CN101426589A - 通过选择性化学修饰将碳纳米管涂层形成图案 - Google Patents

通过选择性化学修饰将碳纳米管涂层形成图案 Download PDF

Info

Publication number
CN101426589A
CN101426589A CNA2005800219569A CN200580021956A CN101426589A CN 101426589 A CN101426589 A CN 101426589A CN A2005800219569 A CNA2005800219569 A CN A2005800219569A CN 200580021956 A CN200580021956 A CN 200580021956A CN 101426589 A CN101426589 A CN 101426589A
Authority
CN
China
Prior art keywords
coating
cnt
pattern
forms
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800219569A
Other languages
English (en)
Inventor
P·J·格拉特考斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eikos Inc
Original Assignee
Eikos Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eikos Inc filed Critical Eikos Inc
Publication of CN101426589A publication Critical patent/CN101426589A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76823Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. transforming an insulating layer into a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1142Conversion of conductive material into insulating material or into dissolvable compound
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Composite Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明涉及通过经由使用侧壁基团官能化而破坏涂覆的碳纳米管的导电性以修饰所述的碳纳米管(CNT)网络,将碳纳米管透明导电涂层/膜形成图案的方法。将得到的经历化学修饰的区域比那些没有改变的区域赋予更加导电或更不导电的。这导致了形成图案的膜,其中将所述图案成形而形成电极、像素、导线、天线或其它电子元件。另外,化学修饰的CNT的区域可以回复到它们初始的导电状态(即可逆的和可重复的),或者被固定而产生永久图案。

Description

通过选择性化学修饰将碳纳米管涂层形成图案
相关申请的引用
本申请要求2004年5月7日提交的美国临时申请号60/568,693,名称为“Methods for Patterning Carbon Nanotube Coatings Using SelectiveChemical Modification”的优先权,该申请的全部通过引用而具体地结合于此。
背景
1.发明领域
本发明涉及通过用侧壁官能作用对涂覆的碳纳米管网络进行修饰以破坏所述碳纳米管导电性而将碳纳米管透明导电涂层和膜形成图案的方法。本发明还涉及得到的形成图案的碳纳米管网络。
2.背景描述
许多电子器件需要对可见光光学透明的电导体。所述透明电导体通过传送电力而起到操作用户界面例如触摸屏或发送信号到LCD显示器中的像素的作用。透明导体是许多光电子设备中的主要元件,所述的光电子设备包括平板显示器、触摸屏、电致发光灯、太阳能电池板、“智能”窗和OLED照明系统。在所有这些应用中,用户必须看透所述导电层而进行操作。另外,透明的形成图案的导体在制造生物计量身份证即智能卡中是有价值的,其中信息被存储在导电层中或者通过导电层传递。这样卡片中的透明导体层的使用对于安全目的是有利的,因为难以发现所述信息。未来的电子设计在功能和形式上受用于产生导电透明层的现有材料和方法的限制。存在对导电光学透明涂层和膜的需求,所述涂层和膜是更透明的,同样导电的,利用大面积图案形成和烧蚀技术加工的,挠性的并且完全低成本。
目前大多数透明电极是由透明导电氧化物例如氧化铟锡(ITO)制成的,并且是四十年来的优选选择。通过真空淀积将ITO涂覆到光学透明衬底,然后利用昂贵的光刻技术以除去过量的涂层并形成导线和电极而形成图案。两种方法对于放大以覆盖大面积是困难而昂贵的。ITO也具有一些相当显著的局限性:1)ITO膜是易碎的(对于挠性应用,例如在塑料显示器、塑料太阳能伏打电池(solar voltaic)和耐磨电路中的挠性应用,机械可靠性考虑);和2)ITO线路典型地是通过真空溅射接着是光刻蚀刻而形成的(对于大体积/大面积应用,制造成本可能是太高)。
进行了提供透明电极以替代ITO膜的努力。一个典型实例是ITO粒子在聚合物粘合剂中的悬浮液。然而,这种填充了ITO的体系不能符合连续ITO膜的导电性。此外,透明导电聚合物材料目前正在开发中。这些聚合物典型地需要掺杂剂以给予导电性,并且利用丝网印刷或墨水喷射涂覆技术被涂覆在衬底上。虽然它们还是在开发阶段,并且也已经达到ITO膜的传导水平,但是预期掺杂剂的存在对于控制所述导电性具有不利的作用,并且可能与器件小型化不相适合。
因而,需要用于形成具有适宜导电性图案的涂层的有效、快速和节省成本的方法,同样需要来自这些方法的改进产品。
发明概述
本发明克服了现有的用于产生导电涂层图案的减法或加法相关的问题和缺点。
本发明的一个实施方案涉及将表面的导电涂层形成图案的方法,所述方法包含:将碳纳米管涂覆到所述表面而形成涂层,并且将所述涂层的区域暴露于改变导电性的反应体,通过将碳纳米管侧壁基团官能化增加或者减少只有所述区域的电导率。涂覆可以包含:喷涂、辊涂、真空沉积和这样方法的组合,还有其它熟知的涂布方法。所述碳纳米管是导电的、半导体的或二者的组合,并且选自包括单壁、双壁、多壁和它们的组合的组。反应体可以包含强度足以官能化所述碳纳米管侧壁基团的紫外光,和光反应性化学品,例如在氧存在下的四氧化锇。碳纳米管侧壁基团可以由环加成官能化,例如气味酯(osmyl ester)或奎宁-型官能团的环加成而官能化。所述形成图案的导电涂层可以形成电路。
本发明的另一个实施方案涉及根据本发明的可逆图案形成,其中将所述图案形成逆向包括将所述涂层在存在氧而不存在所述反应体的情况下暴露于紫外光。
本发明的另一个实施方案涉及根据本发明将形成的图案固定,其中将形成的图案固定包含将所述涂层暴露于水例如周围空气中的水蒸气。
本发明的另一个实施方案涉及将由本发明的方法制成形成图案的导电涂层。
本发明的另一个实施方案涉及选择性地将碳纳米管涂层形成图案的方法,该方法包括:将所述涂层暴露于紫外光和官能化碳纳米管侧壁基团的化学反应体。有用的化学反应体包括四氧化锇和氧,其中所述氧包括溶解在溶剂中的氧。涂层还可以通过涂覆聚合的或无机的粘合剂而用形成图案的导体外涂,从而提供对所述导电层的环境保护。
本发明的另一个实施方案涉及将表面导电涂层形成图案的方法,该方法包括:将碳纳米管涂覆到所述表面而形成涂层,并且将所述涂层的区域暴露于改变导电性的反应体,所述的改变导电性通过将碳纳米管侧壁基团官能化而增加或者减少只有所述区域的电导率,其中所述反应体包含重氮反应体。有用的重氮反应体包括4-溴重氮苯四氟硼酸盐、4-氯重氮苯四氟硼酸盐、4-氟重氮苯四氟硼酸盐、4-叔-丁基重氮苯四氟硼酸盐、4-硝基重氮苯四氟硼酸盐、4-甲氧羰基重氮苯四氟硼酸盐、4-十四烷基重氮苯四氟硼酸盐和它们的组合。所述化学反应体选择性地官能化碳纳米管侧壁而形成图案。
本发明的另一个实施方案包括将由本发明方法制成的形成图案的碳纳米管涂层。可以将形成图案的涂层涂覆到透明的导电层用于信息的存储。存储的信息可以包含一人或多人的个人信息、职业信息、公司信息、娱乐信息、词典信息、业务记录或者它们的组合。
本发明的其它实施方案和优点部分列出在下面的描述中,并且部分可以从该描述是显而易见的,或者可以从本发明的实施中学到。
发明描述
大多数透明电极是由透明导电金属氧化物例如氧化铟锡(ITO)制成的。基本上,将ITO涂覆到光学透明的衬底并且利用昂贵的光刻工艺以除去过量的涂层并形成导线和电极而形成图案。所述方法在大面积上进行是困难的而昂贵的。已经进行了提供透明电极替代ITO膜的努力。典型的实例是ITO粒子在聚合物粘合剂中的悬浮液。这种ITO填充的体系不能符合连续ITO膜的导电性。
金属氧化物涂层的备选方案是碳纳米管(CNT)的涂层。CNT可以在涂覆的表面形成导电网络。利用低成本、大面积、常规的湿法涂覆方法形成这些涂层,所述的湿法涂覆方法例如但不限于,喷涂、浸涂和辊涂。可以在沉积过程中通过用选择性方法例如喷墨印刷、丝网印刷、照相凹板涂覆和本领域技术人员已知的其它常规涂覆方法,将所述CNT只涂覆在需要的地方而将这样的涂层形成图案。借助于印刷或喷涂,通过这个碳纳米管网络的受控涂覆,形成图案的区域可以形成为器件中的电极起作用。形成这些电极的印刷工艺的使用消除了更昂贵方法的需要,例如目前在形成ITO涂层过程中典型采用的真空沉积和光刻法。选择性沉积的备选方案是将连续的CNT涂层涂覆到表面,接着通过CNT的一个或多个区域的烧蚀或减去而形成图案。例如,激光蚀刻可以在不希望留下图案的地方选择性地除去所述CNT。
碳纳米管是已知的并且具有常规的含义(R.Saito,G.Dresselhaus,M.S.Dresselhaus,"Physical Properties of Carbon Nanotubes",Imperial CollegePress,London U.K.1998,或A.Zettl"Non-Carbon Nanotubes"AdvancedMaterials,8,第443页,1996)。碳纳米管包含直的和/或弯曲的多壁纳米管(MWNT)、直的和/或弯曲的双壁纳米管(DWNT)和直的和/或弯曲的单壁纳米管(SWNT),和它们的组合和混合物。CNT也可以包括如在美国专利号6,333,016和WO 01/92381中所描述的,这些纳米管形式和纳米管制备中含有的普通副产物的多种组合物,和它们的多种组合以及混合物。也可以将碳纳米管化学修饰而结合化学试剂或化合物,或者物理修饰而产生有效的和有用的分子定向(例如见美国专利号6,265,466)或者调整所述纳米管的物理结构。
有用的纳米管类型包括含单壁碳基SWNT的材料。可以通过许多技术形成SWNT,例如碳靶(carbon target)的激光蚀刻、将烃分解和在两个石墨电极之间产生电弧。例如,授予Bethune等的美国专利号5,424,054描述了通过将碳蒸气与钴催化剂接触用于生产单壁碳纳米管的方法。通过固体碳的电弧加热产生所述碳蒸气,所述固体碳可以是无定形碳、石墨、活性炭或脱色炭或者它们的混合物。讨论了碳加热的其它技术,例如激光加热、电子束加热和RF感应加热。Smalley(Guo,T.,Nikoleev,P.,Thess,A.,Colbert,D.T.,和Smally,R.E.,Chem.Phys.Lett.243:1-12(1995))描述了生产单壁碳纳米管的方法,其中通过高温激光将石墨棒和过渡金属同时气化。Smalley(Thess,A.,Lee,R.,Nikolaev,P.,Dai,H.,Petit,P.,Robert,J.,Xu,C,Lee,Y.H.,Kim,S.G.,Rinzler,A.G.,Colbert,D.T.,Scuseria,G.E.,Tonarek,D.,Fischer,J.E.,和Smalley,R.E.,Science,273:483-487(1996))也描述了用于生产单壁碳纳米管的方法,其中将含有少量过渡金属的石墨棒在约1,200℃的炉子中激光气化。报道了单壁纳米管以大于70%的收率生产。美国专利号6,221,330公开了采用气态的碳原料和无载体催化剂生产单壁碳纳米管的方法。
已知由碳纳米管制成的膜具有低至102欧姆/平方的表面电阻。名称为“Method for Disentangling Hollow Carbon Microfibers,ElectricallyConductive Transparent Carbon Microfibers Aggregation Film and Coatingfor Forming Such Film”的美国专利号5,853,877描述了这种导电碳纳米管膜的形成,并且名称为“Processing for Producing Single Wall NanotubesUsing Unsupported Metal Catalysts”的美国专利号6,221,330一般性地描述了用于形成所述导电膜的这种碳纳米管的生产。然而,在本领域中没有报道用于将碳纳米管制成的膜形成图案的方法。
已经在以前描述了包含碳纳米管的涂层例如含碳纳米管的膜(见美国专利申请号10/105,623;10/201,568;10/105,618;10/442,176;10/729,369;10/978,212和美国专利号6,493,208;6,762,237)。这样的膜可以具有低至102欧姆/平方的表面电阻(从100欧姆/平方到106欧姆/平方或更大的范围内变动)和总透光率高达95%(从60%至99%或更佳的范围内变动)。在所述膜中的碳纳米管的含量可以高达50%(从0.001%至50%的范围内变动)。
这样的材料可以通过两步法形成,该方法产生既具有低电阻又具有高透光率的碳纳米管膜。首先,将碳纳米管的稀水溶液喷涂在衬底上,并且使水蒸发仅留下所述表面上固结的碳纳米管。然后,将树脂涂覆在固结的碳纳米管上并且渗入所述固结的碳纳米管网络中。
在1991年由日本Maijo大学的Iijima博士从电子显微镜观察发现碳纳米管。从那以后,碳纳米管得到了深入的研究。典型地,碳纳米管类似由石墨片制成的中空圆柱体,它的内径在从1至20nm的范围内变动。已知石墨具有独特的结构。即,构成石墨的碳原子之间的共价键是以不寻常的方式排列的,以致石墨具有刚性的平面的六边形片的形状。所述片的上面的和下面的区域是用分散的自由电子填充的,它们平行于所述片的平面移动。近来碳纳米管被识别为碳形式,其中管由具有依赖于所述石墨片排列的螺旋结构的单石墨片组成。所述碳纳米管的电性质与所述螺旋结构和其直径具有函数关系(Phys.Rev.(1992)B46:1804和Phys.Rev.Lett.(1992)68:1579)。因而,所述碳纳米管的螺旋性或者手性的改变导致所述自由电子运动的改变。从而,使自由电子能够与在金属材料中一样自由移动,或者在取决于所述管结构,它们不得不与半导体材料中一样克服电子带隙势垒(barrier)。
另外,对于形成这些管侧壁的碳原子的任何修饰将从而改变所述管的电子性质。可以用给电子或吸电子的化学品化学掺杂半导体的碳纳米管而生产具有类金属传导的管。此外,通过破坏所述侧壁、与所述侧壁的化学反应、用电子或其它高能粒子的照射,可以将金属性碳纳米管转化为不良导体。
当将所述SWNT官能化时,它们的电性质显著改变。未处理的SWNT基本上是金属性的并且它们的穿过所述“巴克纸(bucky paper)”表面5mm测量的二点电阻(基本上是接触电阻,Bozhko等,1998,Appl.Phys.A,67:75-77)是10-15欧姆。当氟化时,所述管变成绝缘的并且所述二点电阻超过20兆欧姆。在Margrave等的美国专利6,645,455中描述了氟化碳纳米管的方法。在甲基化之后,所述管拥有约2万欧姆的二点电阻。所述甲基化产品的热解引起所述电阻降到约100欧姆。通过热解,所述导电性的不完全恢复可能是由于增加的接触电阻,这是由反应步骤的顺序之后由诱导到所述绳状晶格中的无序所导致的。这个选择性将碳纳米管形成图案的有用性是受反应条件严格限制的,所述反应条件限制选择性控制所述图案的位置和在标准衬底例如塑料和玻璃上加工涂层的能力,所述衬底也将受引起所述纳米管氟化作用的相同的反应条件修饰。
在衬底上形成具有图案的碳纳米管的许多形成方法是常规可得到的。典型的方法通过在所述衬底上的纳米管连续涂层减去过量的材料而产生所述图案,或者通过将所述纳米管以所述图案的形式直接涂覆在所述衬底上而添加地产生所述图案,从而留下未涂层的区域作为所述导电途径之间的绝缘。
例如,美国专利申请公布号20040265755涉及利用用可聚合部分修饰表面的碳纳米管制造碳纳米管形成图案的膜或者碳纳米管复合材料的方法。该方法不产生具有低电阻的导电涂层,因为全部所述纳米管是在所述侧壁上化学官能化的,并且在破坏纳米管导电网络形成的沉积过程中分散在聚合物中。在该公开内容中,稍后通过光刻法选择性减去所述沉积的纳米管/聚合物层。
美国专利申请公布号20020025374涉及在衬底上的选择性生长方法而形成具有图案的碳纳米管。这是在大于500℃的高温下直接在表面生长所述纳米管的一种类型的添加方法。这限制此技术对高温衬底的使用,并且不容易放大到大部件或连续膜的生产。同样地,在Delzeit的美国专利号6,858,197中公开了形成图案的方法,其中将纳米管选择性生长在衬底上而形成图案。这个方法首先将聚合物在表面上形成图案,然后在所述聚合物未沉积的区域生长所述纳米管,由此产生纳米管形成图案的表面,该表面具有也在所述途径中提供成直线纳米管的独特性质。这个方法也经受需要高温而形成所述纳米管,并且在可以加工的涂覆衬底大小方面受到限制,原因在于真空室大小的限制。
美国专利号6,835,591涉及通过形成导电的形成图案的碳纳米管膜的减除方法制成的纳米管膜。然而,没有公开将所述纳米管化学修饰以转换所述纳米管电状态作为从纳米管的连续涂层形成图案的方式。而且,描述这个公开内容的减去方法不是可逆的,并且不容易通过如本发明中含纳米管的区域和除去所述纳米管的区域之间的光学产生的变化而检测。
本发明通过开发沿着碳纳米管侧壁的化学修饰以选择性地将所述CNT涂层的部分从导电的改变为较少导电的,由此形成电路或者在衬底上将CNT的连续膜形成图案,克服了与现有的用于将纳米管涂层形成图案的减去和添加方法的问题和缺点。另外,通过本发明的方法,选择性将所述纳米管涂层从导电的转换为较少导电的过程是可逆的。这可以除去和/或重新排列所述图案而不用从所述表面除去或添加CNT。所有其它的形成CNT的图案或电路的已知方法需要CNT的除去或者添加而改变所述图案。本发明可以使单层的CNT的使用可以被重复寻址,以存储信息或重新设计在所述表面上的电路。这对于不留下例如在外观上可注意到的物理改变的存储数据是特别有用的,由此使在所述表面上的电路或形成的图案是难辨别的或是隐藏的。
本发明的一个实施方案涉及用于形成在涂层中提供导电性的金属性CNT。这样的纳米管可以是能够增加或减少所述网络导电性的化学修饰的对象。所述纳米管涂层可以或者半导体的纳米管或者金属性的纳米管中的一种或两种。侧壁的化学修饰,或者官能化,是在所述碳纳米管侧壁基团和反应体的光化学反应过程中形成共价键的结果。对于所述适宜图案的CNT,或者,备选地,对于所述适宜图案的负像的CNT,换言之只有未形成图案的区域,可以改变电导率。同样地,可以产生复杂的图案。并且,涂层可以组合并且层在一起或者与可商购的电路和电导率图案组合,产生多层的形成图案的结构。
官能化的纳米管可以具有至少10×更大,优选100×更大,更优选1,000×更大,并且甚至更优选10,000×更大的电阻。备选地,官能化的纳米管可以具有至少10×更小,优选100×更小,更优选1,000×更小,并且甚至更优选10,000×更小的电阻。
在形成图案的一种形式中,化学反应体,例如但不限于,在氧气下的四氧化锇(OsO4),和254nm的UV光(对于官能化有效的),官能化碳纳米管的侧壁基团。UV光将缺陷引入到所述CNT侧壁的共价键中,破坏所述纳米管的固有共扼sp2电子结构的周期性。在没有其它可以干扰的化合物例如聚合物、表面活性剂、分散剂、掺杂剂和本领域技术人员已知的类似化合物存在的情况下,典型地将涂层暴露于反应体并且进行光激发。另外,可以通过臭氧分解修饰侧壁基团。其它有用的官能化碳纳米管侧壁基团的化学反应体包括大多数可商购的光反应性反应体。官能化碳纳米管侧壁基团的化学反应体包括共价结合到所述侧壁基团的反应体。在美国专利申请公布号20040071624;20050074390;20050034629;20020144912和20030095914,和美国专利号6,740,151;6,576,747;6,555,175;6,494,946;6,435,240;6,042,643;5,900,029;5,883,253;5,851,280;5,554,739和5,547,806中公开了可以使用的许多这样的反应体和官能化化学类型。
用碳纳米管形成透明导电涂层的常规方法是将所述CNT混合到聚合物树脂中,然后形成所述涂层。得到的CNT是包埋的,并且不能用于侧壁官能作用或化学反应。然而,在本发明中,仅利用挥发性流体沉积所述CNT而将所述纳米管分散到表面上。然后通过蒸发、升化和/或其它引导从液体到蒸气的相变(即,挥发性的)的方法将所述流体除去。一旦干燥,所述沉积的层只由CNT和由空气或其它气体典型占据的开放空间组成。在这个阶段,将所述衬底的全部或部分用易于被适于修饰单独和/或全体(collective ensemble)纳米管的电子结构的化学反应体渗透的开放CNT网络所涂覆。
本发明的另一个实施方案涉及在由本发明的方法形成的涂层中提供导电性的金属性CNT涂层。
在本文公开了用于将CNT涂层形成图案的方法,该方法克服了许多由前述方法施加的局限性。在本发明方法中,将没有粘合剂涂层的CNT均匀涂覆的衬底选择性暴露于改变纳米管电性质的化学反应体,从而使所述导电网络例如赋予它们比所述涂层未暴露区域更小的导电性。可以将得到的涂层暴露,而形成对于器件制造有用的图案。另外可以将所述形成图案的涂层再次暴露而将所述过程逆向,产生具有如同它开始时的均匀电导率的涂层。备选地,可以将暴露的并形成图案的涂层固定,以致所述图案是永久的、不可逆的。没有其它形成图案的方法提供此水平的方法和设计灵活性。由这个方法形成的图案是独特的,即全部表面保持用CNT覆盖,从而使所述导电图案的检测非常困难,因为只有所述涂层的电子性质被改变。结果是具有均匀光滑度(即,平整度)和光学均匀性的透明导电图案。
为了利用纳米管的侧壁化学修饰而形成图案,可以将所述纳米管暴露于反应体。两步涂覆法可以形成纳米管的底涂层。形成初始CNT涂层的优选方法是从含挥发性溶剂和分散剂的溶液/墨水沉积所述纳米管,并且更优选只有这样的溶剂和试剂。在这个方式中,利用常规的涂覆工艺如喷涂将所述墨水沉积,并且在所述表面上干燥而形成不含其它化合物的纳米管网络。CNT涂层的制备是在形成图案之前。
本发明的第二个方面是通过选择性使用公布的共价修饰CNT侧壁的化学反应在表面上形成具有图案的电导体,由此减小导电性。本发明的实施例公开在但不限于下列的实施方案和实施例中。
实施方案1
形成具有图案的涂层的第一种方法是将纯CNT涂层在惰性气体载体/环境中暴露于OsO4和O2。首先通过工序包括酸回流、水漂洗、离心和微滤,将电弧产生的SWNT烟灰(soot)纯化。然后,将纯化的SWNT混合到异丙醇(也可以使用其它类型的醇例如甲醇、乙醇、丙醇、丁醇等)和水的3:1溶液中而形成碳纳米管涂覆溶液。含有大约50-60%碳纳米管的烟灰通过在3M硝酸溶液中在145±15℃回流18小时进行纯化,然后清洗、离心并过滤。纯化的混合物以大致0.059g/L的浓度产生含有大于99%单壁碳纳米管的墨水溶液。通过简单地喷涂或其它溶液沉积的常规方法,将此墨水涂到表面上并干燥而形成CNT涂层,从而获得CNT的纯涂层。
一旦将UV光暴露于CNT表面上,所述化学反应进行。因为所述UV光在图案中暴露,所述反应仅选择性地发生在UV光光引发由OsO4的环加成引起的CNT侧壁的化学浸蚀的区域。有趣的是,所述反应发生在所述金属性CNT侧壁上而不发生在半导体的CNT侧壁上。
一旦形成所述涂层的CNT被修饰,那么电阻率比那些未暴露于所述充分反应条件的更低。在所述方法的这一点,通过将所述涂层再暴露于UV和O2(作为气体)(不存在OsO4),存在将所述反应逆向并使修饰的CNT返回到导电的CNT的机会。备选地,可以使用UV和真空而将所述反应逆向,然而转化时间过长。这产生将所述透明导电层反复地转变为电学上开和关的机会。
如果可逆性是不适宜的,并且改为需要固定的或永久形成图案的涂层,那么将形成图案的涂层暴露于水蒸气(例如,周围空气含有足够的水蒸气)以引发第二化学反应,其中所述CNT侧壁的二氧化锇共价键被转化成气味酯或奎宁型官能团。结果是CNT的侧壁被修饰,从而有效地切断所述导电性。
这个形成图案的方法的功用是许多的,其包括但不限于:
●形成图案的分辨率只受投影到所述涂层上的UV图像细节和所述纳米管束大小的限制。
●反应体(OsO4、O2、H2O和载气Ar或N2)在形态上全部是气态的,因此容易被运输到涂层的表面和从所述涂层的表面运输,从而提供可以随后用粘合剂填充或涂覆的纯CNT网络。
●也可以将所述反应体用液体形态的溶剂涂覆。
●通过再暴露于水蒸气或其它反应体,修饰的CNT可以毫无损失地回复到它们的初始导电状态。
●所述形成图案的涂层可以被永久地固定,从而锁定在所述图案中。
●可以用聚合物渗过形成图案的涂层,从而在衬底中的适当位置粘合所述层。可以选择这个粘合剂树脂以对所述导电层提供环境保护。
●可以将多层CNT和粘合剂堆叠而建立多层电路或器件。单独的层将不产生干扰。
在Nano Letters,2003,Vol.3,No.5,613-615页中提供了所述化学的反应机理和其它细节。在J.Am.Chem.Soc.2004,126,2073-2091页中也可以发现详细的和信息性的描述。
实施方案2
通过文献中已知的其它类型的反应实现CNT侧壁的化学修饰。这些反应不是光引发的,并且所述图案是通过选择性涂覆反应体而修饰CNT而形成的。所述概念与其中将化学反应体涂覆到CNT的现有涂层而选择性改变所述导电层的电性质是相同的。将反应体涂覆的CNT层与所述SWNT起反应。典型地,将需要一个溶剂漂洗步骤而从所述涂层除去过量的反应体和副产物。在下面提供有效的反应体实施例。
下面的实施例举例说明本发明的实施方案,但不应当被视作限制本发明的范围。
实施例1:反应体是重氮盐
为了在衬底上形成CNT的涂层,通过包括酸回流、水漂洗、离心和微滤的工序,将第一电弧产生的SWNT烟灰纯化。然后,将纯化的SWNT混合到异丙醇(IPA)(或其它醇类)和水的3:1溶液中而形成碳纳米管溶液。(含有大约50-60%碳纳米管的烟灰通过在3M硝酸溶液中在145±15℃回流18小时进行纯化,然后清洗、离心并过滤)。纯化的混合物以大致0.059g/L的浓度产生含有大于99%单壁碳纳米管的墨水溶液。通过简单地喷涂或其它溶液沉积的常规方法,将此墨水涂到表面上并干燥而形成CNT涂层,从而获得CNT的纯涂层。
通过与重氮反应体反应而实现CNT的选择性官能化。参考Science Vol.301,12 September 2003,1519-1522页,也参见美国专利申请公布号20040071624A1。这个反应类似于使CNT较少导电的侧壁官能作用发生的锇的反应。有用的重氮反应体包括4-溴重氮苯四氟硼酸盐、4-氯重氮苯四氟硼酸盐、4-氟重氮苯四氟硼酸盐、4-叔-丁基重氮苯四氟硼酸盐、4-硝基重氮苯四氟硼酸盐、4-甲氧羰基重氮苯四氟硼酸盐、4-十四烷基重氮苯四氟硼酸盐和它们的组合。例如,下列重氮盐也是有用的:1:4-硝基重氮苯四氟硼酸盐;3,3′-二甲氧基联苯基-4,4′-双(重氮)二氯化物;4-羧甲基重氮苯四氟硼酸盐;1,4-苯双(重氮)四氟硼酸盐;氯苄基-4-重氮四氟硼酸盐;和选自下列的重氮盐:4-氯甲基苯基重氮;4-羟甲基苯基重氮;4-羧基苯基重氮;4-甲酰基苯基重氮;4-乙酰基苯基重氮;4-异硫氰酸根合苯基重氮;4-N-FMOC-氨甲基苯基重氮;4-(4-羟甲基苯氧基甲基)苯基重氮;4-(2,4-二甲氧基苯基-N-FMOC-氨甲基)苯基重氮;4-(苯基-N-FMOC-氨甲基)苯基重氮;4-(4-甲基苯基-N-FMOC-氨甲基)苯基重氮和4-(4-硝基苯基羰基)苯基重氮盐;三苯甲基氯化重氮,2-氯三苯甲基氯化重氮;三苯甲基氢氧化重氮;9-N-FMOC-氨基呫吨-3-基重氮;4-(2,4-二甲氧基苯基羟甲基)-苯基重氮;4-(4-羟甲基苯甲酰氧基甲基)苯基重氮;4-(4-羟甲基苯甲酰基氨甲基)苯基重氮;4-(4-羟甲基-3-甲氧基苯氧基甲基)苯基重氮和它们的盐。
实施例2:反应体是溴和表面活性剂。
金属性CNT的选择性官能化是通过与溴反应体的反应实现的,已知所述溴反应体与CNT形成电荷转移配合物,更优选与金属性CNT形成电荷转移配合物。对于所述化学的详细描述,参见Nano Letters 3,2003,1245页。
实施例3:反应体是氟和表面活性剂。
金属性CNT的选择性官能化是通过与氟反应体的反应实现的,已知所述氟反应体官能化CNT的侧壁,更优选金属性CNT的侧壁。本发明提供衍生化碳纳米管的方法,该方法包括将碳纳米管与氟气反应,所述氟气优选是无HF的。对于所述化学的详细描述,参见美国专利号6,645,455。这个反应类似于使CNT较少导电的侧壁官能作用发生的锇的反应。
在所述碳纳米管是单壁纳米管并且温度至少是500℃的情况下,产物可以是与氟衍生化的多壁碳纳米管。在所述碳纳米管是单壁纳米管并且温度在250℃和500℃之间的情况下,产物是氟共价结合到所述纳米管侧壁基团的碳原子的单壁碳纳米管。
实施例4:与芳基-重氮的衍生化
与芳基重氮种类的衍生化可以被光化学诱导。利用4-氯重氮苯四氟硼酸盐进行光化学反应。通过声波振荡产生SWNT-p在1,2-二氯苯中的悬浮液。向此悬浮液加入一部分在最少量的乙腈中溶解的重氮盐。当驻留在光化学反应装置的室中时搅拌得到的混合物,其中激发波长大约为254nm(紫外光源)。用于光化学诱导反应的光源是任何波长,并且典型地是紫外的或可见的波长。得到的材料在所有方面类似于通过电化学技术制备的SWNT-2。这个实验进一步证实了重氮盐的反应导致对所述纳米管的共价连接。用于修饰的多种芳基重氮盐可以被用于修饰碳纳米管侧壁,也可以将烷基、链烯基和炔基的加成用于本发明的方法。另外,参数例如施用的电势、施加电势的确良持续时间、溶剂和支持电解质可以是不同的。
本发明的其它实施方案和优点部分列出在下面的描述中,并且部分可以从该描述是显而易见的,或者可以从本发明的实施中学到。本文引用的所有参考文献,包括全部出版物,美国和外国的专利和专利申请,通过引用而具体地并且完全地结合。意欲认为说明书和实施例仅是例举性的,本发明的真正的范围和精神由后附权利要求指示。

Claims (28)

1.一种将表面的导电涂层形成图案的方法,该方法包括:
将碳纳米管涂覆到所述表面而形成涂层;
将所述涂层的区域暴露于通过官能化碳纳米管侧壁基团仅修饰所述区域导电性的反应体。
2.权利要求1的方法,其中涂覆包括喷涂、辊涂、真空淀积和它们的组合。
3.权利要求1的方法,其中所述碳纳米管是导电的、半导体的或二者的组合。
4.权利要求1的方法,其中所述碳纳米管选自由单壁、双壁、多壁和它们的组合组成的组。
5.权利要求1的方法,其中所述反应体包含强度足以官能化所述碳纳米管侧壁基团的紫外光。
6.权利要求5的方法,其中所述反应体还包含光反应性化学品。
7.权利要求6的方法,其中所述光反应性化学品是在氧气存在下的四氧化锇。
8.权利要求1的方法,其中所述碳纳米管侧壁基团是通过环加成官能化的。
9.权利要求8的方法,其中所述环加成是属于气味酯或奎宁型官能团。
10.权利要求1的方法,其中所述修饰减少了沿所述区域的导电性。
11.权利要求1的方法,其中所述修饰增加了沿所述区域的导电性。
12.权利要求1的方法,其中所述形成图案的导电涂层形成电路。
13.权利要求1的方法,其中所述形成图案是可逆的。
14.权利要求13的方法,其中将所述形成图案逆向包括将所述涂层在氧气存在下并且不存在所述反应体下暴露于UV光。
15.权利要求1的方法,其中通过将所述涂层暴露于水而固定所形成的图案。
16.由权利要求1的方法制成的形成图案的导电涂层。
17.一种选择性地将碳纳米管形成图案的方法,该方法包括:
将所述涂层暴露与紫外光和官能化碳纳米管侧壁的化学反应体。
18.权利要求17的方法,其中所述化学反应体包含四氧化锇和氧气。
19.权利要求18的方法,其中所述氧气包含溶解在溶剂中的氧气。
20.权利要求17的方法,该方法还包含通过将所述涂层暴露于水蒸气而永久固定所形成的图案。
21.权利要求17的方法,该方法还包含通过将所述涂层暴露于氧气和UV光而除去所形成的图案。
22.权利要求17的方法,该方法还包含在所述碳纳米管上用形成图案的导体外涂,包含涂覆聚合或无机粘合剂,从而为所述导体层提供环境保护。
23.权利要求17的方法,其中所述化学反应体包含重氮反应体。
24.权利要求23的方法,其中所述重氮反应体选自由4-溴重氮苯四氟硼酸盐、4-氯重氮苯四氟硼酸盐、4-氟重氮苯四氟硼酸盐、4-叔-丁基重氮苯四氟硼酸盐、4-硝基重氮苯四氟硼酸盐、4-甲氧羰基重氮苯四氟硼酸盐、4-十四烷基重氮苯四氟硼酸盐和它们的组合组成的组。
25.权利要求17的方法,其中所述化学反应体选择性官能化碳纳米管侧壁基团而形成图案。
26.一种由权利要求17的方法制成的形成图案的碳纳米管涂层。
27.权利要求26的涂层,其被应用到用于信息存储的透明导电层。
28.权利要求26的涂层,其中所述信息包括一个或多人的个人信息、职业信息、公司信息、娱乐信息、词典信息、业务记录或者它们的组合。
CNA2005800219569A 2004-05-07 2005-05-09 通过选择性化学修饰将碳纳米管涂层形成图案 Pending CN101426589A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56869304P 2004-05-07 2004-05-07
US60/568,693 2004-05-07

Publications (1)

Publication Number Publication Date
CN101426589A true CN101426589A (zh) 2009-05-06

Family

ID=36692664

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800219569A Pending CN101426589A (zh) 2004-05-07 2005-05-09 通过选择性化学修饰将碳纳米管涂层形成图案

Country Status (5)

Country Link
US (1) US20060057290A1 (zh)
EP (1) EP1750859A2 (zh)
JP (1) JP2008507080A (zh)
CN (1) CN101426589A (zh)
WO (1) WO2006078286A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782054A (zh) * 2010-03-04 2012-11-14 格尔德殿工业公司 制备一个涂覆物、涂层包括合金化cnt薄膜的方法
CN103420357A (zh) * 2012-05-18 2013-12-04 奇美实业股份有限公司 纳米金属碳管复合材、纳米金属碳管复合材制备方法及纳米碳管导电基板
CN110610946A (zh) * 2019-08-22 2019-12-24 武汉华星光电技术有限公司 薄膜晶体管及其制备方法、液晶显示面板
CN111225958A (zh) * 2017-07-27 2020-06-02 哈佛大学校长及研究员协会 导电防污涂层组合物

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US20060292297A1 (en) * 2004-07-06 2006-12-28 Nano-Proprietary, Inc. Patterning CNT emitters
US7662298B2 (en) * 2005-03-04 2010-02-16 Northwestern University Separation of carbon nanotubes in density gradients
US20060276056A1 (en) * 2005-04-05 2006-12-07 Nantero, Inc. Nanotube articles with adjustable electrical conductivity and methods of making the same
US8859048B2 (en) * 2006-01-03 2014-10-14 International Business Machines Corporation Selective placement of carbon nanotubes through functionalization
US8962130B2 (en) * 2006-03-10 2015-02-24 Rohr, Inc. Low density lightning strike protection for use in airplanes
US7832983B2 (en) * 2006-05-02 2010-11-16 Goodrich Corporation Nacelles and nacelle components containing nanoreinforced carbon fiber composite material
US7449133B2 (en) * 2006-06-13 2008-11-11 Unidym, Inc. Graphene film as transparent and electrically conducting material
US8785939B2 (en) * 2006-07-17 2014-07-22 Samsung Electronics Co., Ltd. Transparent and conductive nanostructure-film pixel electrode and method of making the same
CA2661638C (en) * 2006-08-30 2014-07-15 Northwestern University Monodisperse single-walled carbon nanotube populations and related methods for providing same
CN101192492B (zh) * 2006-11-22 2010-09-29 清华大学 透明导电膜的制备方法
CN101192493B (zh) * 2006-11-22 2011-02-02 鸿富锦精密工业(深圳)有限公司 阳极装置及其制造方法
US20080136861A1 (en) * 2006-12-11 2008-06-12 3M Innovative Properties Company Method and apparatus for printing conductive inks
JP4325726B2 (ja) * 2007-02-20 2009-09-02 東レ株式会社 カーボンナノチューブ集合体および導電性フィルム
US9028790B2 (en) * 2007-02-20 2015-05-12 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
FI20075190L (fi) * 2007-03-23 2008-09-24 Valtion Teknillinen Johderakenne, menetelmä tällaisen valmistamiseksi, merkintä ja käyttö
US7652280B2 (en) 2007-04-11 2010-01-26 General Electric Company Light-emitting device and article
JP5570686B2 (ja) * 2007-05-07 2014-08-13 国立大学法人北海道大学 微細炭素繊維分散皮膜およびその製造方法
US20080292979A1 (en) * 2007-05-22 2008-11-27 Zhe Ding Transparent conductive materials and coatings, methods of production and uses thereof
US8540922B2 (en) * 2007-08-27 2013-09-24 Hewlett-Packard Development Company, L.P. Laser patterning of a carbon nanotube layer
US20090061161A1 (en) * 2007-08-27 2009-03-05 Lynn Sheehan Laser patterning of a cross-linked polymer
CA2698093A1 (en) * 2007-08-29 2009-03-12 Northwestern University Transparent electrical conductors prepared from sorted carbon nanotubes and methods of preparing same
US20090056589A1 (en) * 2007-08-29 2009-03-05 Honeywell International, Inc. Transparent conductors having stretched transparent conductive coatings and methods for fabricating the same
JP2009057249A (ja) * 2007-08-31 2009-03-19 Sumitomo Electric Ind Ltd 炭素構造体、複合部材およびその製造方法
CN101394712B (zh) * 2007-09-21 2010-08-25 清华大学 黑孔化溶液及其制备方法
US8058802B2 (en) 2007-09-28 2011-11-15 General Electric Company Thermal management article and method
US7742673B2 (en) 2007-09-28 2010-06-22 General Electric Company Thermal mangement article having thermal wave guide
US7898176B2 (en) 2007-09-28 2011-03-01 General Electric Company Fluidic thermal management article and method
US7727578B2 (en) * 2007-12-27 2010-06-01 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US7960027B2 (en) * 2008-01-28 2011-06-14 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US7642463B2 (en) * 2008-01-28 2010-01-05 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
EP2253001B1 (en) * 2008-03-14 2021-05-05 Nano-C, Inc. Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications
CN101567230B (zh) * 2008-04-25 2012-06-20 清华大学 透明导电薄膜的制备方法
JP5266889B2 (ja) * 2008-06-04 2013-08-21 ソニー株式会社 光透過性導電体の製造方法
US8946848B2 (en) * 2008-06-05 2015-02-03 Omnivision Technologies, Inc. Apparatus and method for image sensor with carbon nanotube based transparent conductive coating
JP5289859B2 (ja) * 2008-08-13 2013-09-11 日本写真印刷株式会社 導電性パターン被覆体の製造方法および導電性パターン被覆体
WO2010022097A1 (en) * 2008-08-19 2010-02-25 Sandisk 3D, Llc Methods for increasing carbon nano-tube (cnt) yield in memory devices
WO2010071652A1 (en) * 2008-12-18 2010-06-24 Hewlett-Packard Development Company, L.P. Carbon nanotube film
GB0913919D0 (en) * 2009-08-10 2009-09-16 Univ Birmingham Method of forming an electrical circuit using fullerene derivatives
US8561934B2 (en) * 2009-08-28 2013-10-22 Teresa M. Kruckenberg Lightning strike protection
JP5561714B2 (ja) * 2009-10-13 2014-07-30 日本写真印刷株式会社 ディスプレイ電極用透明導電膜
US9177688B2 (en) * 2011-11-22 2015-11-03 International Business Machines Corporation Carbon nanotube-graphene hybrid transparent conductor and field effect transistor
US8808792B2 (en) 2012-01-17 2014-08-19 Northrop Grumman Systems Corporation Carbon nanotube conductor with enhanced electrical conductivity
KR101374234B1 (ko) * 2012-05-30 2014-03-13 숭실대학교산학협력단 탄소전구체로 보강된 탄소나노튜브섬유의 제조방법
JP5729780B2 (ja) * 2013-05-17 2015-06-03 日本写真印刷株式会社 導電性パターン被覆体の製造方法
US20140373349A1 (en) * 2013-06-20 2014-12-25 Carestream Health, Inc. Laser diode patterning of transparent conductive films
US10839975B2 (en) * 2014-03-10 2020-11-17 The Boeing Company Graphene coated electronic components
CN105197875B (zh) * 2014-06-19 2017-02-15 清华大学 图案化碳纳米管阵列的制备方法及碳纳米管器件
CN104616838B (zh) 2015-02-10 2018-02-06 京东方科技集团股份有限公司 一种电子器件的制作方法及电子器件
CN104934551B (zh) * 2015-05-14 2017-07-28 京东方科技集团股份有限公司 一种柔性电极层及其制备方法、显示基板、显示装置
US11135827B2 (en) * 2018-10-11 2021-10-05 Lintec Of America, Inc. Patterning a nanofiber forest

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713519B2 (en) * 2001-12-21 2004-03-30 Battelle Memorial Institute Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782054A (zh) * 2010-03-04 2012-11-14 格尔德殿工业公司 制备一个涂覆物、涂层包括合金化cnt薄膜的方法
CN102782054B (zh) * 2010-03-04 2017-06-06 格尔德殿工业公司 制备一个涂覆物、涂层包括合金化cnt薄膜的方法
CN103420357A (zh) * 2012-05-18 2013-12-04 奇美实业股份有限公司 纳米金属碳管复合材、纳米金属碳管复合材制备方法及纳米碳管导电基板
CN111225958A (zh) * 2017-07-27 2020-06-02 哈佛大学校长及研究员协会 导电防污涂层组合物
CN110610946A (zh) * 2019-08-22 2019-12-24 武汉华星光电技术有限公司 薄膜晶体管及其制备方法、液晶显示面板

Also Published As

Publication number Publication date
WO2006078286A3 (en) 2009-04-09
WO2006078286A2 (en) 2006-07-27
EP1750859A2 (en) 2007-02-14
US20060057290A1 (en) 2006-03-16
JP2008507080A (ja) 2008-03-06

Similar Documents

Publication Publication Date Title
CN101426589A (zh) 通过选择性化学修饰将碳纳米管涂层形成图案
EP1630128B1 (en) Process for producing a carbon nanotube device
Du et al. 25th anniversary article: carbon nanotube‐and graphene‐based transparent conductive films for optoelectronic devices
Ou et al. Surface-modified nanotube anodes for high performance organic light-emitting diode
Li et al. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings
Hecht et al. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures
Cao et al. Transparent electrodes for organic optoelectronic devices: a review
Wu et al. A simple and efficient approach to a printable silver conductor for printed electronics
CN101599316B (zh) 透光电导体及其制造方法、静电消除片和电子装置
KR101736527B1 (ko) 코팅된 물품의 제조방법, 합금화된 카본 나노튜브 박막을 포함하는 코팅
Lu et al. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond
Aleksandrova Specifics and Challenges to Flexible Organic Light‐Emitting Devices
Li et al. Enhancing the electrical conductivity of carbon-nanotube-based transparent conductive films using functionalized few-walled carbon nanotubes decorated with palladium nanoparticles as fillers
US20040265550A1 (en) Optically transparent nanostructured electrical conductors
US20070246689A1 (en) Transparent thin polythiophene films having improved conduction through use of nanomaterials
JP2014510187A (ja) ナノチューブ分散剤およびそれからの分散剤を含まないナノチューブフィルム
KR20130058664A (ko) 카본 나노튜브들 및 나노 와이어 복합체들을 포함하는 투명 전도성 코팅들을 포함하는 전자 디바이스들 및 그 제조방법들
CN100490076C (zh) 自组装方法、制造阴极的方法和沉积材料的装置
Wang et al. Vertically aligned graphene prepared by photonic annealing for ultrasensitive biosensors
Kabe et al. Exfoliation of Graphite into Graphene in Polar Solvents Mediated by Amphiphilic Hexa‐peri‐hexabenzocoronene
Tsoi et al. Surface functionalization of porous nanostructured metal oxide thin films fabricated by glancing angle deposition
JP4918387B2 (ja) 機能性薄膜素子、表示体、調光体、及び導電層のイオン化ポテンシャル制御方法
Lin et al. A green approach for high oxidation resistance, flexible transparent conductive films based on reduced graphene oxide and copper nanowires
KR101400723B1 (ko) 그래핀의 패터닝 방법
Zhang et al. Gold-substrate-enhanced scanning electron microscopy of functionalized single-wall carbon nanotubes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090506