CN101399298B - 倒置变质多结太阳能电池中的障壁层 - Google Patents

倒置变质多结太阳能电池中的障壁层 Download PDF

Info

Publication number
CN101399298B
CN101399298B CN2008102114162A CN200810211416A CN101399298B CN 101399298 B CN101399298 B CN 101399298B CN 2008102114162 A CN2008102114162 A CN 2008102114162A CN 200810211416 A CN200810211416 A CN 200810211416A CN 101399298 B CN101399298 B CN 101399298B
Authority
CN
China
Prior art keywords
solar
barrier layer
band
solar subcells
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008102114162A
Other languages
English (en)
Other versions
CN101399298A (zh
Inventor
阿瑟·科恩费尔德
马克·A·斯坦
坦森·瓦格赫塞
弗雷德·纽曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oncogen LP
Original Assignee
Oncogen LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncogen LP filed Critical Oncogen LP
Publication of CN101399298A publication Critical patent/CN101399298A/zh
Application granted granted Critical
Publication of CN101399298B publication Critical patent/CN101399298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种形成包括上部子电池、中部子电池和下部子电池的多结太阳能电池的方法,所述方法包括:提供第一衬底,其用于半导体材料的外延生长;在所述衬底上形成第一太阳能子电池,其具有第一带隙;在所述第一太阳能子电池上方形成第二太阳能子电池,其具有小于所述第一带隙的第二带隙;在所述第二子电池上方形成障壁层,以减少穿透位错;在所述障壁层上方形成分级夹层,所述分级夹层具有大于所述第二带隙的第三带隙;以及在所述分级夹层上方形成第三太阳能子电池,其具有小于所述第二带隙的第四带隙,使得所述第三子电池相对于所述第二子电池而晶格失配。

Description

倒置变质多结太阳能电池中的障壁层
政府权利声明
本发明是依据美国空军授予的第FA9453-06-C-0345号合同在政府支持下进行的。政府在本发明中具有特定权利。
相关申请案的参考
本申请案与和本文同时申请的题为“具有刚性支撑件的薄倒置变质多结太阳能电池(Thin Inverted Metamorphic Multijunction Solar Cell with Rigid Support)”的共同待决的第_____号美国专利申请案相关。
本申请案与2006年12月27日申请的共同待决的第11/616,596号美国专利申请案相关。
本申请案还与2006年6月2日申请的共同待决的第11/445,793号美国专利申请案相关。
技术领域
本发明涉及太阳能电池半导体装置的领域,且明确地说,涉及包括变质层的多结太阳能电池。此类装置还包括倒置变质太阳能电池。
背景技术
光伏电池(也称为太阳能电池)是在过去几年中变得可用的最重要新能源之一。已对太阳能电池开发投入了相当大的努力。因而,太阳能电池当前正用于许多商业和面向消费者的应用中。尽管已经在这个领域中取得了显著进步,但对太阳能电池满足更复杂应用的需要的要求尚未能跟上需求。例如用于数据通信的卫星等应用已经剧烈增加了对具有改进的电力和能量转换特征的太阳能电池的需求。
在卫星和其它空间相关应用中,卫星电力系统的大小、质量和成本取决于所使用的太阳能电池的电力和能量转换效率。换句话说,有效负荷的大小和机载服务的可用性与所提供的电力量成比例。因此,随着有效负荷变得越来越复杂,充当机载电力系统的电力转换装置的太阳能电池也变得越来越重要。
太阳能电池通常制作成垂直多结结构并设置成水平阵列,其中各个太阳能电池串联连接在一起。阵列的形状和结构以及其所含有的电池数目部分由所需输出电压和电流确定。
例如M.W.云利斯(Wanless)等人的“用于高性能III-V族光伏能量转换器的晶格失配途径(Lattice Mismatched Approaches for High Performance,III-V Photovoltaic EnergyConverters)”(2005年1月3日到7日第31届IEEE光伏专家会议的会议论文集,IEEE出版社,2005年)中所描述的倒置变质太阳能电池结构提出将来商用高效率太阳能电池开发的重要起点。此现有技术中所描述的结构提出许多与材料和制作步骤的恰当选择有关的实际困难,尤其与“下部”子电池(具有最低带隙的子电池)与相邻子电池之间的晶格失配层相关联。在本发明之前,现有技术中所揭示的材料和制作步骤尚未足以使用倒置变质电池结构来生产商业上可行的且具有能量效率的太阳能电池。明确地说,从变质层传播的穿透位错(threading dislocation)提出处理挑战。
发明内容
本发明提供一种形成包括上部子电池、中部子电池和下部子电池的多结太阳能电池的方法,所述方法通过以下步骤实现:提供第一衬底,其用于半导体材料的外延生长;在所述衬底上形成第一太阳能子电池,其具有第一带隙;在所述第一太阳能子电池上方形成第二太阳能子电池,其具有小于所述第一带隙的第二带隙;在所述第二子电池上方形成障壁层,以抑制穿透位错;在所述障壁层上方形成分级夹层(grading interlayer),所述分级夹层具有大于所述第二带隙的第三带隙;以及在所述分级夹层上方形成第三太阳能子电池,其具有小于所述第二带隙的第四带隙,且所述第三子电池相对于所述第二子电池为晶格失配的。
在另一方面中,本发明还提供一种多结太阳能电池,所述多结太阳能电池包括:衬底;第一太阳能子电池,其位于所述衬底上且具有第一带隙;第二太阳能子电池,其设置在所述第一子电池上方且具有小于所述第一带隙的第二带隙;障壁层,其设置在所述第二子电池上方;分级夹层,其设置在所述障壁层上方且具有大于所述第二带隙的第三带隙;以及第三太阳能子电池,其设置在所述分级夹层上方且相对于中部子电池为晶格失配的并具有小于所述第三带隙的第四带隙。所述障壁层由适当材料构成且为晶格恒定的,以抑制或防止与分级夹层相关联的穿透位错传播。
附图说明
通过结合附图参看以下具体实施方式将更好且更全面地理解本发明,附图中:
图1是根据本发明构造的太阳能电池的放大横截面图;
图2是在下一工艺步骤之后的图1的太阳能电池的横截面图;
图3是在下一工艺步骤之后的图2的太阳能电池的横截面图;
图4是在下一工艺步骤之后的图3的太阳能电池的横截面图;
图5A是在下一工艺步骤之后的图4的太阳能电池的横截面图,其中移除了原始衬底;
图5B是图5A的太阳能电池的另一横截面图,其中在所述图式的底部具有替代衬底;
图6A是其中制作太阳能电池的晶片的俯视平面图;
图6B是其中制作太阳能电池的晶片的仰视平面图;
图7是在下一工艺步骤之后的图6B的晶片的俯视平面图;
图8是在下一工艺步骤之后的图5A的太阳能电池的横截面图;
图9是在下一工艺步骤之后的图8的太阳能电池的横截面图;
图10是在下一工艺步骤之后的图9的太阳能电池的横截面图;
图11是在下一工艺步骤之后的图10的太阳能电池的横截面图;
图12是在下一工艺步骤之后的图11的太阳能电池的横截面图;
图13是在下一工艺步骤之后的图12的太阳能电池的横截面图;
图14是在下一工艺步骤之后的图13的太阳能电池的横截面图;
图15是在下一工艺步骤之后的图14的太阳能电池的横截面图;
图16是根据本发明没有障壁层的倒置变质太阳能电池的外部量子效率(EQE)曲线图;
图17是具有和没有障壁层的中部太阳能子电池的EQE曲线图;以及
图18是根据本发明具有障壁层的倒置变质太阳能电池的EQE曲线图。
具体实施方式
现将描述本发明的细节,其中包括其示范性方面和实施例。参看附图和以下描述,相同参考标号用于识别相同或功能相似元件,且希望以高度简化的图解方式说明示范性实施例的主要特征。此外,附图不希望描绘实际实施例的每个特征,也不希望描绘所描绘元件的相对尺寸,且并非按比例绘制。
图1描绘在衬底上形成三个子电池A、B和C之后的根据本发明的多结太阳能电池。更明确地说,其中展示衬底101,其可为砷化镓(GaAs)、锗(Ge)或其它合适材料。在Ge衬底的情况下,在所述衬底上沉积成核层102。在所述衬底上或在所述成核层102上方,进一步沉积缓冲层103和蚀刻终止层104。接着,在层104上沉积接触层105,且在所述接触层上沉积窗口层106。接着,在所述窗口层106上沉积子电池A,其由n+发射极层107和p型基极层108组成。
应注意到,多结太阳能电池结构可由周期表中所列举的III到V族元素的符合晶格常数和带隙要求的任何合适的组合形成,其中III族包括硼(B)、铝(Al)、镓(Ga)、铟(In)和铊(T)。IV族包括碳(C)、硅(Si)、锗(Ge)和锡(Sn)。V族包括氮(N)、磷(P)、砷(As)、锑(Sb)和铋(Bi)。
在优选实施例中,发射极层107由InGa(Al)P构成,且基极层由InGa(Al)P组成。
括号中的A1项意味着A1是可选成分,且在此例子中,可以在0%到30%范围内的量使用。
在基极层108之上沉积背面场(“BSF”)层109,其用于降低重组损失。
BSF层109驱动来自位于基极/BSF分界面附近的区的少数载流子,以将重组损失的效应减到最小。换句话说,BSF层109降低太阳能子电池A的背侧处的重组损失,且进而降低基极中的重组。
在BSF层109之上沉积重度掺杂p型和n型层110的序列,其形成隧道二极管,所述隧道二极管是将子电池A连接到子电池B的电路元件。
在隧道二极管层110之上沉积窗口层111。子电池B中所使用的窗口层111也操作以降低重组损失。窗口层111还改进下伏结的电池表面的钝化作用。所属领域的技术人员应明白,可在不脱离本发明范围的情况下在电池结构中添加或删除额外层。
在窗口层111之上沉积电池B的各层:发射极层112和p型基极层113。这些层优选地分别由InGaP和Ga(In)As构成,但也可使用符合晶格常数和带隙要求的任何其它合适的材料。
在电池B之上沉积BSF层114,其执行与BSF层109相同的功能。类似于层110,在BSF层114上方沉积p++/n++隧道二极管115,从而再次形成将电池B连接到电池C的电路元件。
在隧道二极管115上方沉积障壁层116a(优选地由InGa(Al)P构成),到达大约1.0微米的厚度。此障壁层希望防止穿透位错与进入中部子电池B和顶部子电池C的生长方向相反地或在进入底部子电池A的生长方向上传播。障壁层可以是带隙能量大于或等于分级夹层116且厚度足以降低穿透位错的传播的III-V族化合物半导体层的任何组合。典型的材料是基于As、P、N或Sb的III-V族半导体材料。
在障壁层116a上方沉积分级夹层或变质层116。层116优选地是一系列在成分上阶梯分级(step-graded)的InGaAlAs层,其具有希望实现从子电池B到子电池C的晶格常数过渡的单调变化的晶格常数。层116的带隙为1.5eV,其符合略大于中部子电池B的带隙的值。
分级夹层可由符合平面内晶格参数大于或等于第二太阳能电池B的晶格参数且小于或等于第三太阳能电池C的晶格参数且带隙能量大于第二太阳能电池B的带隙能量的限制的基于As、P、N、Sb的III-V族化合物半导体中的任一者构成。
在一个实施例中,如云利斯(Wanless)等人的论文中所建议的,阶梯级含有9个在成分上分级的InGaP阶梯,其中每一阶梯层具有0.25微米的厚度。在优选实施例中,层116由InGaAlAs构成,其在至少9个阶梯上具有单调变化的晶格常数。
在本发明的另一实施例中,可在InGaAlAs变质层116上方沉积可选的第二障壁层116b。第二障壁层116b将具有与障壁层116a不同的成分,且再次基极区可以是GaInAs、GaAsSb或GaInAsN。
在障壁层116b上方沉积窗口层117,此窗口层操作以降低子电池“C”中的重组损失。所属领域的技术人员应明白,可在不脱离本发明范围的情况下在电池结构中添加或删除额外层。
在窗口层117顶上沉积电池C的各层:n+发射极层118和p型基极层119。这些层优选地分别由InGaP和Ga(In)As构成,但也可使用符合晶格常数和带隙要求的其它合适的材料。
在电池C顶上沉积BSF层120,所述BSF层执行与BSF层109和114相同的功能。
最后,在BSF层120上沉积p+接触层121。
所属领域的技术人员应明白,可在不脱离本发明范围的情况下在电池结构中添加或删除额外层。
图2是在下一工艺步骤之后的图1的太阳能电池的横截面图,在所述工艺步骤中在p+半导体接触层121上方沉积金属接触层122。所述金属优选地为Ti/Au/Ag/Au。
图3是在下一工艺步骤之后的图2的太阳能电池的横截面图,在所述工艺步骤中在金属层122上方沉积粘合层123。粘合剂优选地为GenTak330(由通用化学公司(GeneralChemical Corp.)配售)。
图4是在下一工艺步骤之后的图3的太阳能电池的横截面图,在所述工艺步骤中附接替代衬底(优选地为蓝宝石)。所述替代衬底的厚度约为40密耳,且穿孔有间隔开4mm且直径约为1mm的孔以帮助随后移除粘合剂和衬底。
图5A是在下一工艺步骤之后的图4的太阳能电池的横截面图,在所述工艺步骤中通过研磨和/或蚀刻步骤序列移除原始衬底,在所述步骤序列中移除衬底101、缓冲层103和蚀刻终止层104。蚀刻剂是依赖于生长衬底的。
图5B是来自图5A的太阳能电池的从替代衬底124位于图式底部的定向上的图5A的太阳能电池的横截面图。
图6A是其中实施太阳能电池的晶片的俯视平面图。
在每一电池中,存在网格线501(图10中的横截面中更明确展示)、互连总线502和接触垫503。
图6B是图6A中所示的具有四个太阳能电池的晶片的仰视平面图。
图7是在下一工艺步骤之后的图6A的晶片的俯视平面图,在所述工艺步骤中使用磷化物和砷化物蚀刻剂在每一电池的周边周围蚀刻出台面510。
图8是图5B的太阳能电池的简化横截面图,其仅描绘位于替代衬底124上方的儿个顶部层和下部层。
图9是在下一工艺步骤之后的图8的太阳能电池的横截面图,在所述工艺步骤中通过HCl/H2O溶液移除蚀刻终止层104。
图10是在下一工艺步骤序列之后的图9的太阳能电池的横截面图,在所述工艺步骤序列中在接触层105上方放置光致抗蚀剂掩模(未图示)以形成网格线501。网格线501经由蒸发作用沉积,且以光刻方式进行图案化并沉积在接触层105上方。提离所述掩模以形成金属网格线501。
图11是在下一工艺步骤之后的图10的太阳能电池的横截面图,在所述工艺步骤中网络线用作掩模以使用柠檬酸/过氧化物蚀刻混合物沿着表面向下蚀刻到达窗口层106。
图12是在下一工艺步骤之后的图11的太阳能电池的横截面图,在所述工艺步骤中在晶片的具有网格线501的“底”侧的整个表面上方施加抗反射(ARC)介电涂层130。
图13是在下一工艺步骤之后的图12的太阳能电池的横截面图,在所述工艺步骤中使用磷化物和砷化物蚀刻剂向下蚀刻台面501到达金属层122。所述图式中的横截面描绘为如从图7所示的A-A平面所见的。接着,将一个或一个以上银电极焊接到接触垫。
图14是在通过EKC922移除替代衬底124和粘合剂123之后在下一工艺步骤之后的图13的太阳能电池的横截面图。替代衬底中所提供的优选穿孔具有0.033英寸的直径且分离0.152英寸。
图15是在下一工艺步骤之后的图14的太阳能电池的横截面图,在所述工艺步骤中在ARC层130上方施加粘合剂并向其附接玻璃罩。
图16到18中提供本发明的效力的实验指示。具有图1中所示的类型但没有障壁层116a和116b的结构经生长并制作为4cm2电池。进行外部量子效率(EQE)测量,且图16所示的结果指示中部子电池B的长波长响应低于预期。此观测暗示与生长方向相反的穿透位错传播可能是造成中部电池的效率降级的原因。Nomarski显微术指示晶格匹配子电池A的初始外延层上有未预期的交叉影线(应变消除模式)。光致发光测图进一步显示中部子电池B的发光低于预期。阴极发光测量指示穿透位错密度在中部子电池B中较高,但穿透位错未穿越顶部子电池A。这些测量符合图16所示的EQE测量。
图17说明根据本发明添加障壁层116a与不添加障壁层116a的三结太阳能电池中的中间子电池的EQE测量的比较。子电池B(没有障壁层)的曲线图具有15.6mA/cm2的集成电流(AMO)和低于子电池D(具有障壁层)的EQE,子电池D具有17.4mA/cm2的集成电流(AMO)。
可通过比较图16和18的EQE曲线图来了解在本发明的太阳能电池中使用障壁层的效力。图16是没有障壁层的图1的太阳能电池的EQE,且图18是具有障壁层的太阳能电池的EQE。图18的太阳能电池的中部子电池B的电流(17.4mA/cm2)仅略微低于顶部子电池C的电流(184mA/cm2)。中部子电池和顶部子电池的如此紧密的电流匹配证明了本发明的效力。
将了解,上文所描述的元件的每一者或者两个或两个以上元件一起也可有效地应用于不同于上述类型构造的其它类型的构造中。
虽然本发明的优选实施例利用具有顶部和底部电接触的垂直子电池堆叠,但子电池或者可借助于通往子电池之间的横向传导半导体层的金属接触来接触。此类布置可用于形成3端子、4端子和一般来说,n端子装置。子电池可使用这些额外端子在电路中互连,使得每一子电池中的大部分可用光生电流密度可被有效使用,从而得到多结电池的高效率,尽管光生电流密度通常在各个子电池中有所不同。
如上面提到的,本发明可利用一个或一个以上同质结电池或子电池,即其中p-n结形成在p型半导体与n型半导体之间且所述p型半导体与n型半导体两者具有相同化学成分和相同带隙只是掺杂剂种类和类型不同的电池或子电池。具有p型和n型InGaP的子电池A是同质结子电池的一个实例。或者,本发明可利用一个或一个以上异质结电池或子电池,即这样的电池或子电池:其中p-n结形成在p型半导体与n型半导体之间,且所述p型半导体与n型半导体除了在形成p-n结的p型和n型区中利用不同掺杂剂种类和类型外,还具有n型和n型区中的半导体材料的不同化学成分和/或p型区中的不同带隙能量。
窗口或BSF层的成分可利用符合晶格常数和带隙要求的其它半导体化合物,且可包含AlInP、AlAs、AlP、AlGaInP、AlGaAsP、AlGaInAs、AlGaInPAs、GaInP、GaInAs、GaInPAs、AlGaAs、AlInAs、AlInPAs、GaAsSb、AlAsSb、GaAlAsSb、AlInSb、GaInSb、AlGaInSb、AIN、GaN、InN、GaInN、AlGaInN、GaInNAs、AlGaInNAs、ZnSSe、CdSSe和类似材料,且仍在本发明的精神内。
尽管已经将本发明说明并描述为在倒置变质多结太阳能电池中实施,但不希望其限于所展示的细节,因为可在不以任何方式脱离本发明精神的情况下作出各种修改和结构变化。
在不作进一步分析的情况下,前文将全面显示本发明的要旨,以使得其他人可通过应用当前知识容易使其适用于各种应用,而不省略从现有技术的观点来看适当地组成本发明的一般或特定方面的基本特点的特征,且因此,此类调适应当且希望在所附权利要求书的等效物的意义和范围内来理解。

Claims (22)

1.一种形成包含第三太阳能子电池、第二太阳能子电池和第一太阳能子电池的多结太阳能电池的方法,所述方法包含:
提供第一衬底,其用于半导体材料的外延生长;
在所述衬底上形成第一太阳能子电池,其具有第一带隙;
在所述第一太阳能子电池上方形成第二太阳能子电池,其具有小于所述第一带隙的第二带隙;
在所述第二太阳能子电池上方形成障壁层;
在所述障壁层上方形成分级夹层,所述分级夹层具有大于所述第二带隙的第三带隙;以及
在所述分级夹层上方形成第三太阳能子电池,其具有小于所述第二带隙的第四带隙,使得所述第三太阳能子电池相对于所述第二太阳能子电池而晶格失配。
2.根据权利要求1所述的方法,其中所述障壁层由带隙能量大于或等于所述分级夹层的带隙能量的任何基于As、P、N或Sb的III-V族化合物半导体构成。
3.根据权利要求1所述的方法,其进一步包含在形成所述第三太阳能子电池之前在所述分级夹层上方形成第二障壁层。
4.根据权利要求3所述的方法,其中所述第二障壁层由带隙能量大于或等于所述分级夹层的带隙能量的任何基于As、P、N或Sb的III-V族化合物半导体构成,其中所述第二障壁层具有与所述障壁层不同的成分。
5.根据权利要求1所述的方法,其中所述第一衬底选自由锗或GaAs组成的群组。
6.根据权利要求1所述的方法,其中所述第一太阳能子电池由InGa(Al)P发射极区和InGa(Al)P基极区构成。
7.根据权利要求6所述的方法,其中所述第二太阳能子电池由GaInP、GaInAs、GaAsSb或GaInAsN发射极区和GaInAs、GaAsSb或GaInAsN基极区构成。
8.根据权利要求1所述的方法,其中所述分级夹层由基于As、P、N、Sb的III-V族化合物半导体中的任一者构成,其符合平面内晶格参数大于或等于所述第二太阳能子电池的晶格参数且小于或等于所述第三太阳能子电池的晶格参数且带隙能量大于所述第二太阳能子电池的带隙能量的限制。
9.根据权利要求6所述的方法,其中所述第二太阳能子电池由InGaP发射极区和GaAs基极区构成。
10.根据权利要求1所述的方法,其中所述分级夹层由InGaAlAs构成。
11.根据权利要求8所述的方法,其中所述分级夹层由具有单调变化的晶格常数的九个阶梯层构成。
12.根据权利要求1所述的方法,其进一步包含在所述第三太阳能子电池上方沉积接触层且因此形成电接触。
13.根据权利要求12所述的方法,其进一步包含在所述接触层上方附接替代第二衬底且移除所述第一衬底。
14.根据权利要求1所述的方法,其进一步包含:
将所述接触层图案化为网格;以及
围绕所述太阳能电池的周边蚀刻凹槽,以便在所述替代第二衬底上形成台面结构。
15.一种多结太阳能电池,其包含:
衬底;
第一太阳能子电池,其位于所述衬底上且具有第一带隙;
第二太阳能子电池,其设置在所述第一太阳能子电池上方且具有小于所述第一带隙的第二带隙;
障壁层,其设置在所述第二太阳能子电池上方以用于减小穿透位错的传播;
分级夹层,其设置在所述障壁层上方且具有大于所述第二带隙的第三带隙;以及
第三太阳能子电池,其设置在所述分级夹层上方且相对于所述二太阳能子电池而晶格失配并具有小于所述第二带隙的第四带隙。
16.根据权利要求15所述的太阳能电池,其中所述障壁层由带隙能量大于或等于所述分级夹层的带隙能量的任何基于As、P、N或Sb的III-V族化合物半导体构成。
17.根据权利要求15所述的太阳能电池,其进一步包含第二障壁层,所述第二障壁层设置在所述分级夹层与所述第三子电池之间。
18.根据权利要求17所述的太阳能电池,其中所述第二障壁层由带隙能量大于或等于所述分级夹层的带隙能量的任何基于As、P、N或Sb的III-V族化合物半导体构成,其中所述第二障壁层具有与所述障壁层不同的成分。
19.根据权利要求15所述的太阳能电池,其中所述衬底选自由锗或GaAs组成的群组。
20.根据权利要求15所述的太阳能电池,其中所述第一太阳能子电池由InGa(Al)P构成。
21.根据权利要求15所述的太阳能电池,其中所述第二太阳能子电池由GaInP、GaInAs、GaAsSb或GaInAsN发射极区和GaInAs、GaAsSb或GaInAsN基极区构成。
22.根据权利要求15所述的太阳能电池,其中所述第三太阳能子电池由InGaAs构成。
CN2008102114162A 2007-09-24 2008-09-22 倒置变质多结太阳能电池中的障壁层 Active CN101399298B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/860,183 2007-09-24
US11/860,183 US20090078309A1 (en) 2007-09-24 2007-09-24 Barrier Layers In Inverted Metamorphic Multijunction Solar Cells

Publications (2)

Publication Number Publication Date
CN101399298A CN101399298A (zh) 2009-04-01
CN101399298B true CN101399298B (zh) 2012-06-27

Family

ID=40435611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102114162A Active CN101399298B (zh) 2007-09-24 2008-09-22 倒置变质多结太阳能电池中的障壁层

Country Status (5)

Country Link
US (1) US20090078309A1 (zh)
JP (2) JP2009076920A (zh)
CN (1) CN101399298B (zh)
DE (1) DE102008034711A1 (zh)
TW (1) TWI488314B (zh)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US10170656B2 (en) 2009-03-10 2019-01-01 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with a single metamorphic layer
US9117966B2 (en) 2007-09-24 2015-08-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell
US20100122724A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
US10381501B2 (en) 2006-06-02 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US9634172B1 (en) 2007-09-24 2017-04-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20100229926A1 (en) 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US8686282B2 (en) 2006-08-07 2014-04-01 Emcore Solar Power, Inc. Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US20080029151A1 (en) * 2006-08-07 2008-02-07 Mcglynn Daniel Terrestrial solar power system using III-V semiconductor solar cells
US20100093127A1 (en) * 2006-12-27 2010-04-15 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
KR101431296B1 (ko) 2007-01-11 2014-08-20 레드 밴드 리미티드 저장 장치에 저장된 컨텐츠의 인-플레이스 업데이트 방법 및 시스템
US10381505B2 (en) 2007-09-24 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells including metamorphic layers
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20100012175A1 (en) 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US9287438B1 (en) * 2008-07-16 2016-03-15 Solaero Technologies Corp. Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation
US8263853B2 (en) 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US7741146B2 (en) 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
US8330036B1 (en) * 2008-08-29 2012-12-11 Seoijin Park Method of fabrication and structure for multi-junction solar cell formed upon separable substrate
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US10541349B1 (en) 2008-12-17 2020-01-21 Solaero Technologies Corp. Methods of forming inverted multijunction solar cells with distributed Bragg reflector
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US7960201B2 (en) * 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US8778199B2 (en) 2009-02-09 2014-07-15 Emoore Solar Power, Inc. Epitaxial lift off in inverted metamorphic multijunction solar cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
US9018519B1 (en) 2009-03-10 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US20100282305A1 (en) * 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
KR101245371B1 (ko) * 2009-06-19 2013-03-19 한국전자통신연구원 태양전지 및 그 제조방법
US8263856B2 (en) * 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts
DE102009049397B4 (de) 2009-10-14 2018-09-06 Solaero Technologies Corp. Herstellungsverfahren mit Surrogatsubstrat für invertierte metamorphische Multijunction-Solarzellen
DE102009057020B4 (de) * 2009-12-03 2021-04-29 Solaero Technologies Corp. Wachstumssubstrate für invertierte metamorphe Multijunction-Solarzellen
JP5215284B2 (ja) 2009-12-25 2013-06-19 シャープ株式会社 多接合型化合物半導体太陽電池
US8187907B1 (en) 2010-05-07 2012-05-29 Emcore Solar Power, Inc. Solder structures for fabrication of inverted metamorphic multijunction solar cells
TWI453920B (zh) * 2011-06-21 2014-09-21 Inst Nuclear Energy Res Atomic Energy Council 反向變質(imm)太陽能電池半導體結構及雷射剝離的方法
JP2013105869A (ja) * 2011-11-14 2013-05-30 Sharp Corp 光電変換素子の製造方法、光電変換素子および光電変換素子モジュール
US20140150856A1 (en) * 2012-11-30 2014-06-05 Intellectual Discovery Co., Ltd. Photovoltaic module
TWI602315B (zh) 2013-03-08 2017-10-11 索泰克公司 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法
US10153388B1 (en) 2013-03-15 2018-12-11 Solaero Technologies Corp. Emissivity coating for space solar cell arrays
US9853180B2 (en) 2013-06-19 2017-12-26 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with surface passivation
US9214594B2 (en) 2013-08-07 2015-12-15 Solaero Technologies Corp. Fabrication of solar cells with electrically conductive polyimide adhesive
US9768326B1 (en) 2013-08-07 2017-09-19 Solaero Technologies Corp. Fabrication of solar cells with electrically conductive polyimide adhesive
DE102013111981A1 (de) * 2013-10-30 2015-04-30 Hanergy Holding Group Ltd. Verfahren zur Herstellung eines Dünnschicht-Solarzellenmoduls und Dünnschicht-Solarzellenmodul
WO2015198117A1 (en) 2014-06-26 2015-12-30 Soitec Semiconductor structures including bonding layers, multijunction photovoltaic cells and related methods
JP2016122752A (ja) * 2014-12-25 2016-07-07 国立大学法人 東京大学 太陽電池
US9758261B1 (en) 2015-01-15 2017-09-12 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with lightweight laminate substrate
DE102016005640A1 (de) 2015-05-07 2016-11-10 Solaero Technologies Corp. Invertierte Mehrfach-Solarzelle
US9935209B2 (en) 2016-01-28 2018-04-03 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US9985161B2 (en) 2016-08-26 2018-05-29 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10256359B2 (en) 2015-10-19 2019-04-09 Solaero Technologies Corp. Lattice matched multijunction solar cell assemblies for space applications
EP3159942B1 (en) 2015-10-19 2021-01-27 SolAero Technologies Corp. Multijunction metamorphic solar cell assembly for space applications
US10270000B2 (en) 2015-10-19 2019-04-23 Solaero Technologies Corp. Multijunction metamorphic solar cell assembly for space applications
US10403778B2 (en) * 2015-10-19 2019-09-03 Solaero Technologies Corp. Multijunction solar cell assembly for space applications
US10361330B2 (en) 2015-10-19 2019-07-23 Solaero Technologies Corp. Multijunction solar cell assemblies for space applications
US9929300B2 (en) 2015-11-13 2018-03-27 Solaero Technologies Corp. Multijunction solar cells with electrically conductive polyimide adhesive
EP3171413A1 (en) 2015-11-20 2017-05-24 SolAero Technologies Corp. Inverted metamorphic multijunction solar cell
DE102016001386A1 (de) * 2016-02-09 2017-08-10 Azur Space Solar Power Gmbh Stapelförmige Mehrfachsolarzelle
US10263134B1 (en) 2016-05-25 2019-04-16 Solaero Technologies Corp. Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell
US10636926B1 (en) 2016-12-12 2020-04-28 Solaero Technologies Corp. Distributed BRAGG reflector structures in multijunction solar cells
US20190181289A1 (en) 2017-12-11 2019-06-13 Solaero Technologies Corp. Multijunction solar cells
EP4036992A1 (en) 2018-01-17 2022-08-03 SolAero Technologies Corp. Four junction solar cell and solar cell assemblies for space applications
CN112038425B (zh) * 2019-06-03 2024-04-30 中国科学院苏州纳米技术与纳米仿生研究所 一种多结叠层激光光伏电池
CN112151635A (zh) * 2019-06-27 2020-12-29 张家港恩达通讯科技有限公司 一种三结太阳能电池及其制备方法
EP3836231A1 (en) 2019-12-11 2021-06-16 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells having a graded-index structure
US11658256B2 (en) 2019-12-16 2023-05-23 Solaero Technologies Corp. Multijunction solar cells
US11362230B1 (en) 2021-01-28 2022-06-14 Solaero Technologies Corp. Multijunction solar cells
US20220238747A1 (en) 2021-01-28 2022-07-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell
EP4092761A1 (en) 2021-05-18 2022-11-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells
EP4092762A1 (en) 2021-05-18 2022-11-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells
EP4092763A1 (en) 2021-05-18 2022-11-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells
EP4170732A1 (en) 2021-10-19 2023-04-26 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction metamorphic solar cell
EP4213224A1 (en) 2022-01-14 2023-07-19 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells with shifted junction
EP4220740A1 (en) 2022-01-31 2023-08-02 SolAero Technologies Corp., a corporation of the state of Delaware Space vehicles including multijunction metamorphic solar cells
EP4235817A1 (en) 2022-02-28 2023-08-30 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction metamorphic solar cells
EP4243090A1 (en) 2022-03-07 2023-09-13 SolAero Four junction metamorphic multijunction solar cells for space applications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021360A (en) * 1989-09-25 1991-06-04 Gte Laboratories Incorporated Method of farbicating highly lattice mismatched quantum well structures
CN1826693A (zh) * 2003-07-22 2006-08-30 阿克佐诺贝尔股份有限公司 利用临时衬底制造太阳能电池薄片的方法

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US265113A (en) * 1882-09-26 Animal-catcher
US716814A (en) * 1899-11-16 1902-12-23 James A Ekin Criswell Machine for making matches.
US730018A (en) * 1901-07-30 1903-06-02 Daniel L Holden Freezing-cylinder for ice-machines.
US708361A (en) * 1901-10-31 1902-09-02 John W Kelley Stock-waterer.
US775946A (en) * 1902-02-04 1904-11-29 Albert H Stebbins Concentrating-machine.
US756926A (en) * 1903-12-23 1904-04-12 Universal Compound Company Wall-facing for dampproofing.
US813408A (en) * 1904-08-17 1906-02-27 Washington M Dillon Crimping mechanism for wire-fence machines.
US844673A (en) * 1905-10-27 1907-02-19 Cottrell C B & Sons Co Attachment for ink-fountains of printing-presses.
US3488834A (en) * 1965-10-20 1970-01-13 Texas Instruments Inc Microelectronic circuit formed in an insulating substrate and method of making same
US3964155A (en) * 1972-02-23 1976-06-22 The United States Of America As Represented By The Secretary Of The Navy Method of planar mounting of silicon solar cells
US4001864A (en) * 1976-01-30 1977-01-04 Gibbons James F Semiconductor p-n junction solar cell and method of manufacture
US4255211A (en) * 1979-12-31 1981-03-10 Chevron Research Company Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface
DE3036260A1 (de) * 1980-09-26 1982-04-29 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur herstellung von elektrischen kontakten an einer silizium-solarzelle
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4881979A (en) * 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
JPH0666274B2 (ja) * 1987-07-01 1994-08-24 日本電気株式会社 ▲iii▼−v族化合物半導体の形成方法
US4759803A (en) * 1987-08-07 1988-07-26 Applied Solar Energy Corporation Monolithic solar cell and bypass diode system
US4824489A (en) * 1988-02-02 1989-04-25 Sera Solar Corporation Ultra-thin solar cell and method
US4963949A (en) * 1988-09-30 1990-10-16 The United States Of America As Represented Of The United States Department Of Energy Substrate structures for InP-based devices
EP0369666B1 (en) * 1988-11-16 1995-06-14 Mitsubishi Denki Kabushiki Kaisha Solar cell
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5322572A (en) * 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5342453A (en) * 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) * 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
JP3169497B2 (ja) * 1993-12-24 2001-05-28 三菱電機株式会社 太陽電池の製造方法
US5479032A (en) * 1994-07-21 1995-12-26 Trustees Of Princeton University Multiwavelength infrared focal plane array detector
JPH09232691A (ja) * 1995-07-24 1997-09-05 Fujitsu Ltd 半導体レーザ
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6232138B1 (en) * 1997-12-01 2001-05-15 Massachusetts Institute Of Technology Relaxed InxGa(1-x)as buffers
US6043426A (en) * 1998-02-20 2000-03-28 The United States Of America As Represented By The United States Department Of Energy Thermophotovoltaic energy conversion system having a heavily doped n-type region
US6166318A (en) * 1998-03-03 2000-12-26 Interface Studies, Inc. Single absorber layer radiated energy conversion device
US6239354B1 (en) * 1998-10-09 2001-05-29 Midwest Research Institute Electrical isolation of component cells in monolithically interconnected modules
US6300557B1 (en) * 1998-10-09 2001-10-09 Midwest Research Institute Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
US6165873A (en) * 1998-11-27 2000-12-26 Nec Corporation Process for manufacturing a semiconductor integrated circuit device
JP3657143B2 (ja) * 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
JP4642276B2 (ja) * 2000-06-16 2011-03-02 パナソニック株式会社 半導体装置の製造方法及び記録媒体
JP4269541B2 (ja) * 2000-08-01 2009-05-27 株式会社Sumco 半導体基板と電界効果型トランジスタ並びにSiGe層の形成方法及びこれを用いた歪みSi層の形成方法と電界効果型トランジスタの製造方法
JP3909811B2 (ja) * 2001-06-12 2007-04-25 パイオニア株式会社 窒化物半導体素子及びその製造方法
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6690041B2 (en) * 2002-05-14 2004-02-10 Global Solar Energy, Inc. Monolithically integrated diodes in thin-film photovoltaic devices
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US6794631B2 (en) * 2002-06-07 2004-09-21 Corning Lasertron, Inc. Three-terminal avalanche photodiode
US20060048700A1 (en) * 2002-09-05 2006-03-09 Wanlass Mark W Method for achieving device-quality, lattice-mismatched, heteroepitaxial active layers
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
US6951819B2 (en) * 2002-12-05 2005-10-04 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
JP4471584B2 (ja) * 2003-04-28 2010-06-02 シャープ株式会社 化合物太陽電池の製造方法
US20050211291A1 (en) * 2004-03-23 2005-09-29 The Boeing Company Solar cell assembly
DE102004023856B4 (de) * 2004-05-12 2006-07-13 Rwe Space Solar Power Gmbh Solarzelle mit integrierter Schutzdiode und zusätzlich auf dieser angeordneten Tunneldiode
JP4518886B2 (ja) * 2004-09-09 2010-08-04 シャープ株式会社 半導体素子の製造方法
US7846759B2 (en) * 2004-10-21 2010-12-07 Aonex Technologies, Inc. Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
FR2878076B1 (fr) * 2004-11-17 2007-02-23 St Microelectronics Sa Amincissement d'une plaquette semiconductrice
US10374120B2 (en) * 2005-02-18 2019-08-06 Koninklijke Philips N.V. High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
US7166520B1 (en) * 2005-08-08 2007-01-23 Silicon Genesis Corporation Thin handle substrate method and structure for fabricating devices using one or more films provided by a layer transfer process
US7732705B2 (en) * 2005-10-11 2010-06-08 Emcore Solar Power, Inc. Reliable interconnection of solar cells including integral bypass diode
US8637759B2 (en) * 2005-12-16 2014-01-28 The Boeing Company Notch filter for triple junction solar cells
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US20100186804A1 (en) * 2009-01-29 2010-07-29 Emcore Solar Power, Inc. String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US8536445B2 (en) * 2006-06-02 2013-09-17 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells
US20100122724A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
US20090078308A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US20080029151A1 (en) * 2006-08-07 2008-02-07 Mcglynn Daniel Terrestrial solar power system using III-V semiconductor solar cells
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US7842881B2 (en) * 2006-10-19 2010-11-30 Emcore Solar Power, Inc. Solar cell structure with localized doping in cap layer
US20080149173A1 (en) * 2006-12-21 2008-06-26 Sharps Paul R Inverted metamorphic solar cell with bypass diode
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
US20080245409A1 (en) * 2006-12-27 2008-10-09 Emcore Corporation Inverted Metamorphic Solar Cell Mounted on Flexible Film
US20100093127A1 (en) * 2006-12-27 2010-04-15 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film
US20080185038A1 (en) * 2007-02-02 2008-08-07 Emcore Corporation Inverted metamorphic solar cell with via for backside contacts
US20090038679A1 (en) * 2007-08-09 2009-02-12 Emcore Corporation Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US20090078311A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090223554A1 (en) * 2008-03-05 2009-09-10 Emcore Corporation Dual Sided Photovoltaic Package
US20090229662A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells
US20090229658A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Non-Isoelectronic Surfactant Assisted Growth In Inverted Metamorphic Multijunction Solar Cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20100012175A1 (en) * 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) * 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US8263853B2 (en) * 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US7741146B2 (en) * 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US20100147366A1 (en) * 2008-12-17 2010-06-17 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector
US7785989B2 (en) * 2008-12-17 2010-08-31 Emcore Solar Power, Inc. Growth substrates for inverted metamorphic multijunction solar cells
US7960201B2 (en) * 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US8263856B2 (en) * 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021360A (en) * 1989-09-25 1991-06-04 Gte Laboratories Incorporated Method of farbicating highly lattice mismatched quantum well structures
CN1826693A (zh) * 2003-07-22 2006-08-30 阿克佐诺贝尔股份有限公司 利用临时衬底制造太阳能电池薄片的方法

Also Published As

Publication number Publication date
JP2009076920A (ja) 2009-04-09
US20090078309A1 (en) 2009-03-26
TW200915588A (en) 2009-04-01
JP6194283B2 (ja) 2017-09-06
TWI488314B (zh) 2015-06-11
CN101399298A (zh) 2009-04-01
JP2014195118A (ja) 2014-10-09
DE102008034711A1 (de) 2009-04-16

Similar Documents

Publication Publication Date Title
CN101399298B (zh) 倒置变质多结太阳能电池中的障壁层
CN101399296B (zh) 具有刚性支撑的薄倒置变质多结太阳能电池
CN101499495B (zh) 倒置变形多结太阳能电池中的异质结子电池
CN101740647B (zh) 具有两个变质层的四结倒置变质多结太阳能电池
US8039291B2 (en) Demounting of inverted metamorphic multijunction solar cells
US8969712B2 (en) Four junction inverted metamorphic multijunction solar cell with a single metamorphic layer
JP5512086B2 (ja) 背面側接触のためのviaを有する倒置変性ソーラーセル構造
CN101083290B (zh) 多结太阳能电池及其形成方法
US20090078311A1 (en) Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20090288703A1 (en) Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US20090272430A1 (en) Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20160181464A1 (en) Method of forming an inverted metamorphic multijunction solar cell with dbr layer adjacent to the top subcell
US20090229662A1 (en) Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells
US20140342494A1 (en) Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20100031994A1 (en) Wafer Level Interconnection of Inverted Metamorphic Multijunction Solar Cells
US20100122764A1 (en) Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US20100012174A1 (en) High band gap contact layer in inverted metamorphic multijunction solar cells
CN101882645A (zh) 具有iv/iii-v族混合合金的反向多结太阳能电池
US20100282307A1 (en) Multijunction Solar Cells with Group IV/III-V Hybrid Alloys for Terrestrial Applications
US10541349B1 (en) Methods of forming inverted multijunction solar cells with distributed Bragg reflector
EP2148378B1 (en) Barrier layers in inverted metamorphic multijunction solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant