CN101478298A - 由双旋转y切割石英板制成的石英晶体元件 - Google Patents

由双旋转y切割石英板制成的石英晶体元件 Download PDF

Info

Publication number
CN101478298A
CN101478298A CNA2008101366950A CN200810136695A CN101478298A CN 101478298 A CN101478298 A CN 101478298A CN A2008101366950 A CNA2008101366950 A CN A2008101366950A CN 200810136695 A CN200810136695 A CN 200810136695A CN 101478298 A CN101478298 A CN 101478298A
Authority
CN
China
Prior art keywords
crystal
axle
crystal blank
crystal element
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101366950A
Other languages
English (en)
Other versions
CN101478298B (zh
Inventor
千叶亚纪雄
小原茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Publication of CN101478298A publication Critical patent/CN101478298A/zh
Application granted granted Critical
Publication of CN101478298B publication Critical patent/CN101478298B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02023Characteristics of piezoelectric layers, e.g. cutting angles consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type

Abstract

一种晶体元件,具有从石英晶体切割出的晶体坯,晶体坯的主平面正交于Y”轴,其中Y轴和Z轴以石英晶体的X轴为中心旋转α角度后指定为Y’轴和Z’轴,并且X轴和Y’轴以Z’轴为中心旋转β角度后指定为X’轴和Y”轴。晶体坯具有相互正交的两条应力零敏感度轴。在晶体坯中,两条应力零敏感度轴交叉处的中心部分的厚度增加,并且形成从中心部分向外周部分限定四角锥形形状的脊线部分。晶体坯沿着底面的截面厚度在中心区域较大,并且朝着两末端逐渐变小。

Description

由双旋转Y切割石英板制成的石英晶体元件
技术领域
本发明涉及一种由表现为SC切割板(cut plate)、IT切割板等的双旋转Y切割石英板制成的石英晶体元件,尤其涉及一种具有稳定振动特性、易于设计和调整的石英晶体元件。
背景技术
用于作为频率和时间的基准源的石英晶体元件根据从一个单晶石英晶体中切割出振动板的晶向(crystallographic orientation)分成多种类型的“切割”,振动板即构成晶体元件的晶体坯(crystal blank)。到现在为止,这些类型的切割例如有X切割、AT切割、BT切割等。
在石英中,根据结晶学限定三个晶轴为:X、Y和Z轴。晶体元件具有沿着一个平面从石英晶体切割出的晶体坯,该平面限定为:正交于石英的三个晶轴中的一个晶轴的平面以剩下的两个晶轴中的一个为中心旋转预定角度,然后从已旋转到的位置以最后一个晶轴为中心旋转另一预定角度,该晶体元件称为双旋转晶体元件。例如,具有沿着通过正交于Y轴的平面分别以剩下的晶轴中每一个为中心连续旋转而得到的平面切割出的晶体坯的晶体元件称为由双旋转Y切割板制成的晶体元件。因为由与Y轴平行的平面得到的石英晶体板称为Y切割板,双旋转Y切割板是具有通过连续围绕X轴和Z轴旋转Y切割板限定的切割方向的石英晶体板。作为由双旋转Y切割板制成的晶体元件的例子,例如在日本专利特许公开4-138708和2000-40937(JP-A-4-138708和JP-A-2000-040937)中公开了SC切割晶体元件。
SC切割晶体元件的石英晶体坯在应力敏感度和抗热冲击性(thermal shock resistance)上尤其具有优越性,因此将其用于需要对各种环境变化表现出更小的频率偏移的通讯设备的无线基站的高稳定性石英晶体振荡器。然而,SC切割晶体元件的晶体坯的切割方向要通过两次旋转石英的固有晶轴才能得到,因此存在着SC切割晶体元件的设计和制造不容易的问题。
图1A和1B示出了SC切割晶体坯的切割方向,图2示出了由石英晶体切割出的SC切割晶体坯与石英晶轴之间的关系。
将描述从石英晶体切割出ST切割晶体坯的切割方向。如图1所示,正交于石英晶体的Y轴的平面围绕X轴从Y轴向Z轴逆时针旋转α角度。旋转的结果是,Y轴和Z轴分别变换为相应的Y’轴和Z’轴。下一步,该平面围绕Z’轴从X轴向Y’轴逆时针旋转β角度。旋转的结果是,X轴和Y’轴分别变换为相应的X’轴和Y”轴。这样,沿着通过使Y切割板经过两次旋转操作获得的平面从石英晶体切割出的晶体坯为SC切割晶体坯。需要一提的是,即使将这两次旋转操作的顺序颠倒,即先围绕Z’轴旋转β角度,然后再围绕新的X’轴旋转α角度,得到的结果将是一样的。
简而言之,如图2所示,当以石英的晶体学X轴为中心将Y轴和Z轴旋转α角度,再以Z’轴为中心将X轴和Y’轴旋转β角度以建立新的晶轴线,即经过这样旋转后的X’轴、Y”轴和Z’轴,由其主平面正交于Y”轴切割出的石英晶体板称为双旋转Y切割板。在这种情况下,将切割出的晶体坯1的主平面是由X’轴和Z’轴确定的平面,并且晶体坯1的厚度方向平行于Y”轴。
SC切割晶体坯是这种双旋转Y切割板中α的旋转角参考角度设置为33度和β的旋转角参考角度设置为22度的切割晶体坯。在此,参考角度是在晶体坯设计时提供一个参考的切割方向的角度,并且在实际切割出晶体坯时根据晶体坯的所需温度特性等适当地选择参数值附近的数值。
假定由此获得由SC切割石英板制成的晶体坯1,如图3A和3B所示,在晶体坯1的每一主平面的中心区域中形成用于在晶体坯1中激发厚度切变振动的圆形激励电极,这样,得到SC切割晶体元件。石英中的厚度切变振动具有与晶体坯1的厚度相应的谐振频率,该谐振频率随着晶体坯1厚度的减少而增加。为了将晶体元件与外电路电连接,下面将描述的引出电极3从每一激励电极2向晶体坯1的外周部分延伸,如图4所示。这样,晶体坯在引出电极3延伸的位置得到电和机械保持,并且,将晶体坯密封地装入封装中,其状态为按该方式保持晶体坯,从而完成晶体单元。
在这样的晶体元件中,取决于作为双旋转Y切割板的SC切割板的晶体结构,通过将Z’轴向X’轴旋转γ角,即沿逆时针方向,而得到应力零敏感度轴(null stress-sensitivity axis)Z’(γ)轴,另外还存在着正交于应力零敏感度轴Z’(γ)轴的另一个应力零敏感度轴X’(γ)轴,即,通过将X’轴旋转γ角得到的轴。应力零敏感度轴是指当应力沿着该轴从晶体坯1的两面施加时,频率变化是微小的,包括为零的情况。在SC切割板中γ角的参考角度为大约8度。
在施加应力到晶体坯时其谐振频率将变化,谐振频率还可以通过从保持晶体坯的机械装置施加的应力来改变。因此,为了使谐振频率的这种变化最小化,优选在应力零敏感度轴的两端保持晶体坯。当将平面形状的晶体坯选择为例如是正方形的,晶体坯1设置成是由石英晶体这样切割而得到,即两相互正交的应力零敏感度轴Z’(γ)和X’(γ)分别成为如图4所示的正方形的一对对角线。例如,引出电极3被构造为从激励电极2向成为一个应力零敏感度轴Z’(γ)的对角线的两端延伸。然后,通过机械装置(未图示)保持引出电极3所延伸的两端,在两个点处电和机械地保持晶体坯。当加强晶体元件的强度以应对机械冲击时,晶体坯进一步保持在另一应力零敏感度轴X’(γ)的两端,从而晶体坯最终在四个点处保持。这样两个点或四个点处保持的晶体坯如上所述地密封地装入封装中。
由于晶体坯1的四个角中的每一个角位于距离作为晶体坯中振动区域的中心区域最远,通过向四个角处延伸引出电极3并在角处保持晶体坯可以减小对中心区域的振动特性的影响。虽然也可以将晶体坯1构造成具有圆形的平面形状,但是采用圆形时难以辨别应力零敏感度轴的位置,而当晶体坯构造为具有矩形平面形状时应力零敏感度轴变得更加容易辨别从而使晶体坯的保持操作更容易。
通过观察SC切割板的厚度切变振动结果,其表现出振动位移(vibration displacement)分布,例如在图5示出的阴影区域中,振动是加强的。即,晶体坯的中心区域由互相正交的应力零敏感度轴Z’(γ)和X’(γ)分成如图示出的四个区域,并且每一个被分割的区域分别具有加强的振动分布。
这四个加强的部分的振动位移的幅度基本上相同。在图5中,振动位移加强的每一个区域的中心用一实心点示出,这四个中心点基本上位于如图中由点划线示出的正方形的角处。换而言之,沿着与晶体坯的对角线方向正交的线的并且避免四个加强的振动位移的方向成为上述的应力零敏感度轴Z’(γ)或X’(γ),因为它不会影响振动位移。
在SC切割晶体元件中,当振动频率相对较低例如不超过20MHz时,为了将厚度切变振动的振动能量限制在晶体坯的中心区域从而降低晶体阻抗(crystal impedance)(CI),晶体坯的一个主平面加工成平面的且另一个主平面加工成凸型,从而形成所谓的平凸形状(plano-convexshape)。
此外,由双旋转Y切割板制成晶体元件的例子包括IT切割石英晶体元件,其中上述的角α和β与SC切割晶体元件中的角度不同,正如美国专利7,001,887中公开的那样。在IT切割石英晶体元件中,α角度的参考值为34度并且β角度的参考值为19度。
然而,尽管上述的SC切割晶体元件在振动特性如应力敏感度和热冲击性能上具有优越性,但是振动特性会由于切割出晶体坯时角度的微小差异而出现巨大变化。例如,晶体元件的振动特性对形成SC切割板的双旋转Y切割板的切割方向、在形成矩形晶体坯使得角位于与Z’轴或X’轴成8度倾斜的位置时平面中的切割角度灵敏地作出反应。尽管SC切割晶体元件具有可用拐点在大约90度温度处的三次曲线表示的频率-温度特性,该频率-温度特性会由于切割方向和切割角度的微小误差而出现大的变化,而且晶体阻抗(CI)也会恶化。
当晶体坯1具有例如圆形或矩形而非正方形的形状时,振动特性将对于与Z’轴或X’轴成8度倾斜的位置的保持位置微小偏移灵敏地作出反应。
当切割方向或切割角度偏离它们的正确值时,观察结果表明在晶体元件的上述四个部分处的振动位移分布将从正确的对称排列变成非对称排列,结果,如图6所示,振动位移加强的区域的位置及尺寸改变了。特别是当晶体坯构成为具有正方形平面形状时,必须减少晶体坯切割方向和切割角度的误差,因此SC切割晶体元件的设计和制造将更困难并由此而降低了生产率。
发明内容
本发明的一个目的是提供易于设计和制造并且振动特性能很好地维持的由双旋转Y切割石英板制成的晶体元件。
本发明的目的通过由双旋转Y切割板制成的晶体元件来达到,晶体元件包括从石英晶体切割出的晶体坯,晶体坯的一个主平面与Y”轴正交,其中Y轴和Z轴围绕石英晶体的X轴旋转α角度后指定为Y’轴和Z’轴,X轴和Y’轴围绕Z’旋转β角度后指定为X’轴和Y”轴;其中,晶体坯具有相互正交的两条应力零敏感度轴以及从应力零敏感度轴以直角相互交叉的中心处放射状地分开的四个振动位移加强区域;其中,在应力零敏感度轴相互以直角交叉处即中心部分的厚度增加,且形成从中心部分向晶体坯的外周部分限定四角锥形形状的脊线部分;且其中,当提供与四角锥形形状的顶角相对的底面时,晶体坯沿着底面的截面厚度在晶体坯的中心区域较大且向晶体坯的两末端逐渐变小。
根据这样的构造,在相互正交的应力零敏感度轴之间的四个区域的加强的振动位移被限制在相互正交的应力零敏感度轴之间的四个加厚的区域中的每一个中。即使作为双旋转Y切割板的晶体坯的切割方向、切割角度和保持位置出现一些偏差,在这四个区域的振动位移能量也被限制在那四个区域,且约束其泄漏,从而防止具有加强的振动位移的区域之间的相互干涉。因此,可以防止由于振动能量的泄漏导致的CI恶化以及由于相互干涉导致的频率-温度特性的变化。这样,可以得到由双旋转Y切割板制成的晶体元件,其具有更优越的振动特性且易于设计和制造。
附图说明
图1A和1B示出了从石英晶体中切割出SC切割晶体坯的切割方向;
图2示出SC切割晶体坯与X’轴、Y”轴及Z’轴之间的关系;
图3A和3B是平面图和截面图,分别示出传统SC切割晶体元件的基本结构;
图4是传统的SC切割晶体元件的一个例子的平面图;
图5是SC切割晶体元件的振动位移分布的平面图;
图6是具有不对称振动位移分布的SC切割晶体元件的平面图;
图7是根据本发明第一实施例的用于SC切割晶体元件的晶体坯的透视图;
图8是描述得到图7中所示的晶体坯的处理方法的视图;
图9A和9B是平面图和A-A线截面图,分别示出第一实施例的SC切割晶体元件的工作原理;
图10是第一实施例的SC切割晶体元件的振动位移分布的平面图;
图11A和11B是可用于第一实施例的SC切割晶体元件的晶体坯的其它例子的透视图;
图12A是用于根据本发明第二实施例SC切割晶体元件的晶体坯的透视图;
图12B和12C是平面图和A-A线截面图,分别示出第二实施例的SC切割晶体元件;
图13是可用于第二实施例的SC切割晶体元件的晶体坯的另一例子的透视图;以及
图14可用于本发明另一个实施例的晶体元件的晶体坯的一个例子的平面图。
具体实施方式
图7示出根据本发明第一实施例的由双旋转Y切割板制成的石英晶体元件。特别是,图7示例说明构成该晶体元件的石英晶体坯。在此,将描述双旋转Y切割板为SC切割石英板的情况。
SC切割晶体元件采用晶体坯1,晶体坯1具有正交于Y”轴的主平面,这里Y轴旋转再次,以旋转角(参考角)α和β从晶体学X轴和Z轴分别旋转22度和33度,得到称为X’轴、Y”轴和Z’轴的三个轴(见图2)。晶体坯1在此同样构造为具有正方形平面的形状,以使对角线自Z’轴和X’轴成为应力零敏感度轴Z’(γ)和X’(γ),对角线分别从Z’轴和X’轴分别倾斜角度γ。这里γ为8度。
在这个实施例中,作为SC切割板的晶体坯1的一个主平面形成为以中心点为顶点的四角锥形(quadrangular pyramid)形状。具体地,形成底边为晶体坯的相应的四条边、宽度从顶点(或顶点部分)到每一底边渐渐增加的三角形倾斜表面,并且脊线部分P形成在这些倾斜表面之间。在这种情况下,晶体坯1的主平面的中心点对应于两应力零敏感度轴相交成直角的点。进一步,在晶体坯1的一个主平面中的四个三角形倾斜表面各自在正交于晶体坯的外围边(底边)的方向上具有曲率相同的凸曲线形,并且相应地,脊线部分也形成为曲线形状。在晶体坯1中,四边的各个位置的端面基本上具有相同的厚度“t”。晶体坯1的另一主平面加工为平面。即,晶体坯1具有这样的形状,每一侧面形成为凸曲线形表面的四角锥设置在具有均匀厚度t的底板部分的一个主平面上。
具有这样形状的晶体坯1可通过使用研磨板4加工成半圆柱体形状,例如,如图8所示。首先,准备刚从石英晶体中切割出来的具有近似均匀厚度的正方形晶体坯,并且使一个主平面邻接并且压到研磨板4的内周面上,如图中的箭头A所示。此时,晶体坯1的四边被安置为与研磨板4的宽度和长度方向一致。然后,在晶体坯的一个主平面压在研磨板4上的同时研磨板4沿宽度方向转动,如箭头B所示,并且还沿长度方向C前后移动。
研磨板4和晶体坯1之间的这种相对运动使晶体坯1的一个主平面沿着研磨板4的内周加工成凸曲面,并且该凸曲面沿着所示的方向C线性延伸。此时,如此进行研磨使晶体坯的恒定厚度在方向C上在晶体坯1的端面保留下来。接下来,晶体坯1旋转90度且类似地研磨从而使厚度t保留下来。
这样,通过沿着正方形正交的两边的方向的这样的曲面研磨,晶体坯1将被加工成四角锥形形状,其顶点使晶体坯1的一个主平面的中心部分,其在四个面的每一面具有等腰三角形状的倾斜表面,如图7所示。在这种情况下,每一倾斜表面构造成具有从顶点向晶体坯四边的模仿研磨板4的内周的曲率的凸曲表面。虽然脊线部分P也形成为凸曲线,其曲线比研磨板4的曲率更平缓。
其后,上述的激励电极2和引出电极3形成在晶体坯1的两个主平面上。在这种情况下,依旧如图3所示,每一激励电极2以圆形形状提供,并且引出电极3从激励电极2向作为一个应力零敏感度轴Z’(γ)的对角线部分的两端延伸。形成有如上述的激励电极2和引出电极3的SC切晶体元件通过保持作为一个应力零敏感度轴Z’(γ)的对角线的两端而在两点处保持,或者通过保持与两个应力零敏感度轴X’(γ)和Z’(γ)对应的对角线的两端而在四点处保持,并且密封地装入晶体元件的封装中。这样一个晶体单元就完成了。
图9A是如上述的晶体坯1的平面图且图中的虚线是显示轮廓的线,即晶体坯1的厚度为一定的固定值的位置。这样,在晶体坯1的一个主平面上,在垂直方向上的截面的厚度在正方形的各边上是相同的,因为每一正方形相对于晶体坯的中心点而共中心地设置。因此,在平行于晶体坯1的各边的线上的晶体坯的垂直截面如图9B所示。图9B是沿着图9A中的A-A线的晶体坯1截面图。即,在宽度方向上横过晶体坯1的一个主平面上的每一个三角形形状的倾斜表面的截面厚度将是相同的。厚度在以脊线部分P为界的倾斜表面上渐渐变小。因此,沿着A-A线得到的截面成为所谓的倾斜面形状,其厚度在中心点是大的,并且以脊线部分P为界的两侧倾斜,从而减小厚度。
在本实施例中,每个脊线部分P与晶体坯1的相互正交应力零敏感度轴Z’(γ)和X’(γ)对应。表现出加强的振动位移以及被应力零敏感度轴Z’(γ)和X’(γ)分开的区域出现在四个倾斜表面的每一个上。进一步,由于在每一倾斜表面中振动位移加强的区域中,在与每一倾斜表面的每一外周平行的线上的截面形成为倾斜形状,振动能量(振动位移)由此而被强制限制。换而言之,在此结构中,晶体坯1的一个主平面中的脊线P成为增加中心区域厚度以及在每一截面的两侧上渐渐减少截面厚度的边界条件。因此,如图10所示,加强的振动位移被限制在脊线部分P之间的四个部分中,并且这四个振动位移区域的位置的分开变得清晰。
在本实施例中,振动位移加强的区域将被限制在由脊线部分P分开的部分中。即使当切割出SC切割板时存在着切割方向的误差,或者在形成矩形晶体坯使得对角线方向与应力零敏感度轴Z’(γ)和X’(γ)相对应时在平面内存在着切割角度的偏差,或者存在着由于切割角度的偏差而造成的晶体坯的保持位置的偏差,也可能将晶体元件的取决于振动位移分布的频率-温度特性、以及振动特性如CI等维持在良好的状况下。根据本实施例,设计和制造振动特性维持良好的晶体元件将变得简单。
需要指出的是,在第一实施例中,晶体坯1的一个主平面被加工成四角锥形形状,其中心部分是最高点或顶点,并且进一步,四角锥形的顶点部分可加工成平坦表面形状,如图11A和11B所示。平坦表面形状是完全平坦的面或者具有小曲率的凸曲表面。这种平坦表面可通过在形成四角锥形形状的处理之后将晶体坯1的一个主平面的中心部分邻接研磨板(未图示)而形成,该研磨板具有平坦的表面或者具有小曲率的球形表面。通过这些处理,晶体坯1的顶点部分5加工成如图11A所示的平坦表面,和顶点部分5加工成如图11A所示的具有小曲率的球形表面形状。在图11B所示的情况中,顶点部分5的曲率可比四角锥形的倾斜边的曲率更小。如此,通过使顶点部分5成为平坦表面形状,可以整体地调整顶点的不对称,从而进一步改善晶体元件的振动特性,这种不对称是在将晶体坯的一个主平面加工成四角锥形形状时引起的。
进一步,通过将晶体坯1的一个主平面加工成晶体坯1的厚度比与目标频率的标准值相对应的厚度稍大的四角锥形形状,并且其后将四角锥形的顶点部分5加工成平坦表面形状从而减少晶体坯1的厚度,可以将晶体坯1的振动频率调整到目标频率的标准值范围内。这种振动频率调整在随后描述的第二实施例中按照类似的方式执行。
图12A示出根据本发明第二实施例由双旋转Y切割板制得的晶体元件。在此,将对双旋转Y切割板为SC切割板的情况进行描述。图12A示出在这种SC切割板晶体元件中的晶体坯。在图中,和上述每一图中的类似元件采用类似的附图标记,从而简化或省略多余的描述。
在上述的第一实施例中,提供脊线部分P使其在具有正方形平面形状的晶体坯1的第一主平面中沿对角线方向延伸。相反地,在第二实施例中,脊线部分P构造为线连接晶体坯1的两对对边中的每一对的一对对边的中点。即,脊线P是交叉的形状以连接晶体坯1的外周的每一边的中点。当通过例如使用如图8所示的半圆柱体形的研磨板4形成晶体坯1时,该晶体坯1可被研磨使得对角线方向沿着研磨板4的长度方向取向,这和第一实施例的情况相反。同时在这种情况中,构造成使得晶体坯的每一对角线方向和应力零敏感度轴Z’(γ)及X’(γ)相互正交。
图12B是第二实施例中的晶体坯1的平面图,图中的虚线表示轮廓。图12C是晶体坯1沿着图12B中的A-A线得到的截面图。在第二实施例的情况中,晶体坯1中厚度相同的位置是互连距脊线P是的交点距离相等的四个点的正方形的各边,此时考虑两条脊线的交点。该正方形的各边可看作是顶点在脊线P的交点处的四角锥形的底边。沿着与晶体坯的各边平行的线的截面,例如,沿着A-A线的截面成为倾斜表面,其宽度方向的中心点是脊线P,其厚度在脊线处最大并且向两边逐渐变小。
在第二实施例中,和第一实施例的情况一样,在晶体坯1的中心区域中相互正交的应力零敏感度轴Z’(γ)和X’(γ)之间的四个振动位移区域也将限制在互连各对对边的中点的中心线上的晶体坯1中大厚度的区域中。因此,通过第二实施例,即使在SC切割晶体坯的切割方向和平整切割中存在着某些角度偏差,也可以维持晶体元件的振动特性良好。进一步,可以容易地设计和制造这样的晶体元件。
也是在第二实施例中,如图13所示,可以完成在晶体坯1的一个主平面的中心部分具有小的曲率的凸曲线形状的脊线部分P。例如,通过构造为曲率不大于在与晶体坯1的中心交叉的方向上的脊线P的曲率的球形研磨板,通过旋转晶体坯1,可以仅将脊线的中心部分中的区域研磨形成具有更小曲率的区域。
进一步,通过任意处理方法,可以仅将各脊线的交叉区域形成为曲线形状。这样的结果是,可以制成平滑的脊线,四角锥形状的相邻的倾斜表面在脊线处交叉,从而形成界限,并且限制振动在一个大厚度的区域中,而且因为去除振动的界限条件也容易产生振动。
虽然,在上述的第一和第二实施例中,已经假定晶体坯1具有正方形平面形状,并且其对角线方向为应力零敏感度轴Z’(γ)和X’(γ),应力零敏感度轴Z’(γ)和X’(γ)也可以沿着正方形各边的方向。在那种情况下,晶体坯保持在各对边中间点处,因此那些点成为应力零敏感度轴Z’(γ)和X’(γ)的两端。
进一步在本发明中,晶体坯1的形状不仅限于正方形。本发明应用的晶体坯可以是例如图14所示的圆形晶体坯,或者未图示的矩形晶体坯。即使在这些情况中,当考虑正交于脊线P的线(如A-A线)时,与四角锥形形状的顶点对应,在中心区域即在脊线P的位置,晶体坯1的截面厚度更大,并且沿着这条线向两端变小。
本发明应用的双旋转Y切割板不仅限于SC切割板。例如,本发明可近似地应用于具有如上述的角度α为34度和角度β为19度的IT切割石英板。需要注意的是在IT切割板中应力零敏感度轴的方向,相对于SC切割板,为从Z’轴旋转8度后的方向以及正交于该方向的方向,即从X’轴旋转8度后的方向。进一步,本发明还可以应用于除了SC切割板和IT切割板之外的其它板,如果它们是具有相似的振动位移分布的双旋转Y切割板。

Claims (10)

1、一种晶体元件,由双旋转Y切割板制成,所述晶体元件包括从石英晶体切割出的晶体坯,晶体坯的主平面正交于Y”轴,其中Y轴和Z轴以石英晶体的X轴为中心旋转α角度后指定为Y’轴和Z’轴,并且X轴和Y’轴以Z’轴为中心旋转β角度后指定为X’轴和Y”轴,
其中所述晶体坯具有相互正交的两条应力零敏感度轴,并且在从所述应力零敏感度轴以直角相互交叉的中心处放射状地分开的四个区域中具有加强的振动位移,
其中所述应力零敏感度轴相互以直角交叉处的中心部分的厚度增加,并且形成从所述中心部分向所述晶体坯的外周部分限定四角锥形形状的脊线部分,
其中当提供与四角锥形形状的顶角相对的底面时,所述晶体坯沿着底面的截面厚度在所述晶体坯的中心区域较大,并且朝着晶体坯的两末端逐渐变小。
2、根据权利要求1的晶体元件,其中所述晶体坯的两个主平面的每一个设置有激励电极。
3、根据权利要求1的晶体元件,其中所述晶体坯的所述脊线部分沿着所述相互正交的应力零敏感度轴。
4、根据权利要求1的晶体元件,其中所述晶体坯的所述脊线部分沿着应力敏感中间轴,该应力敏感度中间轴从所述相互正交的应力零敏感度轴的中间看时分别旋转45度,以两等分地分开所述应力零敏感度轴之间的空间。
5、根据权利要求3的晶体元件,其中所述晶体坯具有正方形平面形状,并且所述相互正交的应力零敏感度轴沿着所述正方形的对角线方向放置。
6、根据权利要求1的晶体元件,其中所述四角锥形在所述晶体坯的一个主平面中的顶点部分形成为具有至少比所述四角锥形的倾斜表面更缓和的斜度的平坦表面形状。
7、根据权利要求1的晶体元件,其中所述晶体元件被构造为SC切割晶体元件,所述角度α为33度,所述角度β为22度。
8、根据权利要求7的晶体元件,其中所述晶体坯具有从所述Z’轴和所述X’轴倾斜8度的相互正交的应力零敏感度轴。
9、根据权利要求1的晶体元件,其中所述晶体元件被构造为IT切割晶体元件,所述角度α为34度,所述角度β为19度。
10、根据权利要求9的晶体元件,其中所述晶体坯具有从所述Z’轴和所述X’轴倾斜8度的相互正交的应力零敏感度轴。
CN2008101366950A 2007-10-18 2008-10-17 由双旋转y切割石英板制成的石英晶体元件 Expired - Fee Related CN101478298B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-271675 2007-10-18
JP2007271675A JP4563437B2 (ja) 2007-10-18 2007-10-18 2回回転yカット板からなる水晶振動子
JP2007271675 2007-10-18

Publications (2)

Publication Number Publication Date
CN101478298A true CN101478298A (zh) 2009-07-08
CN101478298B CN101478298B (zh) 2012-12-26

Family

ID=40243775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101366950A Expired - Fee Related CN101478298B (zh) 2007-10-18 2008-10-17 由双旋转y切割石英板制成的石英晶体元件

Country Status (4)

Country Link
US (1) US7863802B2 (zh)
EP (1) EP2051374A1 (zh)
JP (1) JP4563437B2 (zh)
CN (1) CN101478298B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328497A (zh) * 2014-11-19 2015-02-04 四川省三台水晶电子有限公司 一种sc切或it切晶片的制备方法
WO2017012347A1 (zh) * 2015-07-22 2017-01-26 成都泰美克晶体技术有限公司 一种具有单凸结构的压电石英晶片
CN107002279A (zh) * 2014-09-25 2017-08-01 托鲁斯科技有限责任公司 精密切割的高能量晶体
CN107154789A (zh) * 2016-03-04 2017-09-12 日本电波工业株式会社 晶体振子
CN107636962A (zh) * 2015-06-12 2018-01-26 株式会社村田制作所 石英片以及石英振子
CN107636963A (zh) * 2015-06-12 2018-01-26 株式会社村田制作所 石英片以及石英振子

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046395B2 (en) 2011-03-10 2015-06-02 Spirax Sarco, Inc. Vortex shedding flow meter
JP2012199606A (ja) * 2011-03-18 2012-10-18 Nippon Dempa Kogyo Co Ltd 水晶振動片及び水晶デバイス
US9466228B2 (en) 2011-11-14 2016-10-11 Torus Tech Llc Modular frames for arrangement and orientation of geometric solids
JP5887968B2 (ja) * 2012-02-03 2016-03-16 セイコーエプソン株式会社 Scカット水晶基板、振動素子、電子デバイス、発振器、及び電子機器
US9745669B2 (en) 2013-09-27 2017-08-29 Ark Crystal, LLC Precision cut high energy crystals
US9762206B2 (en) * 2014-02-07 2017-09-12 Samsung Electro-Mechanics Co., Ltd. AT-cut quartz crystal vibrator with a long side along the X-axis direction
US9834862B2 (en) 2014-09-25 2017-12-05 Ark Crystal, LLC Precision cut high energy crystals
US10224776B2 (en) * 2015-06-03 2019-03-05 General Electric Company Retention assembly for stator bar using shim with stator wedge and related method
MX2018008367A (es) 2016-01-08 2018-12-10 Arconic Inc Nuevas aleaciones de aluminio 6xxx, y metodos para su fabricacion.
JP5943160B2 (ja) * 2016-02-08 2016-06-29 セイコーエプソン株式会社 Scカット水晶基板、振動素子、電子デバイス、発振器、及び電子機器
JP6755108B2 (ja) * 2016-03-23 2020-09-16 日本電波工業株式会社 水晶振動子
JP2017192032A (ja) * 2016-04-13 2017-10-19 日本電波工業株式会社 水晶振動子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2261791A (en) * 1939-04-29 1941-11-04 Rca Corp Piezoelectric thickness-mode quartz crystal
GB1401042A (en) * 1972-05-30 1975-07-16 Suisse Horlogerie Quartz crystal resonator
JPS5291673A (en) * 1976-01-29 1977-08-02 Seiko Instr & Electronics Ltd Thickness sliding vibrator
JPS5938764B2 (ja) * 1977-02-09 1984-09-19 株式会社精工舎 厚みすべり水晶振動子
DE2752734B1 (de) * 1977-11-25 1979-04-26 Siemens Ag Als Obertonresonator verwendeter Dickenscherschwinger
US4375604A (en) * 1981-02-27 1983-03-01 The United States Of America As Represented By The Secretary Of The Army Method of angle correcting doubly rotated crystal resonators
US4381471A (en) * 1981-03-23 1983-04-26 The United States Of America As Represented By The Secretary Of The Army SC-Cut quartz resonators with suppressed b-mode
JPS59107618A (ja) * 1982-12-13 1984-06-21 Fujitsu Ltd 水晶振動子の製造方法
US4568850A (en) * 1985-02-11 1986-02-04 The United States Of America As Represented By The Secretary Of The Army Doubly rotated cylindrical crystal resonator
FR2634067B1 (fr) * 1988-07-07 1992-04-03 Electro Microtechn Centre Resonateur piezoelectrique
JP3096472B2 (ja) * 1990-09-29 2000-10-10 日本電波工業株式会社 Scカットの水晶振動子
JP3231055B2 (ja) * 1991-08-31 2001-11-19 日本電波工業株式会社 Scカットの水晶振動子
JP2000040937A (ja) 1998-07-21 2000-02-08 Nippon Dempa Kogyo Co Ltd Scカットの水晶振動子
JP4179878B2 (ja) 2001-02-02 2008-11-12 中外製薬株式会社 ペプチド誘導体
US6744182B2 (en) * 2001-05-25 2004-06-01 Mark Branham Piezoelectric quartz plate and method of cutting same
US7011887B2 (en) * 2002-09-02 2006-03-14 Nihon Dempa Kogyo Co., Ltd. IT-cut quartz crystal unit
JP4069773B2 (ja) * 2003-03-19 2008-04-02 セイコーエプソン株式会社 圧電振動片、圧電振動子および圧電デバイス
EP1648085A4 (en) * 2003-07-18 2008-09-24 Nihon Dempa Kogyo Co QUARTZ OSCILLATOR WITH SC CUTTER
US20100148782A1 (en) * 2008-12-15 2010-06-17 Schlumberger Technology Corporation Rugged quartz clock

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002279A (zh) * 2014-09-25 2017-08-01 托鲁斯科技有限责任公司 精密切割的高能量晶体
CN107002279B (zh) * 2014-09-25 2018-02-13 托鲁斯科技有限责任公司 精密切割的高能量晶体
CN104328497A (zh) * 2014-11-19 2015-02-04 四川省三台水晶电子有限公司 一种sc切或it切晶片的制备方法
CN104328497B (zh) * 2014-11-19 2016-08-24 四川省三台水晶电子有限公司 一种sc切或it切晶片的制备方法
CN107636962A (zh) * 2015-06-12 2018-01-26 株式会社村田制作所 石英片以及石英振子
CN107636963A (zh) * 2015-06-12 2018-01-26 株式会社村田制作所 石英片以及石英振子
CN107636963B (zh) * 2015-06-12 2020-07-28 株式会社村田制作所 石英片以及石英振子
CN107636962B (zh) * 2015-06-12 2020-07-31 株式会社村田制作所 石英片以及石英振子
WO2017012347A1 (zh) * 2015-07-22 2017-01-26 成都泰美克晶体技术有限公司 一种具有单凸结构的压电石英晶片
CN107154789A (zh) * 2016-03-04 2017-09-12 日本电波工业株式会社 晶体振子

Also Published As

Publication number Publication date
JP4563437B2 (ja) 2010-10-13
US20090102326A1 (en) 2009-04-23
US7863802B2 (en) 2011-01-04
EP2051374A1 (en) 2009-04-22
CN101478298B (zh) 2012-12-26
JP2009100375A (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
CN101478298B (zh) 由双旋转y切割石英板制成的石英晶体元件
CN105319940B (zh) 柔性钟表引导件
CN107408933B (zh) 温度补偿复合谐振器
EP3665437B1 (en) High quality factor mems silicon flower-of-life vibratory gyroscope
CN108613669A (zh) 正多边形盘状mems谐振陀螺
CN104734661B (zh) 晶体振子
JP5136635B2 (ja) 圧電振動子
WO2021135015A1 (zh) 带复合阵列质量负载的体声波谐振器、滤波器及电子设备
US11736087B2 (en) Coupled MEMS resonator
US20120280758A1 (en) Bulk acoustic wave resonator and method of manufacturing thereof
EP1744452B1 (en) Piezoelectric substrate and method of manufacturing the same
CN102655400A (zh) Gt切割石英晶体谐振器
CN105278310B (zh) 柔性钟表引导件
CN105486298A (zh) Mems金刚石多环陀螺仪及其加工方法
US5041754A (en) Crystal resonator with acceleration sensitivity adjustable by external circuit means
JPH07212171A (ja) 厚みすべり水晶振動子
JP2007104042A (ja) 水晶振動素子及びその製造方法
JP2017158146A (ja) 水晶振動子
JP2017175315A (ja) 水晶振動子
WO2016060204A1 (ja) 水晶振動子
JP2013115534A (ja) 単結晶ウェハーの製造方法、単結晶ウェハー、振動素子、及び圧電デバイス
RU35477U1 (ru) Моноблочный трехосный резонатор
JP4260761B2 (ja) 円板形状水晶素板の製造方法
KR102029492B1 (ko) 수정 진동자와 그 제조 방법
KR20140128040A (ko) 정전기장 방식의 진동형 자이로스코프

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121226

Termination date: 20171017

CF01 Termination of patent right due to non-payment of annual fee