CN101479853B - 制备光活性层的方法以及包含这样的层的器件 - Google Patents

制备光活性层的方法以及包含这样的层的器件 Download PDF

Info

Publication number
CN101479853B
CN101479853B CN2007800234746A CN200780023474A CN101479853B CN 101479853 B CN101479853 B CN 101479853B CN 2007800234746 A CN2007800234746 A CN 2007800234746A CN 200780023474 A CN200780023474 A CN 200780023474A CN 101479853 B CN101479853 B CN 101479853B
Authority
CN
China
Prior art keywords
layer
semiconductor
semiconductor layer
substrate
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800234746A
Other languages
English (en)
Other versions
CN101479853A (zh
Inventor
M·S·派伯尔
G·翠米尔
F·斯特尔泽
T·拉瑟
A·K·普莱星
D·梅斯尼尔
Original Assignee
Isovoltaic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isovoltaic AG filed Critical Isovoltaic AG
Publication of CN101479853A publication Critical patent/CN101479853A/zh
Application granted granted Critical
Publication of CN101479853B publication Critical patent/CN101479853B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明涉及制备光活性层的方法以及包含所述层的器件如太阳能电池。依据本发明,从包含至少一种金属化合物以及盐类和/或有机反应物的前体材料通过印刷或刮涂在衬底上制备光活性层,所述层暴露于低于300℃的温度,其中,通过前体材料的热转变从非半导体层形成半导体光活性层。

Description

制备光活性层的方法以及包含这样的层的器件
技术领域
本发明涉及制备光活性层的方法以及包含这样的层的器件。
背景技术
半导体金属硫化物、硒化物和碲化物,特别是CuInS2、CuInSe2、CdSe、ZnS和ZnSe,是形成光活性层的重要材料,该光活性层对例如光伏应用是有用的。从而,将半导体金属硫化物以薄层的形式用于无机太阳能电池,所谓的ETA(超薄吸收体)电池。由半导体金属硫化物组成的层与共扼半导体聚合物或由电活性有机分子组成的另外层的结合导致了两层设计,该设计也适合于光活性元件的制备。
为了制备这样的半导体层,可使用已知的方法如反应或非反应溅射(阴极蒸发)、通过辉光放电的分离、常规热蒸发、化学和电化学分离、喷涂方法(喷涂热解)、金属膜的硫化[1-5]和用于制备外延层的昂贵方法。
对于大多数这些方法(除了电化学施加[6-9]),制备光活性层需要相对高的温度,即高于300℃的温度。通过在相应金属离子的存在下热分解反应物进行这些半导体层的制备。类似的反应混合物用于喷涂-热解[10-29]
Castro,Bailey等[30]描述了在低温下制备铜铟硫化物络合物的方法。但是,根据该方法,使用了相对昂贵的起始化合物。
Harris等[31]也描述了基于在气氛条件下喷涂化学气相沉积的类似方法。为了分解所使用的起始化合物,使用200-300℃的温度。
Cui等描述了制备半导体铜铟硫化物的另一方法[32]。该方法根据胶体合成原理以由In(S2CNEt2)3和Cu(S2CNEt2)2或Ag(S2CNEt2)的化学计量比混合物组成的半导体纳米棒形式制备CuInS2和AgInS2,由此在溶剂热过程中在195℃下去除作为副产物积累的硫酮与乙二胺。
发明内容
因此本发明的目的是提供制备光活性层的易于执行的方法,一方面,该方法能够在低温下执行,而且另一方面,直接使用易于合成的反应物和金属化合物执行该方法。根据本发明,提出上述类型的方法,其特征在于,从包含至少一种金属化合物和一种盐类和/或有机反应物的前体材料通过印刷或刮涂在衬底上形成非半导体层,并且将所述的非半导体层暴露于低于300℃的温度,由此通过前体材料的热转变从非半导体层形成半导体光活性层。
根据本发明限定前体材料为非半导体材料,其由金属化合物诸如金属盐和/或金属络合物以及在转变步骤中释放对形成半导体所必需的另外组分的盐类或有机化合物组成。
根据从属权利要求公开了根据本发明方法的另外的有利实施方案。
本发明还涉及包含根据本发明制备的层的器件,例如太阳能电池或光电检测器。
分解反应的反应温度可以有利地显著低于300℃,特别是当反应由酸或碱催化,和/或使用酸性或碱性的起始化合物时。
有利地,在路易斯碱例如吡啶的存在下发生转变。路易斯碱充当所用的金属离子的络合剂。路易斯碱在反应物的分解反应中也起到决定性的作用,例如在用硫代乙酰胺作为硫源制备硫属元素化物时。通过提供路易斯碱的自由电子对,加快了可能的转变反应。
路易斯碱的例子为F-、OH-、O2-、H2O、NH3及其衍生物、Br-、N3 -、NO2 -、I-、S2和SCN-。根据本发明使用的路易斯碱主要是含氮有机碱,诸如吡啶和/或吡啶衍生物,各种伯、仲和/或叔胺,含氮杂环化合物,去质子化氨基酸和/或具有嘧啶骨架的碱。
通过这些特别低的制备温度,既可能在无机衬底上(如金属或玻璃),又可能在聚合物膜上制备半导体层。聚合物膜相对于已知的制备方法显示出相当特殊的优点。能够选择反应条件使得半导体以纳米晶体形式或作为纳米颗粒存在于层中。
起始物质的混合物既能存在于溶液中又能作为浆料(悬浮液)、作为分散体或作为糊剂而存在。
对于根据本发明的方法,将金属化合物用作半导体颗粒,其能和盐类或有机反应物反应。
用作(一种或多种)起始化合物的该(一种或多种)金属化合物可以为盐类化合物。
以类似的方式,金属化合物可以为有机金属化合物或有机金属络合物。
所使用的(一种或多种)金属化合物可以既有碱性又有酸性,这使得能够发生较低温下的转变或催化地影响转变。
因而实现了太阳能电池形式器件的高现实产率(stromausbeute),因为无机材料是晶粒尺寸优选0.5nm-500nm的颗粒。
在太阳能电池中,根据本发明的半导体层既可充当电子施主又可充当电子受主。
当使用某些起始化合物时,半导体的转变温度还可以低于100℃。
可以在酸的存在下进行半导体中的起始化合物的转变。
可以在碱的存在下以类似的有利方式进行半导体中的起始化合物的转变。
可以通过热处理也可以通过能量高于1(一)eV的光子调节反应温度。
通过根据本发明的方法,可以有利地制备由衬底和施加于衬底上的光活性层组成的器件。
通过已知印刷方法(如柔性版印刷或凹板印刷)进行印刷,或通过将半导体刮涂于衬底上进行所述施加。
具体实施方式
下面基于实施方案以及附图对本发明作更详细地说明。
实施例1:制备铜铟硫化物半导体层的方法
在铜和铟盐的存在下,通过作为含硫反应物的硫代乙酰胺的反应进行铜铟硫化物层的制备,由此分解硫代乙酰胺。在该制备方法中,例如InCl3和CuI在吡啶中络合。硫脲溶于该溶液中。将该反应溶液滴到合适的衬底上,诸如将铟锡氧化物滴到玻璃、有机聚合物或电活性有机聚合物上,且在惰性气氛(如氮气、氩气、氦气)中加热到200℃。
通过X-射线结构分析(XRD)检测获得的层。在这种情况下,图1显示了该样品的X-射线衍射图。在27°、45°和55°处的峰可能和CuInS2相关,这些峰由于其纳米晶体性质而具有显著的展宽。
实施例2:制备无机/有机混合太阳能电池
图2描绘了该混合太阳能电池的主要设计。作为载体1,使用玻璃衬底或透明聚合物膜。
为制备太阳能电池,通过化学或物理刻蚀去除部分ITO层(铟/锡氧化物层)2。
为了抵消层的粗糙度,可以任选地施加聚乙烯二氧噻吩(PEDOT:PSS)层3。然而,可以省略这一步。在接下来的步骤中,施加由有机电活性聚合物或低分子有机电活性物质组成的层4。优选地通过旋涂、浸涂、刮涂、印刷或喷涂从悬浮液或均匀溶液施加聚合物溶液。还可以通过蒸发涂覆施加低分子物质。
现在于该层上施加根据实施例1制备的CuInS2层(层5)。
然后将电极6(例如铝、金、银、或钙/金、钙/铝、镁/金的结合体)通过蒸发涂覆或溅射施加于该层上。
在图3中,显示了根据图2的混合太阳能电池的电流/电压特性。
该图显示在60mW/cm2的照度下,625mV的V0C(开路电压)和5.855mA/cm2的ISC(短路电流)。实现了29%的填充因子和1.7%的效率级别。
实施例3:制备半导体硫化锌层的方法
在乙酸锌的存在下,通过分解硫代乙酰胺进行硫化锌层的制备。在该情况下,在150℃进行分解。附图4中的X-射线衍射图显示了形成的纳米晶体ZnS的相。作为结晶相,能够识别出闪锌矿。反射的宽度证实了纳米范围的初生微晶的存在。
作为所述层的应用,制备了双层异质结太阳能电池,借助于U/I特性(参见附图5)表征其效率级别。以该方式制备的太阳能电池显示了920mV的特别高的光电电压。
实施例4:制备CuGaS2层的方法
为制备CuGaS2层,将31.5mg CuI、37.9mg GaCl3和64.5mg硫代乙酰胺溶于吡啶并施加于玻璃衬底。将该层在惰性气氛下于200℃下加热30分钟,由此在CuGaS2层中进行转变。图6显示了形成的纳米晶体半导体层的衍射图,其中CuGaS2的特征峰位于29°、48°、49°和57°。24°、25.5°、27.5°、42°、46.5°和50°处的尖峰来源于少量未完全反应的CuI离析物。随着镓组分的增加,可以消除这些离析物的峰。
实施例5:制备铜铁硫化物层的方法
与实施例4类似,制备铜铁硫化物层。为此,使用了溶解于吡啶的31.5mg CuI、71.4mg FeCl3.6H2O和79.3mg硫代乙酰胺。在形成的材料的XRD分析中,在29°、34°、53.5°和57.5°处发现了铜铁硫化物的特征峰。峰的宽度进而表明纳米晶体铜铁硫化物的形成。
实施例6:制备银镓硫化物层的方法
在此显示了在三元硫化物中通过其它二价原子替换铜原子也是可能的。在该试验中,将28.1mg AgNO3、37.8mg GaCl3和64.4mg硫脲溶于吡啶,并与实施例4类似地制备银镓硫化物层。图7中描绘的衍射图证实了富银的银镓硫化物相Ag9GaS6的形成,其显示了在19.1°、23.3°、27.3°(双峰)、28.7°(双峰)和33.2°的特征峰,以及36.0°和37.5°之间的7个反射(reflexe)。
除了这些前述的实验,还进行许多其它研究,其中表明:
1)除了元素Cu、In、Zn和S,还可以使用元素Ag、Cd、Ga、Al、Pb、Hg、Se和Te;
2)除了硫代乙酰胺,还可以使用下列S化合物:单质硫、单质硫和硫化促进剂、硫脲、秋兰姆、硫化氢,金属硫化物、氢硫化物、CS2、P2S5
3)除金属盐之外,还可以使用有机金属化合物如乙酸盐、金属硫脲化合物。
总之可以指出,采用根据本发明的方法,可以按能量有效的方式制备半导体层(特别是纳米晶体形式),所述层在混合太阳能电池和纯无机半导体层中显出令人满意的效率级别。
V.Alberts,J.Titus,R.W.Birkmire,Thin Solid Films2004,451,207.
A.Antony,A.S.Asha,R.Yoosuf,R.Manoj,M.K.Jayaraj,Solar Energy Materials and Solar Cells 2004,81,407.
B.M.Basol,Thin Solid Films 2000,361-362,514.
C.Dzionk,H.Metzner,S.Hessler,H.-E.Mahnke,ThinSolid Films 1997,299,38.
M.Nanu,L.Reijnen,B.Meester,J.Schoonman,A.Goossens,Chemical Vapor Deposition 2004,10,45.
S.Bereznev,I.Konovalov,A.Opik,J.Kois,E.Mellikov,Solar Energy Materialsand Solar Cells 2005,87,197.
S.Bereznev,I.Konovalov,J.Kois,E.Mellikov,A.Opik,Macromolecular Symposia 2004,212,287.
S.Bereznev,I.Konovalov,A.Opik,J.Kois,SyntheticMetals 2005,152,81.
S.Nakamura,A.Yamamoto,Solar Energy Materials andSolar Cells 2003,75,81.
M.C.Zouaghi,T.Ben Nasrallah,S.Marsillac,J.C.Bernede,S.Belgacem,Thin Solid Films 2001,382,39.
H.Bihri,M.Abd-Lefdil,Thin Solid Films 1999,354,5.
H.Bouzouita,N.Bouguila,A.Dhouib,Renewable Energy1998,00,1.
T.T.John,M.Mathew,C.S.Kartha,K.P.Vijayakumar,T.Abe,Y.Kashiwaba,Solar Energy Materials and Solar Cells2005,89,27.
T.T.John,K.C.Wilson,P.M.R.Kumar,C.S.Kartha,K.P.Vijayakumar,Y.Kashiwaba,T.Abe,Y.Yasuhiro,PhysicaStatus Solidi a-Applied Research 2005,202,79.
M.Krunks,O.Bijakina,E.Mellikov,T.Varema,Ternaryand Multinary Compounds 1998,152,325.
M.Krunks,O.Bijakina,V.Mikli,H.Rebane,T.Varema,M.Altosaar,E.Mellikov,Solar Energy Materials and Solar Cells2001,69,93.
M.Krunks,O.Bijakina,T.Varema,V.Mikli,E.Mellikov,Thin Solid Films 1999,338,125.
M.Krunks,O.Kijatkina,A.Mere,T.Varema,I.Oja,V.Mikli,Solsr Energy Materials and Solar Cells 2005,87,207.
M.Krunks,O.Kijatkina,H.Rebane,I.Oja,V.Mikli,A.Mere,Thin Solid Films 2002,403,71.
M.Krunks,T.Leskela,R.Mannonen,L.Niinisto,Journal of Thermal Analysis and Calorimetry 1998,53,355.
M.Krunks,T.Leskela,I.Mutikainen,L.Niinisto,Journal of Thermal Analysis and Calorimetry 1999,56,479.
M.Krunks,E.Mellikov,O.Bijakina,Physica Scripta1997,T69,189.
M.Krunks,V.Mikli,O.Bijakina,E.Mellikov,AppliedSurface Science 1999,142,356.
M.Krunks,V.Mikli,O.Bijakina,H.Rebane,A.Mere,T.Varema,E.Mellikov,Thin Solid Films 2000,361,61.
J.Madarasz,P.Bombicz,M.Okuya,S.Kaneko,SolidState Ionics 2001,141,439.
A.Mere,O.Kijatkina,H.Rebane,J.Krustok,A.Krunks,Journal of Physics and Chemistry of Solids 2003,64,2025.
M.Nanu,J.Schoonman,A.Goossens,Nano Letters 2005,5,1716.
M.Nanu,J.Schoonman,A.Goossens,Advanced FunctionalMaterials 2005,15,95.
M.Nanu,J.Schoonman,A.Goossens,Advanced Materials2004,16,453.
S.L.Castro,S.G.Bailey,R.P.Raffaelle,K.K.Banger,A.F.Hepp,Chemistry of Materials 2003,15,3142.
J.D.Harris,K.K.Banger,D.A.Scheiman,M.A.Smith,M.H.C.Jin,A.F.Hepp,Materials Science and EngineeringB-Solid State Materials for Advanced Technology 2003,98,150.
Y.Cui,J.Ren,G.Chen,Y.Qian,Y.Xie,ChemistryLetters 2001,30,236.

Claims (3)

1.制备光活性层的方法,其特征在于,从包含至少一种金属盐和/或金属络合物和释放硫的反应物的前体材料通过印刷或刮涂在衬底上形成非半导体层,并将所述非半导体层暴露于低于300℃的温度,由此通过前体材料的热转变从非半导体层形成半导体光活性层,其中该释放硫的反应物选自:单质硫、单质硫与硫化促进剂、秋兰姆、硫化氢、金属硫化物和氢硫化物、CS2、P2S5
2.根据权利要求1的方法,其中在路易斯碱的存在下进行热转变。
3.根据权利要求1的方法,其中使用的衬底是半导体聚合物和/或低聚物或半导体单分子有机化合物。
CN2007800234746A 2006-06-22 2007-06-18 制备光活性层的方法以及包含这样的层的器件 Expired - Fee Related CN101479853B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0105806A AT503837B1 (de) 2006-06-22 2006-06-22 Verfahren zum herstellen von photoaktiven schichten sowie bauelemente umfassend diese schicht(en)
ATA1058/2006 2006-06-22
PCT/AT2007/000296 WO2007147184A2 (de) 2006-06-22 2007-06-18 Verfahren zum herstellen von photoaktiven schichten sowie bauelemente umfassend diese schicht(en)

Publications (2)

Publication Number Publication Date
CN101479853A CN101479853A (zh) 2009-07-08
CN101479853B true CN101479853B (zh) 2013-01-02

Family

ID=38833780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800234746A Expired - Fee Related CN101479853B (zh) 2006-06-22 2007-06-18 制备光活性层的方法以及包含这样的层的器件

Country Status (10)

Country Link
US (1) US20090235978A1 (zh)
EP (1) EP2030245A2 (zh)
JP (1) JP2009541976A (zh)
KR (1) KR20090039708A (zh)
CN (1) CN101479853B (zh)
AT (1) AT503837B1 (zh)
BR (1) BRPI0713494A2 (zh)
CA (1) CA2654588A1 (zh)
MX (1) MX2008016100A (zh)
WO (1) WO2007147184A2 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087205A (ja) * 2008-09-30 2010-04-15 Kaneka Corp 多接合型薄膜光電変換装置
JP5137796B2 (ja) * 2008-11-26 2013-02-06 京セラ株式会社 化合物半導体薄膜の製法および薄膜太陽電池の製法
JP5137795B2 (ja) * 2008-11-26 2013-02-06 京セラ株式会社 化合物半導体薄膜の製法および薄膜太陽電池の製法
JP5213777B2 (ja) * 2009-03-26 2013-06-19 京セラ株式会社 薄膜太陽電池の製法
JP5464984B2 (ja) * 2009-11-26 2014-04-09 京セラ株式会社 半導体層の製造方法および光電変換装置の製造方法
JP5495849B2 (ja) * 2010-02-25 2014-05-21 京セラ株式会社 半導体層の製造方法および光電変換装置の製造方法
KR20130034662A (ko) * 2010-06-29 2013-04-05 메르크 파텐트 게엠베하 반도체막의 제조
WO2014196311A1 (ja) * 2013-06-03 2014-12-11 東京応化工業株式会社 錯体およびその溶液の製造方法、太陽電池用光吸収層の製造方法および太陽電池の製造方法
JP6259685B2 (ja) * 2013-10-03 2018-01-10 積水化学工業株式会社 半導体形成用塗布液、半導体薄膜、薄膜太陽電池及び薄膜太陽電池の製造方法
CN109545981A (zh) * 2018-11-27 2019-03-29 江苏拓正茂源新能源有限公司 一种有机太阳能电池及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE621339A (zh) * 1961-08-30 1900-01-01
US4095006A (en) * 1976-03-26 1978-06-13 Photon Power, Inc. Cadmium sulfide film
GB9123684D0 (en) * 1991-11-07 1992-01-02 Bp Solar Ltd Ohmic contacts
US5920798A (en) * 1996-05-28 1999-07-06 Matsushita Battery Industrial Co., Ltd. Method of preparing a semiconductor layer for an optical transforming device
DE69734183T8 (de) * 1996-10-15 2007-03-29 Matsushita Electric Industrial Co., Ltd., Kadoma Sonnenzelle und Herstellungsverfahren
US6537845B1 (en) * 2001-08-30 2003-03-25 Mccandless Brian E. Chemical surface deposition of ultra-thin semiconductors
US7468146B2 (en) * 2002-09-12 2008-12-23 Agfa-Gevaert Metal chalcogenide composite nano-particles and layers therewith
US20060057766A1 (en) * 2003-07-08 2006-03-16 Quanxi Jia Method for preparation of semiconductive films
US7163835B2 (en) * 2003-09-26 2007-01-16 E. I. Du Pont De Nemours And Company Method for producing thin semiconductor films by deposition from solution
CH697007A5 (fr) * 2004-05-03 2008-03-14 Solaronix Sa Procédé pour produire un composé chalcopyrite en couche mince.
EE05373B1 (et) * 2004-06-07 2010-12-15 Tallinna Tehnikaülikool CuInS2 absorberkihiga p„ikeseelemendi valmistamise meetod

Also Published As

Publication number Publication date
BRPI0713494A2 (pt) 2012-01-24
AT503837A1 (de) 2008-01-15
EP2030245A2 (de) 2009-03-04
JP2009541976A (ja) 2009-11-26
CA2654588A1 (en) 2007-12-27
US20090235978A1 (en) 2009-09-24
MX2008016100A (es) 2009-01-15
AT503837B1 (de) 2009-01-15
KR20090039708A (ko) 2009-04-22
WO2007147184A3 (de) 2008-04-24
CN101479853A (zh) 2009-07-08
WO2007147184A2 (de) 2007-12-27

Similar Documents

Publication Publication Date Title
CN101479853B (zh) 制备光活性层的方法以及包含这样的层的器件
Regmi et al. Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review
McCarthy et al. Solution processing of chalcogenide materials using thiol–amine “alkahest” solvent systems
Panthani et al. Synthesis of CuInS2, CuInSe2, and Cu (In x Ga1-x) Se2 (CIGS) nanocrystal “inks” for printable photovoltaics
Reddy et al. Development of sulphurized SnS thin film solar cells
AU2005239161B2 (en) Method for producing a thin-film chalcopyrite compound
Banu et al. Tin monosulfide (SnS) thin films grown by liquid-phase deposition
CN102456753A (zh) 光电转换元件及其制造方法
van Embden et al. Solution-processed CuSbS2 thin films and superstrate solar cells with CdS/In2S3 buffer layers
US9324901B2 (en) Precursor solution for forming a semiconductor thin film on the basis of CIS, CIGS or CZTS
AU2010256322A1 (en) Composite material comprising nanoparticles and production of photoactive layers containing quaternary, pentanary and higher-order composite semiconductor nanoparticles
US9634161B2 (en) Nanoscale precursors for synthesis of Fe2(Si,Ge)(S,Se)4 crystalline particles and layers
Gupta et al. Non-toxic solution processed Cu2ZnSn (SSe) 4 thin films for photovoltaic Applications: A review
MX2008016102A (es) Proceso para la produccion de una capa que contiene particulas semiconductoras inorganicas, asi como componentes que comprenden esta capa.
Kim et al. Impact of absorber layer morphology on photovoltaic properties in solution-processed chalcopyrite solar cells
JPH09181000A (ja) 化合物半導体薄膜形成方法および太陽電池の製造方法
KR101723096B1 (ko) 태양전지용 SnS 박막 형성 방법 및 이를 이용한 태양전지의 제조방법
KR20090063283A (ko) 1b-3a-6a족 화합물 코팅층의 제조방법
Rokke et al. A Novel Approach to Amine-Thiol Molecular Precursors for Fabrication of High Efficiency Thin Film CISSe/CIGSSe Devices
Wong et al. Emerging trends in sulfide and selenide-based low-cost thin film solar cells
Singh et al. Compound Semiconductor Solar Cells
Suh Molecular Ink-Derived Tin Sulfide Photocathodes for Solar Water Splitting
Talib et al. Synthesis and Characterization of Quaternary Chalcogenide Nanomaterials: A Review Study
Akhavan Photovoltaic devices based on Cu (In1-xGax) Se2 nanocrystal inks
Li et al. www. entechnol. de

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1135508

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: ESOWOERTEK CO., LTD.

Free format text: FORMER OWNER: ISOVOLTA

Effective date: 20110217

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: VIENNA NEW VILLAGE, AUSTRIA TO: LEIBLINGER, AUSTRIA

TA01 Transfer of patent application right

Effective date of registration: 20110217

Address after: Austria lebu spirit

Applicant after: According to Altaic Co. Ltd.

Address before: Vienna Austria New Village

Applicant before: Isovolta

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130102

Termination date: 20130618

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1135508

Country of ref document: HK