为相同的大小、相同的保持力,则电动机部的负弹力的强弱在电动机用永磁体10的N极、S极不同。
(转子2的构成例2)
图5示出了转子2的结构为交替型的情况下的用X—Y平面、Z—X平面剖切而成的剖面的立体图。在图5中,用虚线箭头示出电动机用永久磁体10的磁路,用单点划线箭头示出第二永磁体9的磁路。此外,图5所示的磁力轴承部的永磁体是磁力轴承构成例2中所说明的结构。
在交替型中,电动机用永磁体10以N极或S极朝向电动机磁轭4的方式配置在转子2上。多个电动机用永磁体10以相同的磁极朝向电动机轭体4。
此外,不是以围着转子2的方式配置永磁体,而是如图5所示将转子磁轭5配置在转子2的表面。在本例中,将电动机用磁体10以在4极电动机中相对的方式配置在机械角为90度的位置。
从电动机用永磁体10出来的磁通24通过从电动机磁轭4经转子2的表面的转子磁轭5而返回电动机用永磁体10的磁路。因此,其结果是,转子2表面的转子磁轭5成为与电动机用永磁体10的朝向电动机磁轭4的磁极(在本例中为N极)相反的磁极(在本例中为S极)。
交替型的转子2中,电动机磁轭4与转子2的间隙中的磁通密度比永磁体表面的间隙中的磁通密度稍高一点。因此,如磁力轴承构成例2那样配置第二永磁体9。使第二永磁体9的朝向电动机磁轭4的磁极,与交替型的转子2的电动机用永磁体10的朝向电动机磁轭4的磁极相同。在图5中是朝向N极。
与通过电动机用永磁体10的磁路相比,通过转子2表面的转子磁轭5的磁路的磁阻抗比较低,因此,从第二永磁体9发出的偏置磁通22从电动机磁轭4的凸极流到转子2表面的转子磁轭5。
通过适当地设计第二永磁体9,能够通过电动机用永磁体10的磁通24和第二永磁体9的偏置磁通22,使电动机磁轭4与转子2的永久磁体表面的间隙中和转子2的表面的转子磁轭5的间隙中的磁通密度相等。
其结果是,电动机部的径向上的负弹力均等。此外,通过使转子2的表面的转子磁轭5的间隙中的磁通密度增加,能够提高电动机的转矩。
此外,若配置为磁力轴承构成例1的永磁体,则来自第二永磁体9的偏置磁通不从电动机磁轭4的凸极流到转子2,因此,电动机部的负弹力在是否具有电动机用永磁体10的情况下强度是不同的。
(变形例1)
图6示出了实施例1的变形例1。考虑到从磁力轴承部和转子2的间隙以外的磁回路泄漏的磁通,通过进行以下的形状变更能够实现磁支承性能的提高。
分割第一永磁体8,并将永磁体配置在各第一凸极6(6a~6h)的与转子2相对的表面和第二凸极7(7a~7h)的与转子2相对的表面以及第二凸极7(7a~7h)的根部。在图6中,在各第一凸极6(6a~6h)上设有第一永磁体8(8i~8p)。此外,在各第二凸极7(7a~7h)设有第一永磁体8(8a~8h、8q~8x)。
另外,可以将分割成多个的第一永磁体8配置在凸极内的任何位置,但是,第一凸极6内的永磁体和第二凸极7内的永磁体的朝向转子2的磁极的方向是相反的,相同凸极内的永磁体的朝着转子2的磁极的方向是同方向的。
此外,优选在凸极表面设置永磁体,但并不是对永磁体的配置的限定。
另外,在本例中,分割第一永磁体8将第一永磁体8(8i~8x)重新设置在第一凸极6(6a~6h)和第二凸极7(7a~7h),但是,只是将第一凸极6(6a~6h)的第一永磁体8(8i~8p)或者第二永磁体7(7a~7h)的第一永磁体8(8q~8x)重新设计也能提高磁悬浮力。
再者,在变形例1中,分割磁力轴承用线圈11并卷绕在第一凸极6和第二凸极7上。在图6中,在第二凸极7(7a~7h)上也卷绕着磁力轴承用线圈11(11i~11p)。
(变形例2)
图7示出了实施例1的变形例。除去电动机磁轭4而在沿轴向并列的电磁体之间配置第二永磁体9,由此形成双偏置磁力轴承。两端的磁力轴承部的第一永磁体8(8a~8d)的朝向转子2的磁极与第一永磁体8(8e~8h)的朝向转子2的磁极相反,第二永磁体9以与各个电磁体的第一永磁体8的朝向转子2的磁极相反的磁极,朝向两端的磁力轴承部的电磁体(电磁体由第一凸极6、第二凸极7、第一永磁体8以及磁力轴承用线圈11构成)之间进行配置。虽然没有电动机的功能,但是作为磁力轴承的功能则具有与实施例1相同的功能。此外,在转子2的一部分上设置磁耦合装置,从而能够通过外部的电动机而旋转。
(磁力轴承部的控制部)
图8示出了实施例1的磁力轴承部的控制部。转子2的径向位置由设置在径向预定位置的位置检测传感器13(13a~13h)检测出来。隔着转子相对的磁力轴承用线圈11以相反的方向卷绕在各凸极上并接线,而且连接在功率放大器上。在实施例1中,在各个磁力轴承部的磁力轴承用线圈11之间以等间隔配置八个位置检测传感器13。各个位置检测传感器13的相对的两个位置检测传感器13的输出之差由运算器81~84检测出来。
根据运算器81~84的输出,在控制器85中将利用位置检测传感器13检测出的坐标值,变换成磁力轴承部的磁力轴承用线圈11的控制坐标,再利用PID(比例、积分和微分)控制等计算出要施加到磁力轴承用线圈11中的电流值。从控制器85将要施加给磁力轴承用线圈11的电流值指令送给功率放大器86~89,于是由功率放大器86~89对磁力轴承用线圈11施加电流,以控制转子2的位置。
根据上述结构,能够实现检测灵敏度和线性的提高以及检测范围的扩大。
优选利用相对的两个位置检测传感器13进行差动检测,但是只通过单侧一个传感器也能够进行检测和控制。
在磁力轴承构成例1、磁力轴承构成例2、变形例2中采用了八个磁力轴承用线圈11,但是,通过隔着转子相对的磁力轴承用线圈11以相反的方向卷绕在各凸极上并接线,从而只用四个功率放大器也能够进行磁力轴承的控制。
在变形例1中采用了十六个磁力轴承用线圈11,而第一凸极的磁力轴承用线圈11和第二凸极的磁力轴承用线圈11的卷绕方向是彼此相反的。这些磁力轴承用线圈11以使隔着转子相对的第一凸极的磁力轴承用线圈11和第二凸极的磁力轴承用线圈11的卷绕方向也彼此相反的方式卷绕。而且,通过将这些磁力轴承用线圈11接线,从而只用四个功率放大器就能够进行磁力轴承的控制。
此外,也可以分别对应每一个磁力轴承用线圈使用功率放大器,虽然这样功率放大器的数量增多。
(应用例1)
图9示出了采用实施例1的磁悬浮电动机构成泵的应用例1。图9是泵的剖视图。
在本例中,用树脂或非磁性金属覆盖转子2,在转子2的一端用树脂或非磁性金属等形成叶轮15。
定子1是覆盖树脂或非磁性金属等的泵壳16的结构。而且,将转子2和叶轮15以具有预定间隙的方式配置在泵壳16的内部。
此外,本发明不限于上述的实施方式,在不脱离本发明的构思的范围内能够进行各种改进、变更。
权利要求书(按照条约第19条的修改)
1.一种磁悬浮电动机,该悬浮电动机具有由磁力轴承部和电动机部构成的定子和设置于上述定子中的转子,其特征在于,
上述定子在上述两个磁力轴承部之间夹设上述电动机部,
构成上述磁力轴承部的磁力轴承磁轭,在上述转子的侧面以设置预定间隔的方式呈圆周状等间距地配置,
上述磁力轴承磁轭具有与上述转子的侧面相对的两个凸极,在上述一个凸极上卷绕磁力轴承用线圈,在上述另一个凸极上设置第一永磁体,在设于上述电动机部侧的上述凸极和上述电动机部的电动机磁轭之间设置第二永磁体,
上述一个磁力轴承部的设在上述电动机部侧的所有凸极,是卷绕有上述磁力轴承用线圈的凸极,或者是设有上述第一永磁体的凸极,
上述另一个磁力轴承部的设在上述电动机部侧的所有凸极,是卷绕有上述磁力轴承用线圈的凸极,或者是设有上述第一永磁体的凸极。
2.如权利要求1所述的磁悬浮电动机,其特征在于,
上述一个磁力轴承部的与上述转子相对设置的上述凸极上的上述第一永磁体的磁极,在上述转子侧相同,
隔着上述电动机部而设置的上述另一个磁力轴承部的与上述转子相对设置的上述凸极的上述第一永磁体的磁极,在上述转子侧与上述一个磁力轴承部的上述第一永磁体的上述转子侧的磁极相反,
上述第二永磁体的上述电动机部侧的磁极,与设置在上述相同磁力轴承磁轭上的上述第一永磁体的上述转子侧的磁极相同。
3.如权利要求1所述的磁悬浮电动机,其特征在于,
上述一个磁力轴承部的与上述转子相对设置的上述凸极上的上述第一永磁体的磁极,在上述转子侧相同,
隔着上述电动机部而设置的上述另一个磁力轴承部的与上述转子相对设置的上述凸极的上述第一永磁体的磁极,在上述转子侧与上述一个磁力轴承部的上述第一永磁体的上述转子侧的磁极相同,
上述第二永磁体的上述电动机部侧的磁极,与设置在上述相同磁力轴承磁轭上的上述第一永磁体的上述转子侧的磁极相同。
4.如权利要求1至3中任一项所述的磁悬浮电动机,其特征在于,
上述电动机部具有电动机磁轭凸极,该电动机磁轭凸极从上述电动机磁轭沿上述转子的径向突出并与上述转子之间设有预定间隔,在上述电动机磁轭凸极上卷绕电动机用线圈,
在上述转子的表面设置电动机用永磁体。
5.如权利要求4所述的磁悬浮电动机,其特征在于,
上述电动机部是交替型。
6.如权利要求1至5中任一项所述的磁悬浮电动机,其特征在于,
将上述第一永磁体分割并设置在上述凸极上。
7.如权利要求1至6中任一项所述的磁悬浮电动机,其特征在于,
在上述凸极的每一个上卷绕上述磁力轴承用线圈。
8.如权利要求1至7中任一项所述的磁悬浮电动机,其特征在于,
在上述磁力轴承部设置用于检测上述转子的位置的传感器,根据上述传感器的测量值向上述磁力轴承用线圈供给控制电流。
9.一种泵,该泵采用了上述权利要求1至8中任一项所述的磁悬浮电动机。
10.一种磁力轴承,该磁力轴承只由权利要求1至3以及8中任一项所述的上述磁力轴承部构成。

Claims (10)

1.一种磁悬浮电动机,该悬浮电动机具有由磁力轴承部和电动机部构成的定子和设置于上述定子中的转子,其特征在于,
上述定子在上述两个磁力轴承部之间夹设上述电动机部,
构成上述磁力轴承部的磁力轴承磁轭,在上述转子的侧面以设置预定间隔的方式呈圆周状等间距地配置,
上述磁力轴承磁轭具有与上述转子的侧面相对的两个凸极,在上述一个凸极上卷绕磁力轴承用线圈,在上述另一个凸极上设置第一永磁体,在设于上述电动机部侧的上述凸极和上述电动机部的电动机磁轭之间设置第二永磁体,
上述一个磁力轴承部的设在上述电动机部侧的所有凸极,是卷绕有上述磁力轴承用线圈的凸极,或者是设有上述第一永磁体的凸极,
上述另一个磁力轴承部的设在上述电动机部侧的所有凸极,是卷绕有上述磁力轴承用线圈的凸极,或者是设有上述第一永磁体的凸极。
2.如权利要求1所述的磁悬浮电动机,其特征在于,
上述一个磁力轴承部的与上述转子相对设置的上述凸极上的上述第一永磁体的磁极,在上述转子侧相同,
隔着上述电动机部而设置的上述另一个磁力轴承部的与上述转子相对设置的上述凸极的上述第一永磁体的磁极,在上述转子侧与上述一个磁力轴承部的上述第一永磁体的上述转子侧的磁极相反,
上述第二永磁体的上述电动机部侧的磁极,与设置在上述相同磁力轴承磁轭上的上述第一永磁体的上述转子侧的磁极相同。
3.如权利要求1所述的磁悬浮电动机,其特征在于,
上述一个磁力轴承部的与上述转子相对设置的上述凸极上的上述第一永磁体的磁极,在上述转子侧相同,
隔着上述电动机部而设置的上述另一个磁力轴承部的与上述转子相对设置的上述凸极的上述第一永磁体的磁极,在上述转子侧与上述一个磁力轴承部的上述第一永磁体的上述转子侧的磁极相同,
上述第二永磁体的上述电动机部侧的磁极,与设置在上述相同磁力轴承磁轭上的上述第一永磁体的上述转子侧的磁极相同。
4.如权利要求1至3中任一项所述的磁悬浮电动机,其特征在于,
上述电动机部具有电动机磁轭凸极,该电动机磁轭凸极从上述电动机磁轭沿上述转子的径向突出并与上述转子之间设有预定间隔,在上述电动机磁轭凸极上卷绕电动机用线圈,
在上述转子的表面设置电动机用永磁体。
5.如权利要求4所述的磁悬浮电动机,其特征在于,
上述电动机部是交替型。
6.如权利要求1至5所述的磁悬浮电动机,其特征在于,
将上述第一永磁体分割并设置在上述凸极上。
7.如权利要求1至6所述的磁悬浮电动机,其特征在于,
在上述凸极的每一个上卷绕上述磁力轴承用线圈。
8.如权利要求1至7所述的磁悬浮电动机,其特征在于,
在上述磁力轴承部设置用于检测上述转子的位置的传感器,根据上述传感器的测量值向上述磁力轴承用线圈供给控制电流。
9.一种泵,该泵采用了上述权利要求1至8所述的磁悬浮电动机。
10.一种磁力轴承,该磁力轴承只由上述磁力轴承部构成。
CN2007800168852A 2007-10-18 2007-10-18 磁悬浮电动机和泵 Active CN101501962B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/001138 WO2009050767A1 (ja) 2007-10-18 2007-10-18 磁気浮上モータおよびポンプ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201110101829.7A Division CN102163942B (zh) 2007-10-18 2007-10-18 磁悬浮电动机

Publications (2)

Publication Number Publication Date
CN101501962A true CN101501962A (zh) 2009-08-05
CN101501962B CN101501962B (zh) 2011-12-07

Family

ID=40567063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800168852A Active CN101501962B (zh) 2007-10-18 2007-10-18 磁悬浮电动机和泵

Country Status (7)

Country Link
US (1) US7977838B2 (zh)
EP (1) EP2209186B1 (zh)
JP (1) JP4920687B2 (zh)
KR (1) KR100980565B1 (zh)
CN (1) CN101501962B (zh)
AU (1) AU2007352931B2 (zh)
WO (1) WO2009050767A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106194648A (zh) * 2016-08-06 2016-12-07 胡玥 一种充气泵
CN106662149A (zh) * 2014-09-04 2017-05-10 西门子公司 用于磁性地支承轴的设备
CN107387558A (zh) * 2017-07-27 2017-11-24 江苏大学 一种车载飞轮电池用交直流三自由度轴向单片混合磁轴承
CN110462234A (zh) * 2017-04-01 2019-11-15 开利公司 具有磁通升高的磁径向轴承
CN112343827A (zh) * 2020-10-27 2021-02-09 浙江大学 一种具有双磁阻结构的磁悬浮泵
CN113557367A (zh) * 2019-03-28 2021-10-26 大金工业株式会社 推力磁轴承及包括该推力磁轴承的涡轮压缩机
CN114788146A (zh) * 2019-10-18 2022-07-22 尼亚布科知识产权控股有限责任公司 包括磁性转子中心的润滑剂支承的电动机
CN114876953B (zh) * 2017-04-01 2024-05-10 开利公司 具有磁通升高的磁径向轴承

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786297B2 (ja) * 2005-10-28 2011-10-05 株式会社イワキ ハイブリッド型磁気軸受
CN101501962B (zh) * 2007-10-18 2011-12-07 株式会社易威奇 磁悬浮电动机和泵
WO2009095949A1 (ja) * 2008-01-29 2009-08-06 Iwaki Co., Ltd. 磁気浮上モータおよびポンプ
EP2275697A1 (en) * 2009-04-23 2011-01-19 Koninklijke Philips Electronics N.V. A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
KR101029187B1 (ko) * 2009-06-04 2011-04-12 연세대학교 산학협력단 비접촉 강자성체 회전장치 및 그 제어방법
US9203280B2 (en) * 2009-07-16 2015-12-01 Ibaraki University Magnetic levitation control device and hybrid type magnetic bearing
KR101166854B1 (ko) 2010-03-11 2012-07-19 한국기계연구원 자기베어링 구조 및 이를 구비한 터보기기
JP5570884B2 (ja) * 2010-06-17 2014-08-13 アスモ株式会社 モータ
US10389207B2 (en) 2011-05-20 2019-08-20 Levitronix Gmbh Rotational machine as well as apparatus having a rotational machine
US9853525B2 (en) * 2012-06-12 2017-12-26 Abb Research Ltd. Magnetic bearing assembly and arrangement of position sensors for a magnetic bearing assembly
EP2677176B1 (en) * 2012-06-22 2018-12-19 Skf Magnetic Mechatronics Compact electric centrifugal compressor
CN102830633B (zh) * 2012-08-22 2014-07-02 清华大学 一种抑制磁力轴承系统低频振荡的控制方法及系统
US9401631B2 (en) 2012-10-19 2016-07-26 Taco, Inc. Brushless DC motor with permanent magnet rotor
US10267315B2 (en) * 2013-11-28 2019-04-23 Acd, Llc Cryogenic submerged pump for LNG, light hydrocarbon and other electrically non-conducting and non-corrosive fluids
US20150330444A1 (en) * 2014-05-16 2015-11-19 General Electric Company Symmetrical electromagnetic actuator
US9742252B2 (en) * 2014-06-17 2017-08-22 Transducing Energy Devices, Llc Magnetic electricity generator
US10073058B2 (en) * 2015-02-11 2018-09-11 Structural Integrity Associates Dynamic pulsed eddy current probe
US10895555B2 (en) 2015-03-30 2021-01-19 Structural Integrity Associates, Inc. System for in-line inspection using a dynamic pulsed eddy current probe and method thereof
EP3115616B1 (de) 2015-07-06 2022-09-07 Levitronix GmbH Elektromagnetischer drehantrieb
US10177627B2 (en) 2015-08-06 2019-01-08 Massachusetts Institute Of Technology Homopolar, flux-biased hysteresis bearingless motor
EP3135933B1 (en) * 2015-08-25 2019-05-01 ReinHeart GmbH Active magnetic bearing
EP3232549B1 (de) 2016-04-14 2020-12-16 Levitronix GmbH Elektromagnetischer drehantrieb und rotationsvorrichtung
US9941763B1 (en) * 2017-02-24 2018-04-10 Chad Ashley Vandenberg Permanent magnet offset systems and methods
JP2018162865A (ja) * 2017-03-27 2018-10-18 Ntn株式会社 低温流体用ポンプおよび低温流体移送装置
US9882438B1 (en) * 2017-07-25 2018-01-30 Chad Ashley Vandenberg Generators having rotors that provide alternate magnetic circuits
EP3499062B1 (en) * 2017-12-14 2021-04-21 Skf Magnetic Mechatronics A magnetic bearing assembly
WO2019125718A1 (en) 2017-12-22 2019-06-27 Massachusetts Institute Of Technology Homopolar bearingless slice motors
US11177719B2 (en) * 2018-05-18 2021-11-16 Levitronix Gmbh Electromagnetic rotary drive and rotational device
CN108757460A (zh) * 2018-07-11 2018-11-06 井冈山大学 一种永磁支承及电磁直驱涡旋压缩机
US10320272B1 (en) * 2018-07-11 2019-06-11 Michael A. Juarez Magnet powered electric generator
WO2020183884A1 (ja) * 2019-03-14 2020-09-17 株式会社イワキ 磁気軸受、これを備えた駆動装置及びポンプ
JP7467147B2 (ja) 2020-02-07 2024-04-15 キヤノン株式会社 モータおよび物品
EP4178090A4 (en) * 2020-07-03 2023-12-27 Iwaki Co., Ltd. ROTARY DRIVE DEVICE AND PUMP
CN111894980B (zh) * 2020-07-31 2022-02-18 苏州工业园区服务外包职业学院 一种磁悬浮轴承系统控制方法
CN114389422B (zh) * 2022-01-14 2023-12-22 无锡星驱科技有限公司 一种凸极式混合励磁电机
KR102626072B1 (ko) * 2022-04-08 2024-01-16 충남대학교산학협력단 베어링리스 모터

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072370A (en) * 1976-08-24 1978-02-07 Spectra-Flux, Inc. Radial magnetic bearing
JPS59219523A (ja) * 1983-05-27 1984-12-10 Toshiba Corp 磁気軸受
US5514924A (en) * 1992-04-30 1996-05-07 AVCON--Advanced Control Technology, Inc. Magnetic bearing providing radial and axial load support for a shaft
US5481146A (en) * 1993-09-10 1996-01-02 Park Square, Inc. Passive null flux coil magnetic bearing system for translation or rotation
JPH07312837A (ja) * 1994-03-25 1995-11-28 Meidensha Corp 永久磁石回転電機の回転子
JPH11101235A (ja) * 1997-07-30 1999-04-13 Nippon Seiko Kk 磁気軸受
JPH11101233A (ja) * 1997-09-26 1999-04-13 Nippon Seiko Kk 磁気軸受装置
KR100403857B1 (ko) * 2000-01-05 2003-11-01 가부시기가이샤 산교세이기 세이사꾸쇼 자기부상모터
JP2001190043A (ja) * 2000-01-05 2001-07-10 Sankyo Seiki Mfg Co Ltd 磁気浮上モータ
JP2001323899A (ja) * 2000-05-16 2001-11-22 Ishikawajima Harima Heavy Ind Co Ltd 高速モータ駆動圧縮機とその組立て方法
JP2002005167A (ja) * 2000-06-26 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd 磁気軸受構造及びこれを回転軸に組み付ける方法
CN2454584Y (zh) * 2000-12-06 2001-10-17 中国科学院长春光学精密机械与物理研究所 一种集成式微型端面磁悬浮轴承
CN1381679A (zh) * 2001-04-18 2002-11-27 种振水 磁悬浮轴承
JP2002354767A (ja) * 2001-05-18 2002-12-06 Sankyo Seiki Mfg Co Ltd 磁気浮上電動機
JP3949916B2 (ja) * 2001-09-26 2007-07-25 日本電産サンキョー株式会社 磁気浮上モータ、及び磁気軸受装置
JP4153468B2 (ja) 2004-06-28 2008-09-24 株式会社イワキ 磁気浮上型モータ及びターボポンプ
JP4616122B2 (ja) * 2005-08-22 2011-01-19 株式会社イワキ 磁気軸受
JP5123478B2 (ja) 2005-10-24 2013-01-23 ユニ・チャーム株式会社 吸収性物品
JP4786297B2 (ja) * 2005-10-28 2011-10-05 株式会社イワキ ハイブリッド型磁気軸受
CN101501962B (zh) * 2007-10-18 2011-12-07 株式会社易威奇 磁悬浮电动机和泵

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662149A (zh) * 2014-09-04 2017-05-10 西门子公司 用于磁性地支承轴的设备
CN106194648A (zh) * 2016-08-06 2016-12-07 胡玥 一种充气泵
CN106194648B (zh) * 2016-08-06 2018-06-12 杨万芬 一种充气泵
CN110462234A (zh) * 2017-04-01 2019-11-15 开利公司 具有磁通升高的磁径向轴承
CN110462234B (zh) * 2017-04-01 2022-05-31 开利公司 具有磁通升高的磁径向轴承、使用磁轴承的方法以及机器
CN114876953A (zh) * 2017-04-01 2022-08-09 开利公司 具有磁通升高的磁径向轴承
CN114876953B (zh) * 2017-04-01 2024-05-10 开利公司 具有磁通升高的磁径向轴承
CN107387558A (zh) * 2017-07-27 2017-11-24 江苏大学 一种车载飞轮电池用交直流三自由度轴向单片混合磁轴承
CN113557367A (zh) * 2019-03-28 2021-10-26 大金工业株式会社 推力磁轴承及包括该推力磁轴承的涡轮压缩机
CN114788146A (zh) * 2019-10-18 2022-07-22 尼亚布科知识产权控股有限责任公司 包括磁性转子中心的润滑剂支承的电动机
CN112343827A (zh) * 2020-10-27 2021-02-09 浙江大学 一种具有双磁阻结构的磁悬浮泵
CN112343827B (zh) * 2020-10-27 2021-12-07 浙江大学 一种具有双磁阻结构的磁悬浮泵

Also Published As

Publication number Publication date
US7977838B2 (en) 2011-07-12
KR20090086900A (ko) 2009-08-14
KR100980565B1 (ko) 2010-09-06
AU2007352931A1 (en) 2009-05-07
US20090121571A1 (en) 2009-05-14
AU2007352931B2 (en) 2010-08-12
EP2209186A4 (en) 2018-05-23
EP2209186B1 (en) 2020-05-27
WO2009050767A1 (ja) 2009-04-23
EP2209186A1 (en) 2010-07-21
JPWO2009050767A1 (ja) 2011-02-24
JP4920687B2 (ja) 2012-04-18
CN101501962B (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
CN101501962B (zh) 磁悬浮电动机和泵
JP4767488B2 (ja) 磁気浮上型ポンプ
CN101682229B (zh) 磁悬浮电动机和泵
US10177627B2 (en) Homopolar, flux-biased hysteresis bearingless motor
US8821365B2 (en) Rotation drive device and centrifugal pump apparatus using the same
US6368075B1 (en) Pump with a magnetically supported rotor
CN100455832C (zh) 三自由度双薄片三相交流混合磁轴承
EP2618001A1 (en) Centrifugal pump device
WO2020220857A1 (zh) 一种高效率磁力耦合悬浮泵
KR100701550B1 (ko) 베어링리스 스텝모터
JP6577300B2 (ja) 磁気浮上姿勢制御装置
KR20140028007A (ko) 발전 장치
CN102163942B (zh) 磁悬浮电动机
JP2010041742A (ja) アキシャル磁気浮上回転モータ及びアキシャル磁気浮上回転モータを用いたターボ形ポンプ
KR20110072896A (ko) 환형권선 셀프 베어링 브러시리스 직류모터
JP3930834B2 (ja) アキシャル型磁気浮上回転機器及び遠心ポンプ
JP2007060818A (ja) 磁気反発支持回転機
JP7237256B1 (ja) 直動回転モータ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant