CN101400601A - 氢制备装置及氢制备方法 - Google Patents

氢制备装置及氢制备方法 Download PDF

Info

Publication number
CN101400601A
CN101400601A CNA2007800085559A CN200780008555A CN101400601A CN 101400601 A CN101400601 A CN 101400601A CN A2007800085559 A CNA2007800085559 A CN A2007800085559A CN 200780008555 A CN200780008555 A CN 200780008555A CN 101400601 A CN101400601 A CN 101400601A
Authority
CN
China
Prior art keywords
hydrogen
temperature
oxygen
catalyst layer
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800085559A
Other languages
English (en)
Inventor
高村光喜
岡田英二
生驹太志
安藤智文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of CN101400601A publication Critical patent/CN101400601A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及的氢制备装置,包括自热重整催化剂层、用于供给甲醇及水蒸气的混合物的导管、具有流量调节器的用于供给氧的导管、设置在该自热重整催化剂层的下游的氢穿透膜。该氢制备装置具有温度测定器,用于测定从该自热重整催化剂层流出的含氢气体的温度。根据含氢气体的测定温度,通过流量调节器来增减向该重整催化剂层供给的氧量。从而,控制由自热重整反应引起的放热,使含氢气体的温度调节到能够使氢分离工序维持在最佳温度的范围。通过该氢制备装置,不使用补充设备,就可将自热重整反应中产生的热有效利用于氢分离工序中。

Description

氢制备装置及氢制备方法
技术领域
本发明涉及通过甲醇的自热重整反应、以及使用钯合金制的氢穿透膜的氢分离来制备氢的氢制备装置及氢制备方法。氢气广泛用于例如氨合成、各种有机化合物的氢化、石油精制、脱硫等的化学工业,冶金工业,半导体工业中。另外,最近也期待着通过燃料电池技术的发展来得到新的能源,氢气的需求越来越大。
背景技术
作为以往广泛采用的氢气的制备方法,例如有液化石油气(LPG)、天然气及石脑油等的烃的水蒸气重整法。该方法由于通常需要原料烃的脱硫、以及反应温度为800-1000℃的非常高的温度且装置费用高,所以难以适用于中、小规模的氢制备。另一方面,将甲醇和水进行反应来制备氢气的方法(将甲醇作为原料的水蒸气重整法)具有原料甲醇容易获得、即使在300℃以下的低温下也可以进行反应、不需要原料的脱硫等的前处理等的优点,且装置费用也可以控制在低廉范围内,所以广泛适用于从大规模到小规模的氢气制备中。
在将甲醇作为原料的水蒸气重整反应中,理想的是将下述吸热反应作为主反应进行,但是也会产生逆向转化反应或甲醇分解等的副反应,所以作为副产物会产生少量的一氧化碳。
CH3OH+H2O→3H2+CO2      —49.5kJ/mol
甲醇的自热重整反应由下述式表示。
CH3OH+x(1/2)O2+(1—x)H2O→(3—x)H2+xCO2+(1—x)CO
在自热重整反应中,甲醇的部分氧化反应(放热反应)和甲醇的水蒸气重整反应(吸热反应)在同一体系内同时进行,所以不需要从外部加热。因此,与以往的甲醇水蒸气重整反应相比,在自热重整反应中可以以更简单的装置得到以氢为主要成分的重整气体。在自热重整反应中,催化剂层的温度通常为300℃以上的高温,重整气体在重整反应器出口的温度由放热反应与吸热反应的平衡来决定。在重整反应器出口的温度可以通过调节向反应器供给的氧气的供给量(氧/甲醇的供给摩尔比)来控制。此时,出口气体不仅仅是温度,其组成也根据氧气的供给量(氧/甲醇的供给摩尔比)而变化。
通常,通过PSA法(变压吸附法)从含氢重整气体中提取纯度更高的氢。PSA装置为具有填充有吸附剂的多个吸收塔和控制这些吸收塔的出入口的多个自动阀的复杂的装置。而且,为了利用PSA法来分离氢,需要暂时冷却重整气体并除去重整气体中的水分,这就使得利用了PSA法的氢制备装置变得复杂且庞大。因此,难以小型化,且从能量利用的观点来看也不优选。
含有钯与银、铜等的合金的金属膜(合金膜)具有能够选择性地穿透氢的性质,能够从含氢气体得到纯度非常高的氢。氢的穿透速度与温度成比例,为了得到实用的氢穿透性,优选在200-500℃的高温下使用金属膜。使用由钯合金形成的氢分离膜时,与PSA法相比,可以使氢分离工序小型化且简单化。而且,没有必要对从重整反应工序供给的含氢重整气体进行冷却等,所以能量上有利,但是有时为了得到实用的氢穿透性而需要加温。
利用了钯合金膜的氢分离工序可以在高温下操作。因此,在通过如上的烃的水蒸气重整来制备氢的方法中,可以省略设置在水蒸气重整工序和氢分离工序之间的热源以及其它设备,所以尝试了进行水蒸气重整工序和氢分离工序的热协调。特别是,在自热重整反应中,没有必要进行多余的外部加热,也能进行水蒸气重整反应,可利用已产生的热,所以提出了很多方案。
例如,专利文献1中公开了,在具有烃源、水源、氧源、气化室、以及设置有催化剂和氢分离膜的重整室的氢制备系统中,将气化室和重整室进行热连接。专利文献2中公开了燃气生成系统,该燃气生成系统在进行部分氧化反应的重整部的下游、通过热交换器设置用于进行伴随放热的转化反应的转化部,在该转化部的下游侧设置氢分离膜。专利文献3中公开了重整器,该重整器是通过将平板形燃料重整催化剂层、平板形氢穿透膜、平板形一氧化碳转换催化剂层进行多层层压而形成的。用于重整反应的热通过部分氧化放热反应而自身供给,可以省略外部加热设备。专利文献4中公开了氢气生成装置,该氢气生成装置具有将部分氧化反应催化剂层载置在水煤气转化反应催化剂层上的结构(混杂(hybrid)结构)。一般来说,最佳重整反应温度根据原料化合物、重整催化剂的种类、反应条件而变化。另外,钯合金膜的氢穿透性受温度的影响。因此,自热重整反应或部分氧化反应与钯合金制的氢穿透膜组合时,难以设定用于反应和氢穿透的最佳条件。
专利文献1:特开平7-315801号公报
专利文献2:特开2001-223017号公报
专利文献3:专利第3680936号公报
专利文献4:特开2001-146404号公报
发明内容
如上所述,通过现有技术,将甲醇的重整反应与钯合金制的氢分离膜组合而制备氢时,需要热源或温度调节设备,用于使重整工序和氢分离工序分别设定在最佳温度。也可以将两工序靠近或接触后一起供给热,但是需要用于热供给的补充设备。另外,重整工序和氢分离工序的最佳工作温度不同时,各自的工序中需要温度控制设备。因此,难以实现装置的小型化和简单化。
本发明人为解决上述问题而进行深入研究,其结果发现,根据同工序中生成的含氢气体的温度来控制自热重整反应工序的温度,且将自热重整反应工序中得到的热随同该含氢气体,调节氢分离工序的温度最佳化,从而可以有效利用自热重整反应工序中得到的热,并且可以省略氢分离工序的加热设备及温度控制设备,由此完成本发明。
也就是,本发明涉及一种氢制备装置,该氢制备装置包括自热重整催化剂层、用于供给甲醇及水的混合物的导管、具有流量调节器的用于供给氧的导管、设置在该自热重整催化剂层的下游的钯合金制的氢穿透膜,该用于供给甲醇及水的混合物的导管和该用于供给氧的导管设置在该自热重整催化剂层的上游,使甲醇、水及氧以混合状态供给到该自热重整催化剂层,在该自热重整催化剂层的出口和该氢穿透膜的入口之间设置有温度测定器,用于测定从该自热重整催化剂层流出的含氢气体的温度,该温度测定器连接在控制装置上,根据该测定温度来控制该流量调节器的开闭,从而增减氧的供给量。
而且,本发明涉及一种氢制备方法,该制备方法包括:重整反应工序,通过甲醇、水及氧的自热重整反应生成含氢气体;以及,氢分离工序,利用钯合金制的氢穿透膜,从该含氢气体选择性地分离回收氢气;其中,在从重整反应工序的出口到该氢分离工序为止的任意位置上测定该含氢气体的温度,根据该测定温度来增减向该重整反应工序供给的氧量,从而在控制该重整反应工序的温度的同时,控制该含氢气体的温度,由此通过该含氢气体具有的热来使该氢分离工序维持在最佳的温度。
附图说明
图1是表示本发明的氢制备装置的简要示意图。
具体实施方式
本发明中使用的原料化合物只要是通过自热重整反应或部分氧化重整反应来生成氢的物质,就没有特别限定,但是从反应进行的容易程度和反应温度与氢分离膜的工作温度接近考虑,可优选甲醇。除甲醇以外也可以利用二甲醚、甲缩醛等可以通过水解来生成甲醇的物质。
在重整反应工序中,与催化剂接触时的甲醇和水(水蒸气、水雾等)的比例没有特别限定,但是水/甲醇(摩尔比)优选为0.01-10,更优选为0.05-5。根据生成的含氢气体的氢分压、温度、反应条件、反应器的工作条件等,将与催化剂接触的甲醇和水的比例在上述范围内适当选择。
在上述重整反应工序中,与催化剂接触时的甲醇和氧的比例没有特别限定,但是氧/甲醇(摩尔比)优选为0.01-20,更优选为0.05-2。氧过少时,不能得到由部分氧化反应引起的充分的反应热,在生成的含氢气体中残留有甲醇。甲醇和氧的比例在上述范围内选择,使生成的含氢气体具有能够将随后的氢分离工序调整为最佳的温度范围的充分的温度。作为氧源可以使用通常的空气,所以为了使生成的含氢气体中的氢分压尽可能高,优选氧的供给量设定为必要最低限。
本发明中的重整反应工序的反应温度优选为100-800℃,更优选为200-600℃。重整反应工序的反应温度在上述范围内选择,使供给后段的氢分离工序时的含氢气体(重整气体)的温度维持在150-500℃的范围内。重整反应工序的反应压力优选为常压至15MPa,从生成的含氢气体的氢分压、氢分离工序中的氢穿透膜的强度、氢的回收率等考虑,选择适当的压力条件。
重整反应工序的催化剂的有效成分只要是能够催化甲醇、水及氧的自热重整反应,就没有特别限制。从在自热重整反应条件下的实用的耐久性、对生成的含氢气体随同充分热等考虑,适用含有Pt和/或Pd与选自由Zn、Cr、Ga、Fe及Cu组成的组中的一种以上的元素的组合的催化剂。
重整反应工序的催化剂,除上述有效成分以外,也可以含有对反应惰性的成分。惰性成分为用于分散催化剂成分的分散剂、催化剂成形助剂、催化剂载体、支撑结构物等,例如为二氧化硅、氧化铝、活性炭、滑石、石墨、金属板、金属翅片(fin)等。
在重整反应器内,只要是将甲醇、水、及氧以混合状态与催化剂接触,进行自热重整反应,得到含氢气体,对催化剂的使用方式没有特别限定。例如可以采用在重整反应器内的一部分上固定催化剂的固定床、在反应环境中分散催化剂的流动床、或者市售的不规则填充物、或在蜂窝结构的支持体上负载催化剂的负载催化剂等的使用方式。从重整反应器的压差、催化剂的粉体化等考虑,适用催化剂颗粒的填充催化剂或在蜂巢支持体上负载的负载催化剂。
在重整反应工序中生成的含氢气体输送到接着的氢分离工序中,分离高纯度氢。从氢分离膜的强度和装置部件的强度考虑,氢分离工序优选在150-500℃工作,更优选在200-400℃工作。
本发明中使用的氢分离膜是以钯与铜或银的合金为主体的膜。钯合金的组成,从氢穿透性、对中毒成分的耐久性、耐伸缩疲劳性、最佳工作温度等考虑,选择最佳的组成即可。从生成的含氢气体在重整反应器出口的温度考虑,相对钯与铜或银的总量,合金中的钯含量优选为40-80重量%,更优选为50-75重量%。
氢分离膜的厚度没有特别限定,但是由于氢穿透量通常与膜厚度成反比,所以优选氢分离膜的厚度尽可能薄。从钯的使用量、膜的实用强度、氢穿透性考虑,氢分离膜的厚度优选为1-100μm。
氢分离膜的使用方式没有特别限定。有管状,金属箔状,通过CVD(化学气相沉积法)、电解镀、或无电解镀形成在支持体上的膜状等,可以根据需要选择适当的形状。在氢分离工序的下游侧除设置有用于回收穿透氢分离膜而分离的高纯度氢的导管以外、还设置有用于排出分离氢后的残留气体的导管。
本发明中的重整反应工序和氢分离工序的温度控制是通过调整向重整反应工序供给的氧的供给量(氧/甲醇的摩尔比)来进行的。在氧供给源为鼓风机等旋转机的情况下,可以通过调节其输出功率等来调整氧供给量。也可以通过设置在氧供给配管上的控制阀的开闭来调整。在从重整反应工序的出口到氢分离工序的内部的任意位置上,测定含氢气体(重整气体)的温度。根据测定的温度来增减氧供给量,使重整反应工序的温度及氢分离工序的温度控制在上述范围内。用于控制氧供给量的温度的测定位置可以根据装置的形状、结构、工作能力等适当选择,例如,优选重整反应工序的出口、氢分离工序的入口、氢分离工序的内部。氧供给量的控制可以一次性进行,也可以阶段性地控制氧供给量。
实施例
下面参照附图进一步详细说明本发明,但是本发明并不限定在以下的说明。
图1表示本发明氢制备装置的一个例子。在图1中,从导管1将甲醇及水(水蒸气或水雾)的混合物供给到装置中。从导管2将空气等的含氧气体供给到装置中。氧的供给量通过流量调节器3来控制。供给到装置的甲醇及水与氧在供给口的下游混合,以混合状态接触自热重整催化剂层4。在该催化剂层中进行自热重整反应,生成含氢气体(重整气体)。含氢气体随同通过自热重整反应而产生的热与氢穿透膜7接触,可以分离出高纯度的氢的同时,使氢穿透膜维持在对氢分离的最佳的温度。穿透氢穿透膜7的氢通过空间9后从导管10引导到装置外部、被回收或利用于燃料电池及其它装置。穿透氢后的氢浓度低的残留气体从导管11引导到装置外部。
从重整反应工序出口流出的含氢气体的温度可以通过例如设置在重整反应工序出口和氢分离工序入口之间的温度测定器5进行测定。测定温度输入到控制装置6中。根据该测定温度,控制装置6开闭流量调节器3,增减来自于导管2的氧供给量。例如,含氢气体的温度低于氢分离的最佳温度时,增大氧供给量,使部分氧化反应处于优势,将自热重整催化剂层4的温度上升到上述范围内。含氢气体的温度高于氢分离的最佳温度时,减少氧供给量,抑制部分氧化反应,将自热重整催化剂层4的温度下降到上述范围内。通过该操作可以将自热重整催化剂层4和氢穿透膜7的温度分别容易地维持在最佳的范围。也就是,在本发明中,可以不需要用于控制重整反应工序、含氢气体及氢分离工序的各温度的补充的加热装置、冷却装置。为了尽可能防止热向外部泄漏,优选将整体装置用保温剂8覆盖。
工业实用性
如上所述,在本发明中,通过将在甲醇的自热重整反应工序中得到的热伴随该工序中生成的含氢气体,使氢穿透膜的温度可以控制并维持在能够得到实用的氢穿透性的范围。在自热重整反应工序中得到的热、供给到氢穿透膜的含氢气体的温度、以及氢穿透膜的温度通过向自热重整反应工序供给的氧量来控制,所以可以省略用于调节含氢气体的温度的加热装置、冷却装置的使用。因此,根据本发明,可以实现氢制备装置的小型化及简单化、控制的容易化、省能量化,所以可以工业上有利地制备氢气。

Claims (7)

1、一种氢制备装置,该氢制备装置包括自热重整催化剂层、用于供给甲醇及水的混合物的导管、具有流量调节器的用于供给氧的导管、设置在该自热重整催化剂层的下游的钯合金制的氢穿透膜,该用于供给甲醇及水的混合物的导管和该用于供给氧的导管设置在该自热重整催化剂层的上游,使甲醇、水及氧以混合状态供给到该自热重整催化剂层,在该自热重整催化剂层的出口和该氢穿透膜的入口之间设置有温度测定器,用于测定从该自热重整催化剂层流出的含氢气体的温度,该温度测定器连接在控制装置上,根据该测定温度来控制该流量调节器的开闭,从而增减氧的供给量。
2、根据权利要求1所述的氢制备装置,其中所述自热重整催化剂层是由Pt和/或Pd与选自由Zn、Cr、Ga、Fe及Cu组成的组中的一种以上的元素组合形成的催化剂形成的。
3、根据权利要求1所述的氢制备装置,其中所述钯合金为钯与铜或银的合金,相对钯与铜或银的总量,该合金中的钯含量为40-80重量%。
4、一种氢制备方法,该制备方法包括:重整反应工序,通过甲醇、水及氧的自热重整反应生成含氢气体;以及,氢分离工序,利用钯合金制的氢穿透膜,从该含氢气体选择性地分离回收氢气;其中,在从重整反应工序的出口到该氢分离工序为止的任意位置上测定该含氢气体的温度,根据该测定温度来增减向该重整反应工序供给的氧量,从而在控制该重整反应工序的温度的同时,控制该含氢气体的温度,由此通过该含氢气体具有的热来使该氢分离工序维持在最佳的温度。
5、根据权利要求4所述的氢制备方法,其中所述自热重整反应在以Pt和/或Pd与选自由Zn、Cr、Ga、Fe及Cu组成的组中的一种以上的元素组合为主体的催化剂的存在下进行。
6、根据权利要求4所述的氢制备方法,其中所述钯合金为钯与铜或银的合金,相对钯与铜或银的总量,该合金中的钯含量为40-80重量%。
7、根据权利要求4所述的氢制备方法,其中将向自热重整反应供给的氧/甲醇的摩尔比调节到使所述氢分离工序的工作温度为150-500℃。
CNA2007800085559A 2006-03-14 2007-03-12 氢制备装置及氢制备方法 Pending CN101400601A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP068642/2006 2006-03-14
JP2006068642 2006-03-14

Publications (1)

Publication Number Publication Date
CN101400601A true CN101400601A (zh) 2009-04-01

Family

ID=38509516

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800085559A Pending CN101400601A (zh) 2006-03-14 2007-03-12 氢制备装置及氢制备方法

Country Status (6)

Country Link
US (1) US20090092541A1 (zh)
EP (1) EP1995212A4 (zh)
JP (1) JPWO2007105696A1 (zh)
KR (1) KR20080099861A (zh)
CN (1) CN101400601A (zh)
WO (1) WO2007105696A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149838A (zh) * 2013-03-01 2013-06-12 浙江大学 甲醇自热重整制氢过程的自适应控制方法
CN103387210A (zh) * 2013-08-06 2013-11-13 上海合既得动氢机器有限公司 甲醇水制氢系统及方法
CN103435007A (zh) * 2013-08-06 2013-12-11 上海合既得动氢机器有限公司 一种利用甲醇水制备氢气的方法及设备
CN103569964A (zh) * 2013-10-29 2014-02-12 上海合既得动氢机器有限公司 利用甲醇水制备氢气的设备
CN110382405A (zh) * 2016-12-05 2019-10-25 株式会社Posco 氢生产设备及氢生产方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY151052A (en) * 2007-11-16 2014-03-31 Univ Kebangsaan Malaysia Cu-zn-al catalyst promoted with palladium for hydrogen production from methanol
US8917051B2 (en) 2009-05-22 2014-12-23 Battelle Memorial Institute Integrated fuel processor and fuel cell system control method
US8720390B2 (en) * 2011-09-19 2014-05-13 Northern Technologies International Corporation Fuel performance booster
CN103149837B (zh) * 2013-03-01 2015-10-14 浙江大学 甲醇自热重整制氢过程的滑模控制方法
US9968906B2 (en) * 2015-06-01 2018-05-15 The United States Of America, As Represented By The Secretary Of The Army Reforming with oxygen-enriched matter
ES2828799T3 (es) * 2017-08-10 2021-05-27 Sener Ing & Sist Sistema de reformado de alcohol y producción de hidrógeno, unidades del sistema y su método asociado

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315801A (ja) 1994-05-23 1995-12-05 Ngk Insulators Ltd 高純度水素製造システム、高純度水素の製造方法及び燃料電池システム
JP3402515B2 (ja) * 1994-05-23 2003-05-06 日本碍子株式会社 水素分離体とそれを用いた水素分離装置及び水素分離体の製造方法
US5939025A (en) * 1995-08-23 1999-08-17 The University Of Chicago Methanol partial oxidation reformer
US6746650B1 (en) * 1999-06-14 2004-06-08 Utc Fuel Cells, Llc Compact, light weight methanol fuel gas autothermal reformer assembly
JP2001146404A (ja) 1999-11-16 2001-05-29 Daikin Ind Ltd 水素ガス生成装置
JP2001223017A (ja) 2000-02-09 2001-08-17 Toyota Motor Corp 燃料電池用燃料ガスの生成システム
JP4923371B2 (ja) * 2001-09-21 2012-04-25 トヨタ自動車株式会社 水素分離膜を備える水素生成装置の起動方法
JP3680936B2 (ja) 2001-10-12 2005-08-10 財団法人理工学振興会 燃料改質器
JP2004210602A (ja) * 2003-01-06 2004-07-29 Nissan Motor Co Ltd 水素精製システム
JP2005125148A (ja) * 2003-10-21 2005-05-19 Honda Motor Co Ltd メタノール改質触媒及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149838A (zh) * 2013-03-01 2013-06-12 浙江大学 甲醇自热重整制氢过程的自适应控制方法
CN103149838B (zh) * 2013-03-01 2015-10-14 浙江大学 甲醇自热重整制氢过程的自适应控制方法
CN103387210A (zh) * 2013-08-06 2013-11-13 上海合既得动氢机器有限公司 甲醇水制氢系统及方法
CN103435007A (zh) * 2013-08-06 2013-12-11 上海合既得动氢机器有限公司 一种利用甲醇水制备氢气的方法及设备
CN103387210B (zh) * 2013-08-06 2016-08-10 上海合既得动氢机器有限公司 甲醇水制氢系统及方法
CN103569964A (zh) * 2013-10-29 2014-02-12 上海合既得动氢机器有限公司 利用甲醇水制备氢气的设备
CN103569964B (zh) * 2013-10-29 2016-08-17 上海合既得动氢机器有限公司 利用甲醇水制备氢气的设备
CN110382405A (zh) * 2016-12-05 2019-10-25 株式会社Posco 氢生产设备及氢生产方法

Also Published As

Publication number Publication date
WO2007105696A1 (ja) 2007-09-20
EP1995212A4 (en) 2010-12-01
JPWO2007105696A1 (ja) 2009-07-30
EP1995212A1 (en) 2008-11-26
US20090092541A1 (en) 2009-04-09
KR20080099861A (ko) 2008-11-13

Similar Documents

Publication Publication Date Title
CN101400601A (zh) 氢制备装置及氢制备方法
US7150866B2 (en) Catalyst for autothermal reforming of hydrocarbons with increased water gas shift activity
AU2007325180B2 (en) Systems and processes for producing hydrogen and carbon dioxide
US7226490B2 (en) Fuel processor for producing a hydrogen rich gas
CN1934225B (zh) 天然气转化为长链烃类的工艺
US7964176B2 (en) Process and apparatus for thermally integrated hydrogen generation system
Höhlein et al. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer
US20040101472A1 (en) Method for partial oxidation of methane using dense, oxygen selective permeation ceramic membrane
CA2109655A1 (en) Combined reformer and shift reactor
CN101184714A (zh) 甲醇的合成
EP2720976B1 (en) Method for hydrogen production
CA2648559A1 (en) Solid oxide fuel cell system and method of operating the same
US20070111053A1 (en) Split-stage recuperation fuel processor
WO2021251471A1 (ja) Coの選択的酸化触媒を備えたco2メタネーション反応装置およびガス中のcoの除去方法
Kirillov et al. Production of pure hydrogen from diesel fuel by steam pre-reforming and subsequent conversion in a membrane reactor
CN1320951C (zh) 利用部分催化氧化产生合成气的方法
JP2022076978A (ja) 燃料電池から排出されるオフガスを処理するためのシステムおよび方法。
JP5369656B2 (ja) 水素生成装置
EP4371933A1 (en) System and process for producing synthesis gas
AU2012354917B2 (en) CO shift conversion device and shift conversion method
US8100994B2 (en) Process for generating electricity and hydrogen that comprises a hybrid reformer
US20030211025A1 (en) Process, control system and apparatus for the optimal operation of a selective oxidation reactor
KR20240030339A (ko) 개질 공정과 액상유기수소운반체를 이용한 청정연료 및 수소 생산 복합 에너지시스템
WO2024094594A1 (en) Sulfur passivation for electrically heated catalysis
WO2023139258A1 (en) Conversion of co2 and h2 to syngas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090401