TWI488314B - 反向變質多接點太陽能電池之障壁層 - Google Patents
反向變質多接點太陽能電池之障壁層 Download PDFInfo
- Publication number
- TWI488314B TWI488314B TW097128500A TW97128500A TWI488314B TW I488314 B TWI488314 B TW I488314B TW 097128500 A TW097128500 A TW 097128500A TW 97128500 A TW97128500 A TW 97128500A TW I488314 B TWI488314 B TW I488314B
- Authority
- TW
- Taiwan
- Prior art keywords
- cell
- solar
- band gap
- layer
- sub
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title description 29
- 239000010410 layer Substances 0.000 claims description 155
- 238000000034 method Methods 0.000 claims description 34
- 239000000758 substrate Substances 0.000 claims description 32
- 239000011229 interlayer Substances 0.000 claims description 26
- 239000004065 semiconductor Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 11
- 240000002329 Inga feuillei Species 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 6
- 229910052787 antimony Inorganic materials 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 2
- 230000001902 propagating effect Effects 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 3
- 230000002265 prevention Effects 0.000 claims 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000000059 patterning Methods 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 71
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 230000003667 anti-reflective effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 230000005641 tunneling Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- RDEIXVOBVLKYNT-VQBXQJRRSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(1-aminoethyl)oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol;(2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(aminomethyl)oxan-2-yl]o Chemical group OS(O)(=O)=O.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@@H](CN)O2)N)[C@@H](N)C[C@H]1N.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@H](O2)C(C)N)N)[C@@H](N)C[C@H]1N.O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N RDEIXVOBVLKYNT-VQBXQJRRSA-N 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- -1 GaInPAs Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005136 cathodoluminescence Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001152 differential interference contrast microscopy Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229940084896 gentak Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1852—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0687—Multiple junction or tandem solar cells
- H01L31/06875—Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0693—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1844—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Description
本發明係關於太陽能電池半導體裝置之領域,且明確而言,係關於包括變質層之多接點太陽能電池。此類裝置亦包括反向變質太陽能電池。
本發明係依據美國空軍授予之第FA9453-06-C-0345號合同在政府支持下進行的。政府在本發明中具有特定權利。
相關申請案之參考
本申請案與同本文同時申請之題為"具有剛性支撐件之薄反向變質多接點太陽能電池(Thin Inverted Metamorphic Multijunction Solar Cell with Rigid Support)"之共同待決的第___號美國專利申請案相關。
本申請案與2006年12月27日申請之共同待決的第11/616,596號美國專利申請案相關。
本申請案亦與2006年6月2日申請之共同待決的第11/445,793號美國專利申請案相關。
光伏電池(亦稱為太陽能電池)係在過去幾年中變得可用之最重要新能源之一。已對太陽能電池開發投入了相當大的努力。因而,太陽能電池當前正用於許多商業及面向消費者之應用中。儘管已經在此領域中取得顯著進步,但對太陽能電池滿足更複雜應用之需要的要求尚未能跟上需求。例如用於數據通信之衛星等應用已經劇烈增加對具有改良之電力及能量轉換特徵之太陽能電池之需求。
在衛星及其他空間相關應用中,衛星電力系統之大小、質量及成本取決於所使用之太陽能電池之電力及能量轉換效率。換言之,有效負荷之大小及機載服務之可用性與所提供之電力量成比例。因此,隨著有效負荷變得越來越複雜,充當機載電力系統之電力轉換裝置之太陽能電池亦變得越來越重要。
太陽能電池通常製作成垂直多接點結構並設置成水平陣列,其中各個太陽能電池串聯連接在一起。陣列之形狀及結構以及其所含有之電池數目部分由所需輸出電壓及電流判定。
例如M.W.雲利斯(Wanless)等人之"用於高效能III-V光伏能量轉換器之晶格失配途徑(Lattice Mismatched Approaches for High Performance,III-V Photovoltaic Energy Converters)"(2005年1月3日至7日第31屆IEEE光伏專家會議之會議論文集,IEEE出版社,2005年)中所描述之反向變質太陽能電池結構提出將來商用高效率太陽能電池開發之重要起點。此先前技術中所描述之結構提出許多與材料及製作步驟之恰當選擇有關的實際困難,尤其與"下部"子電池(具有最低能帶隙之子電池)與相鄰子電池之間的晶格失配層相關聯。在本發明之前,先前技術中所揭示之材料及製作步驟尚未足以使用反向變質電池結構來生產商業上可行且具有能量效率之太陽能電池。明確而言,自變質層傳播之穿透位錯提出處理挑戰。
本發明提供一種形成包括上部子電池、中部子電池及下部子電池之多接點太陽能電池之方法,該方法藉由以下步驟實現:提供第一基板,其用於半導體材料之磊晶成長;在該基板上形成第一太陽能子電池,其具有第一能帶隙;在該第一太陽能子電池上方形成第二太陽能子電池,其具有小於該第一能帶隙之第二能帶隙;在該第二子電池上方形成障壁層,以抑制穿透位錯;在該障壁層上方形成分級夾層,該分級夾層具有大於該第二能帶隙之第三能帶隙;以及在該分級夾層上方形成第三太陽能子電池,其具有小於該第二能帶隙之第四能帶隙,且該第三子電池相對於該第二子電池為晶格失配的。
在另一態樣中,本發明亦提供一種多接點太陽能電池,該多接點太陽能電池包括:基板;第一太陽能子電池,其位於該基板上且具有第一能帶隙;第二太陽能子電池,其設置在該第一子電池上方且具有小於該第一能帶隙之第二能帶隙;障壁層,其設置在該第二子電池上方;分級夾層,其設置在該障壁層上方且具有大於該第二能帶隙之第三能帶隙;以及第三太陽能子電池,其設置在該分級夾層上方且相對於中部子電池為晶格失配的並具有小於該第三能帶隙之第四能帶隙。該障壁層由適當材料構成且為晶格恆定的,以抑制或防止與分級夾層相關聯之穿透位錯傳播。
現將描述本發明之細節,其中包括其示範性態樣及實施
例。參看附圖及以下描述,相同參考標號用於識別相同或功能相似元件,且希望以高度簡化之圖解方式說明示範性實施例之主要特徵。此外,附圖不希望描繪實際實施例之每一特徵,亦不希望描繪所描繪元件之相對尺寸,且並非按比例繪製。
圖1描繪在基板上形成三個子電池A、B及C之後之根據本發明之多接點太陽能電池。更明確而言,其中展示基板101,其可為砷化鎵(GaAs)、鍺(Ge)或其他合適材料。在Ge基板的情況下,在該基板上沈積成核層102。在該基板上或在該成核層102上方,進一步沈積緩衝層103及蝕刻終止層104。接著,在層104上沈積接觸層105,且在該接觸層上沈積窗口層106。接著,在該窗口層106上沈積子電池A,其由n+發射極層107及p型基極層108組成。
應注意,多接點太陽能電池結構可由週期表中所列舉之III至V族元素之服從晶格常數及能帶隙要求之任何合適的組合形成,其中III族包括硼(B)、鋁(Al)、鎵(Ga)、銦(In)及鉈(T)。IV族包括碳(C)、矽(Si)、鍺(Ge)及錫(Sn)。V族包括氮(N)、磷(P)、砷(As)、銻(Sb)及鉍(Bi)。
在較佳實施例中,發射極層107由InGa(Al)P構成,且基極層由InGa(Al)P組成。
括號中之Al項意謂Al係可選成分,且在此例子中,可以在0%至30%範圍內的量使用。
在基極層108之上沈積背面場("BSF")層109,其用於降低重組損失。
BSF層109驅動來自位於基極/BSF分界面附近之區的少數載流子,以將重組損失之效應減至最小。換言之,BSF層109降低太陽能子電池A之背側處之重組損失,且因此降低基極中之重組。
在BSF層109之上接連沈積重度摻雜p型及n型層110,其形成隧道二極體,該隧道二極體係將子電池A連接至子電池B之電路元件。
在隧道二極體層110之上沈積窗口層111。子電池B中所使用之窗口層111亦操作以降低重組損失。窗口層111亦改良下伏接點之電池表面之鈍化作用。熟習此項技術者應明白,可在不脫離本發明範疇的情況下在電池結構中添加或刪除額外層。
在窗口層111之上沈積電池B之各層:發射極層112及p型基極層113。該等層較佳地分別由InGaP及Ga(In)As構成,但亦可使用符合晶格常數及能帶隙要求之任何其他合適的材料。
在電池B之上沈積BSF層114,其執行與BSF層109相同之功能。類似於層110,在BSF層114上方沈積p++/n++隧道二極體115,從而再次形成將電池B連接至電池C之電路元件。
在隧道二極體115上方沈積障壁層116a(較佳地由InGa(Al)P構成),到達大約1.0微米之厚度。此障壁層希望防止穿透位錯與進入中部子電池B及頂部子電池C之成長方向相反地或在進入底部子電池A之成長方向上傳播。障
壁層可為能帶隙能量大於或等於分級夾層116且厚度足以降低穿透位錯之傳播之III-V化合物半導體層的任何組合。典型材料係基於As、P、N或Sb之III-V半導體材料。
在障壁層116a上方沈積分級夾層或變質層116。層116較佳地係一系列在成分上階梯分級之InGaAlAs層,其具有希望實現自子電池B至子電池C之晶格常數過渡之單調變化的晶格常數。層116之能帶隙為1.5 eV,其符合略大於中部子電池B之能帶隙的值。
分級夾層可由服從平面內晶格參數大於或等於第二太陽能電池B之晶格參數且小於或等於第三太陽能電池C之晶格參數且能帶隙能量大於第二太陽能電池B之能帶隙能量之約束的基於As、P、N、Sb之III-V化合物半導體中之任一者構成。
在一個實施例中,如雲利斯(Wanless)等人之論文中所建議,階梯級含有9個在成分上分級之InGaP階梯,其中每一階梯層具有0.25微米之厚度。在較佳實施例中,層116由InGaAlAs構成,其在至少9個階梯上具有單調變化之晶格常數。
在本發明之另一實施例中,可在InGaAlAs變質層116上方沈積可選之第二障壁層116b。第二障壁層116b將具有與障壁層116a不同之成分,且再次基極區可為GaInAs、GaAsSb或GaInAsN。
在障壁層116b上方沈積窗口層117,此窗口層操作以降低子電池"C"中之重組損失。熟習此項技術者應明白,可
在不脫離本發明範疇的情況下在電池結構中添加或刪除額外層。
在窗口層117之上沈積電池C之各層:n+發射極層118及p型基極層119。該等層較佳地分別由InGaP及Ga(In)As構成,但亦可使用符合晶格常數及能帶隙要求之其他合適的材料。
在電池C之上沈積BSF層120,該BSF層執行與BSF層109及114相同之功能。
最後,在BSF層120上沈積p+接觸層121。
熟習此項技術者應明白,可在不脫離本發明範疇的情況下在電池結構中添加或刪除額外層。
圖2係在下一製程步驟之後之圖1之太陽能電池之橫截面圖,在該製程步驟中在p+半導體接觸層121上方沈積金屬接觸層122。該金屬較佳地為Ti/Au/Ag/Au。
圖3係在下一製程步驟之後之圖2之太陽能電池之橫截面圖,在該製程步驟中在金屬層122上方沈積黏合層123。黏合劑較佳地為GenTak 330(由通用化學公司(General Chemical Corp.)發行)。
圖4係在下一製程步驟之後之圖3之太陽能電池之橫截面圖,在該製程步驟中附接替代基板(較佳地為藍寶石)。該替代基板之厚度約為40密耳,且穿孔有間隔開4 mm且直徑約為1 mm的孔以幫助隨後移除黏合劑及基板。
圖5A係在下一製程步驟之後之圖4之太陽能電池之橫截面圖,在該製程步驟中藉由研磨及/或蝕刻步驟序列移除
原始基板,在該步驟序列中移除基板101、緩衝層103及蝕刻終止層104。蝕刻劑係依賴於成長基板的。
圖5B係來自圖5A之太陽能電池的自替代基板124位於圖式底部之定向上之圖5A之太陽能電池之橫截面圖。
圖6A係其中實施太陽能電池之晶圓之俯視平面圖。
在每一電池中,存在網格線501(圖10中之橫截面中更明確展示)、互連匯流排502及接觸墊503。
圖6B係圖6A中所示之具有四個太陽能電池之晶圓之仰視平面圖。
圖7係在下一製程步驟之後之圖6A之晶圓之俯視平面圖,在該製程步驟中使用磷化物及砷化物蝕刻劑在每一電池之周邊周圍蝕刻出台面510。
圖8係圖5B之太陽能電池之簡化橫截面圖,其僅描繪位於替代基板124上方之幾個頂部層及下部層。
圖9係在下一製程步驟之後之圖8之太陽能電池之橫截面圖,在該製程步驟中藉由HCl/H2
O溶液移除蝕刻終止層104。
圖10係在下一製程步驟序列之後之圖9之太陽能電池之橫截面圖,在該製程步驟序列中在接觸層105上方放置光阻掩模(未圖示)以形成網格線501。網格線501經由蒸發作用沈積,且以微影方式進行圖案化並沈積在接觸層105上方。提離該掩模以形成金屬網格線501。
圖11係在下一製程步驟之後之圖10之太陽能電池之橫截面圖,在該製程步驟中網絡線用作掩模以使用檸檬酸/過
氧化物蝕刻混合物沿著表面向下蝕刻到達窗口層106。
圖12係在下一製程步驟之後之圖11之太陽能電池之橫截面圖,在該製程步驟中在晶圓之具有網格線501之"底"側之整個表面上方施加抗反射(ARC)介電塗層130。
圖13係在下一製程步驟之後之圖12之太陽能電池之橫截面圖,在該製程步驟中使用磷化物及砷化物蝕刻劑向下蝕刻台面501到達金屬層122。該圖式中之橫截面描繪為如自圖7所示之A-A平面所見。接著,將一或多個銀電極焊接至接觸墊。
圖14係在藉由EKC 922移除替代基板124及黏合劑123之後在下一製程步驟之後之圖13之太陽能電池之橫截面圖。替代基板中所提供之較佳穿孔具有0.033吋之直徑且分離0.152吋。
圖15係在下一製程步驟之後之圖14之太陽能電池之橫截面圖,在該製程步驟中在ARC層130上方施加黏合劑並向其附接玻璃罩。
圖16至18中提供本發明之效力之實驗指示。具有圖1中所示之類型但沒有障壁層116a及116b之結構經成長並製作為4 cm2
電池。進行外部量子效率(EQE)量測,且圖16所示之結果顯示中部子電池B之長波長響應低於所預期。此觀測暗示與成長方向相反之穿透位錯傳播可能係造成中部電池之效率降級的原因。Nomarski顯微術顯示晶格匹配子電池A之初始磊晶層上之未預期交叉影線(應變消除模式)。光致發光測圖進一步顯示中部子電池B之發光低於所預
期。陰極發光量測顯示穿透位錯密度在中部子電池B中較高,但穿透位錯不穿越頂部子電池A。該等量測符合圖16所示之EQE量測。
圖17說明根據本發明添加障壁層116a與不添加障壁層116a之三接點太陽能電池中之中間子電池之EQE量測的比較。子電池B(沒有障壁層)之曲線圖具有15.6 mA/cm2
之整合電流(AMO)及低於子電池D(具有障壁層)之EQE,子電池D具有17.4 mA/cm2
之整合電流(AMO)。
可藉由比較圖16及18之EQE曲線圖來瞭解在本發明之太陽能電池中使用障壁層之效力。圖16係沒有障壁層之圖1之太陽能電池之EQE,且圖18係具有障壁層之太陽能電池之EQE。圖18之太陽能電池之中部子電池B的電流(17.4 mA/cm2
)僅略微低於頂部子電池C的電流(18.4 mA/cm2
)。中部子電池及頂部子電池之如此緊密之電流匹配證明本發明之效力。
將瞭解,上文所描述之元件之每一者或者兩個或兩個以上元件一起亦可有效地應用於不同於上述類型構造之其他類型之構造中。
雖然本發明之較佳實施例利用具有頂部及底部電接觸之垂直子電池堆疊,但子電池或者可借助於通往子電池之間的橫向傳導半導體層之金屬接觸來接觸。此類布置可用於形成3端子、4端子及一般來說,n端子裝置。子電池可使用該等額外端子在電路中互連,使得每一子電池中之大部分可用光生電流密度可被有效使用,從而得到多接點電池
之高效率,儘管光生電流密度通常在各個子電池中有所不同。
如上面提及,本發明可利用一或多個同質接點電池或子電池,即其中p-n接點形成在p型半導體與n型半導體之間且該p型半導體與n型半導體兩者具有相同化學成分及相同能帶隙只是摻雜劑種類及類型不同的電池或子電池。具有p型及n型InGaP之子電池A係同質接點子電池之一個實例。或者,本發明可利用一或多個異質接點電池或子電池,即如此之電池或子電池:其中p-n接點形成在p型半導體與n型半導體之間,且該p型半導體與n型半導體除了在形成p-n接點之p型及n型區中利用不同摻雜劑種類及類型外,亦具有n型及n型區中之半導體材料之不同化學成分及/或p型區中之不同能帶隙能量。
窗口或BSF層之成分可利用服從晶格常數及能帶隙要求之其他半導體化合物,且可包含AlInP、AlAs、AlP、AlGaInP、AlGaAsP、AlGaInAs、AlGaInPAs、GaInP、GaInAs、GaInPAs、AlGaAs、AlInAs、AlInPAs、GaAsSb、AlAsSb、GaAlAsSb、AlInSb、GaInSb、AlGaInSb、AIN、GaN、InN、GaInN、AlGaInN、GaInNAs、AlGaInNAs、ZnSSe、CdSSe及類似材料,且仍在本發明精神內。
儘管已經將本發明說明並描述為在反向變質多接點太陽能電池中實施,但不希望其限於所展示之細節,因為可在不以任何方式脫離本發明精神的情況下作出各種修改及結
構變化。
在不作進一步分析的情況下,前文將全面顯示本發明之要旨,以使得其他人可藉由應用當前知識容易使其適用於各種應用,而不省略從先前技術之觀點來看適當地組成本發明之一般或特定態樣之基本特點的特徵,且因此,此類調適應當且希望在以下申請專利範圍之等效物之意義及範疇內來理解。
101‧‧‧基板
102‧‧‧成核層
103‧‧‧緩衝層
104‧‧‧蝕刻終止層
105‧‧‧接觸層
106‧‧‧窗口層
107‧‧‧發射極層
108‧‧‧p型基極層
109‧‧‧背面場("BSF")層
110‧‧‧隧道二極體層
111‧‧‧窗口層
112‧‧‧發射極層
113‧‧‧p型基極層
114‧‧‧BSF層
115‧‧‧p++/n++隧道二極體
116‧‧‧分級夾層或變質層
116a‧‧‧障壁層
116b‧‧‧第二障壁層
117‧‧‧窗口層
118‧‧‧n+發射極層
119‧‧‧p型基極層
120‧‧‧BSF層
121‧‧‧p+半導體接觸層
122‧‧‧金屬接觸層
123‧‧‧黏合層/黏合劑
124‧‧‧替代基板
130‧‧‧抗反射(ARC)介電塗層
501‧‧‧金屬網格線
502‧‧‧互連匯流排
503‧‧‧接觸墊
510‧‧‧台面
藉由結合附圖參看以下具體實施方式將更好且更全面地理解本發明,附圖中:圖1係根據本發明構造之太陽能電池之放大橫截面圖;圖2係在下一製程步驟之後之圖1之太陽能電池之橫截面圖;圖3係在下一製程步驟之後之圖2之太陽能電池之橫截面圖;圖4係在下一製程步驟之後之圖3之太陽能電池之橫截面圖;圖5A係在下一製程步驟之後之圖4之太陽能電池之橫截面圖,其中移除了原始基板;圖5B係圖5A之太陽能電池之另一橫截面圖,其中在該圖式之底部具有替代基板;圖6A係其中製作太陽能電池之晶圓之俯視平面圖;圖6B係其中製作太陽能電池之晶圓之仰視平面圖;圖7係在下一製程步驟之後之圖6B之晶圓之俯視平面
圖;圖8係在下一製程步驟之後之圖5A之太陽能電池之橫截面圖;圖9係在下一製程步驟之後之圖8之太陽能電池之橫截面圖;圖10係在下一製程步驟之後之圖9之太陽能電池之橫截面圖;圖11係在下一製程步驟之後之圖10之太陽能電池之橫截面圖;圖12係在下一製程步驟之後之圖11之太陽能電池之橫截面圖;圖13係在下一製程步驟之後之圖12之太陽能電池之橫截面圖;圖14係在下一製程步驟之後之圖13之太陽能電池之橫截面圖;圖15係在下一製程步驟之後之圖14之太陽能電池之橫截面圖;圖16係根據本發明沒有障壁層之反向變質太陽能電池之外部量子效率(EQE)曲線圖;圖17係具有及沒有障壁層之中部太陽能子電池之EQE曲線圖;以及圖18係根據本發明具有障壁層之反向變質太陽能電池之EQE曲線圖。
101‧‧‧基板
102‧‧‧成核層
103‧‧‧緩衝層
104‧‧‧蝕刻終止層
105‧‧‧接觸層
106‧‧‧窗口層
107‧‧‧發射極層
108‧‧‧p型基極層
109‧‧‧背面場("BSF")層
110‧‧‧隧道二極體層
111‧‧‧窗口層
112‧‧‧發射極層
113‧‧‧p型基極層
114‧‧‧BSF層
115‧‧‧p++/n++隧道二極體
116‧‧‧分級夾層或變質層
116a‧‧‧障壁層
116b‧‧‧第二障壁層
117‧‧‧窗口層
118‧‧‧n+發射極層
119‧‧‧p型基極層
120‧‧‧BSF層
121‧‧‧p+半導體接觸層
Claims (20)
- 一種形成多接點太陽能電池之方法,該方法包含:提供第一基板,其用於半導體材料之磊晶成長;在該基板上形成一第一太陽能子電池,其具有一第一能帶隙;在該第一太陽能子電池上方形成一第二太陽能子電池,其具有一小於該第一能帶隙之第二能帶隙;在該第二子電池上方形成一由InGa(Al)P構成之穿透位錯防止層;在該穿透位錯防止層上方且與該穿透位錯防止層直接相鄰處形成一由InGaAlAs構成之分級夾層,該分級夾層具有一大於該第二能帶隙且為1.5eV之第三能帶隙;以及在該分級夾層上方形成一第三太陽能子電池,其具有一小於該第二能帶隙之第四能帶隙,使得該第三子電池相對於該第二子電池為晶格失配,其中該穿透位錯防止層係經設置以防止穿透位錯之傳播進入太陽能子電池中。
- 如請求項1之方法,其中該穿透位錯防止層具有約1.0微米之厚度,且防止穿透位錯在與電池之成長相反之方向上或在電池之成長方向上傳播。
- 如請求項1之方法,其進一步包含在形成該第三太陽能子電池之前,在該分級夾層上方且與該分級夾層直接相鄰處形成一第二穿透位錯防止層。
- 如請求項3之方法,其中該第二穿透位錯防止層由具有 一大於或等於該分級夾層之能帶隙能量之能帶隙能量的任何基於As、P、N或Sb之III-V化合物半導體構成。
- 如請求項1之方法,其中該第一基板選自由鍺或GaAs組成之群組。
- 如請求項1之方法,其中該第一太陽能子電池由一InGa(Al)P發射極區及一InGa(Al)P基極區構成。
- 如請求項6之方法,其中該第二太陽能電池由一GaInP、GaInAs、GaAsSb或GaInAsN發射極區及一GaInAs、GaAsSb或GaInAsN基極區構成。
- 如請求項1之方法,其中該分級夾層服從平面內晶格參數大於或等於該第二太陽能電池之晶格參數且小於或等於該第三太陽能電池之晶格參數之約束。
- 如請求項6之方法,其中該第二太陽能子電池由一InGaP發射極區及一GaAs基極區構成。
- 如請求項8之方法,其中該分級夾層由具有單調變化之晶格常數之九個層階梯構成。
- 如請求項1之方法,其進一步包含在該第三太陽能子電池上方沈積一接觸層且該接觸層與該第三太陽能子電池形成電接觸。
- 如請求項11之方法,其進一步包含在該接觸層上方附接一替代第二基板且移除該第一基板。
- 如請求項12之方法,其進一步包含:將該接觸層圖案化為一網格;以及在該太陽能電池之周邊周圍蝕刻一凹槽,以便在該替 代第二基板上形成一台面結構。
- 一種多接點太陽能電池,其包含:一基板;一下部太陽能子電池,其位於該基板上且具有一第一能帶隙;一分級夾層,其係由InGaAlAs構成,位於該下部太陽能子電池上方,並具有一大於該第一能帶隙且為1.5eV之第二能帶隙;一穿透位錯防止層,其係由InGa(Al)P構成,其係經設置在該分級夾層上方且與該分級夾層直接相鄰處,以減小穿透位錯之傳播;以及一中部太陽能子電池,其位於該穿透位錯防止層上方且具有一小於該第二能帶隙且大於該第一能帶隙之第三能帶隙,該中部太陽能子電池相對於該下部子電池為晶格失配;以及一上部太陽能子電池,其設置在該中部太陽能子電池上方,並具有一大於該第三能帶隙之第四能帶隙。
- 如請求項14之太陽能電池,其中該穿透位錯防止層由具有一大於或等於該分級夾層之能帶隙能量之能帶隙能量。
- 如請求項14之太陽能電池,其進一步包含一第二穿透位錯防止層,其係設置在直接與該分級夾層相鄰處且位於該分級夾層與該下部子電池之間。
- 如請求項16之太陽能電池,其中該第二穿透位錯防止層由具有一大於或等於該分級夾層之能帶隙之能帶隙的任何基於As、P、N或Sb之III-V化合物半導體構成。
- 如請求項14之太陽能電池,其中該基板選自由鍺或GaAs組成之群組。
- 如請求項14之太陽能電池,其中該上部太陽能子電池由InGa(Al)P構成。
- 如請求項14之太陽能電池,其中該中部太陽能子電池由一GaInP、GaInAs、GaAsSb或GaInAsN發射極區及一GaInAs、GaAsSb或GaInAsN基極區構成。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/860,183 US20090078309A1 (en) | 2007-09-24 | 2007-09-24 | Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200915588A TW200915588A (en) | 2009-04-01 |
TWI488314B true TWI488314B (zh) | 2015-06-11 |
Family
ID=40435611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097128500A TWI488314B (zh) | 2007-09-24 | 2008-07-25 | 反向變質多接點太陽能電池之障壁層 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090078309A1 (zh) |
JP (2) | JP2009076920A (zh) |
CN (1) | CN101399298B (zh) |
DE (1) | DE102008034711A1 (zh) |
TW (1) | TWI488314B (zh) |
Families Citing this family (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10170656B2 (en) | 2009-03-10 | 2019-01-01 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with a single metamorphic layer |
US20100122724A1 (en) | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers |
US9117966B2 (en) | 2007-09-24 | 2015-08-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell |
US20100229913A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US20100229926A1 (en) | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US20090078310A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells |
US10381501B2 (en) | 2006-06-02 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US9634172B1 (en) | 2007-09-24 | 2017-04-25 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with multiple metamorphic layers |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
US20080029151A1 (en) * | 2006-08-07 | 2008-02-07 | Mcglynn Daniel | Terrestrial solar power system using III-V semiconductor solar cells |
US8686282B2 (en) | 2006-08-07 | 2014-04-01 | Emcore Solar Power, Inc. | Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells |
US20100203730A1 (en) * | 2009-02-09 | 2010-08-12 | Emcore Solar Power, Inc. | Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells |
US20100093127A1 (en) * | 2006-12-27 | 2010-04-15 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film |
US20110041898A1 (en) * | 2009-08-19 | 2011-02-24 | Emcore Solar Power, Inc. | Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells |
WO2008084488A2 (en) | 2007-01-11 | 2008-07-17 | Red Bend Ltd. | Method and system for in-place updating content stored in a storage device |
US10381505B2 (en) | 2007-09-24 | 2019-08-13 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells including metamorphic layers |
US20100233838A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Mounting of Solar Cells on a Flexible Substrate |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US20090155952A1 (en) * | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US20100012175A1 (en) | 2008-07-16 | 2010-01-21 | Emcore Solar Power, Inc. | Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US20090272430A1 (en) * | 2008-04-30 | 2009-11-05 | Emcore Solar Power, Inc. | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells |
US20090272438A1 (en) * | 2008-05-05 | 2009-11-05 | Emcore Corporation | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell |
US20100012174A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Corporation | High band gap contact layer in inverted metamorphic multijunction solar cells |
US9287438B1 (en) * | 2008-07-16 | 2016-03-15 | Solaero Technologies Corp. | Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation |
US8263853B2 (en) * | 2008-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Wafer level interconnection of inverted metamorphic multijunction solar cells |
US7741146B2 (en) | 2008-08-12 | 2010-06-22 | Emcore Solar Power, Inc. | Demounting of inverted metamorphic multijunction solar cells |
US8330036B1 (en) * | 2008-08-29 | 2012-12-11 | Seoijin Park | Method of fabrication and structure for multi-junction solar cell formed upon separable substrate |
US8236600B2 (en) * | 2008-11-10 | 2012-08-07 | Emcore Solar Power, Inc. | Joining method for preparing an inverted metamorphic multijunction solar cell |
US20100122764A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells |
US10541349B1 (en) | 2008-12-17 | 2020-01-21 | Solaero Technologies Corp. | Methods of forming inverted multijunction solar cells with distributed Bragg reflector |
US9018521B1 (en) | 2008-12-17 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell |
US7960201B2 (en) * | 2009-01-29 | 2011-06-14 | Emcore Solar Power, Inc. | String interconnection and fabrication of inverted metamorphic multijunction solar cells |
US8778199B2 (en) | 2009-02-09 | 2014-07-15 | Emoore Solar Power, Inc. | Epitaxial lift off in inverted metamorphic multijunction solar cells |
US20100206365A1 (en) * | 2009-02-19 | 2010-08-19 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers |
US20100229933A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating |
US9018519B1 (en) | 2009-03-10 | 2015-04-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cells having a permanent supporting substrate |
US20100282288A1 (en) * | 2009-05-06 | 2010-11-11 | Emcore Solar Power, Inc. | Solar Cell Interconnection on a Flexible Substrate |
US20100282305A1 (en) * | 2009-05-08 | 2010-11-11 | Emcore Solar Power, Inc. | Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys |
KR101245371B1 (ko) * | 2009-06-19 | 2013-03-19 | 한국전자통신연구원 | 태양전지 및 그 제조방법 |
US8263856B2 (en) * | 2009-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells with back contacts |
DE102009049397B4 (de) | 2009-10-14 | 2018-09-06 | Solaero Technologies Corp. | Herstellungsverfahren mit Surrogatsubstrat für invertierte metamorphische Multijunction-Solarzellen |
DE102009057020B4 (de) * | 2009-12-03 | 2021-04-29 | Solaero Technologies Corp. | Wachstumssubstrate für invertierte metamorphe Multijunction-Solarzellen |
JP5215284B2 (ja) | 2009-12-25 | 2013-06-19 | シャープ株式会社 | 多接合型化合物半導体太陽電池 |
US8187907B1 (en) | 2010-05-07 | 2012-05-29 | Emcore Solar Power, Inc. | Solder structures for fabrication of inverted metamorphic multijunction solar cells |
TWI453920B (zh) * | 2011-06-21 | 2014-09-21 | Inst Nuclear Energy Res Atomic Energy Council | 反向變質(imm)太陽能電池半導體結構及雷射剝離的方法 |
JP2013105869A (ja) * | 2011-11-14 | 2013-05-30 | Sharp Corp | 光電変換素子の製造方法、光電変換素子および光電変換素子モジュール |
US20140150856A1 (en) * | 2012-11-30 | 2014-06-05 | Intellectual Discovery Co., Ltd. | Photovoltaic module |
TWI602315B (zh) | 2013-03-08 | 2017-10-11 | 索泰克公司 | 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法 |
US10153388B1 (en) | 2013-03-15 | 2018-12-11 | Solaero Technologies Corp. | Emissivity coating for space solar cell arrays |
US9853180B2 (en) | 2013-06-19 | 2017-12-26 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with surface passivation |
US9768326B1 (en) | 2013-08-07 | 2017-09-19 | Solaero Technologies Corp. | Fabrication of solar cells with electrically conductive polyimide adhesive |
US9214594B2 (en) | 2013-08-07 | 2015-12-15 | Solaero Technologies Corp. | Fabrication of solar cells with electrically conductive polyimide adhesive |
DE102013111981A1 (de) * | 2013-10-30 | 2015-04-30 | Hanergy Holding Group Ltd. | Verfahren zur Herstellung eines Dünnschicht-Solarzellenmoduls und Dünnschicht-Solarzellenmodul |
WO2015198117A1 (en) | 2014-06-26 | 2015-12-30 | Soitec | Semiconductor structures including bonding layers, multijunction photovoltaic cells and related methods |
JP2016122752A (ja) * | 2014-12-25 | 2016-07-07 | 国立大学法人 東京大学 | 太陽電池 |
US9758261B1 (en) | 2015-01-15 | 2017-09-12 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell with lightweight laminate substrate |
EP3091583B1 (en) | 2015-05-07 | 2020-09-23 | SolAero Technologies Corp. | Multijunction inverted metamorphic solar cell |
US9985161B2 (en) | 2016-08-26 | 2018-05-29 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US10361330B2 (en) | 2015-10-19 | 2019-07-23 | Solaero Technologies Corp. | Multijunction solar cell assemblies for space applications |
US10256359B2 (en) | 2015-10-19 | 2019-04-09 | Solaero Technologies Corp. | Lattice matched multijunction solar cell assemblies for space applications |
US10403778B2 (en) * | 2015-10-19 | 2019-09-03 | Solaero Technologies Corp. | Multijunction solar cell assembly for space applications |
EP3159942B1 (en) | 2015-10-19 | 2021-01-27 | SolAero Technologies Corp. | Multijunction metamorphic solar cell assembly for space applications |
US10270000B2 (en) | 2015-10-19 | 2019-04-23 | Solaero Technologies Corp. | Multijunction metamorphic solar cell assembly for space applications |
US9935209B2 (en) | 2016-01-28 | 2018-04-03 | Solaero Technologies Corp. | Multijunction metamorphic solar cell for space applications |
US9929300B2 (en) | 2015-11-13 | 2018-03-27 | Solaero Technologies Corp. | Multijunction solar cells with electrically conductive polyimide adhesive |
EP3171413A1 (en) | 2015-11-20 | 2017-05-24 | SolAero Technologies Corp. | Inverted metamorphic multijunction solar cell |
DE102016001386A1 (de) * | 2016-02-09 | 2017-08-10 | Azur Space Solar Power Gmbh | Stapelförmige Mehrfachsolarzelle |
US10263134B1 (en) | 2016-05-25 | 2019-04-16 | Solaero Technologies Corp. | Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell |
US10636926B1 (en) | 2016-12-12 | 2020-04-28 | Solaero Technologies Corp. | Distributed BRAGG reflector structures in multijunction solar cells |
US20190181289A1 (en) | 2017-12-11 | 2019-06-13 | Solaero Technologies Corp. | Multijunction solar cells |
EP4036992A1 (en) | 2018-01-17 | 2022-08-03 | SolAero Technologies Corp. | Four junction solar cell and solar cell assemblies for space applications |
DE102018203509B4 (de) | 2018-01-17 | 2024-10-10 | Solaero Technologies Corp. | Vierfach-Solarzelle für Raumanwendungen |
CN112038425B (zh) * | 2019-06-03 | 2024-04-30 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种多结叠层激光光伏电池 |
CN112151635A (zh) * | 2019-06-27 | 2020-12-29 | 张家港恩达通讯科技有限公司 | 一种三结太阳能电池及其制备方法 |
EP3836231A1 (en) | 2019-12-11 | 2021-06-16 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells having a graded-index structure |
US11658256B2 (en) | 2019-12-16 | 2023-05-23 | Solaero Technologies Corp. | Multijunction solar cells |
US20220238747A1 (en) | 2021-01-28 | 2022-07-28 | Solaero Technologies Corp. | Inverted metamorphic multijunction solar cell |
US11362230B1 (en) | 2021-01-28 | 2022-06-14 | Solaero Technologies Corp. | Multijunction solar cells |
EP4092762A1 (en) | 2021-05-18 | 2022-11-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells |
EP4092763A1 (en) | 2021-05-18 | 2022-11-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells |
EP4092761A1 (en) | 2021-05-18 | 2022-11-23 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells |
EP4170732A1 (en) | 2021-10-19 | 2023-04-26 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction metamorphic solar cell |
EP4213224A1 (en) | 2022-01-14 | 2023-07-19 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction solar cells with shifted junction |
EP4220740A1 (en) | 2022-01-31 | 2023-08-02 | SolAero Technologies Corp., a corporation of the state of Delaware | Space vehicles including multijunction metamorphic solar cells |
EP4235817A1 (en) | 2022-02-28 | 2023-08-30 | SolAero Technologies Corp., a corporation of the state of Delaware | Multijunction metamorphic solar cells |
EP4243090A1 (en) | 2022-03-07 | 2023-09-13 | SolAero | Four junction metamorphic multijunction solar cells for space applications |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6340788B1 (en) * | 1999-12-02 | 2002-01-22 | Hughes Electronics Corporation | Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications |
US20060144435A1 (en) * | 2002-05-21 | 2006-07-06 | Wanlass Mark W | High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters |
Family Cites Families (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US265113A (en) * | 1882-09-26 | Animal-catcher | ||
US716814A (en) * | 1899-11-16 | 1902-12-23 | James A Ekin Criswell | Machine for making matches. |
US730018A (en) * | 1901-07-30 | 1903-06-02 | Daniel L Holden | Freezing-cylinder for ice-machines. |
US708361A (en) * | 1901-10-31 | 1902-09-02 | John W Kelley | Stock-waterer. |
US775946A (en) * | 1902-02-04 | 1904-11-29 | Albert H Stebbins | Concentrating-machine. |
US756926A (en) * | 1903-12-23 | 1904-04-12 | Universal Compound Company | Wall-facing for dampproofing. |
US813408A (en) * | 1904-08-17 | 1906-02-27 | Washington M Dillon | Crimping mechanism for wire-fence machines. |
US844673A (en) * | 1905-10-27 | 1907-02-19 | Cottrell C B & Sons Co | Attachment for ink-fountains of printing-presses. |
US3488834A (en) * | 1965-10-20 | 1970-01-13 | Texas Instruments Inc | Microelectronic circuit formed in an insulating substrate and method of making same |
US3964155A (en) * | 1972-02-23 | 1976-06-22 | The United States Of America As Represented By The Secretary Of The Navy | Method of planar mounting of silicon solar cells |
US4001864A (en) * | 1976-01-30 | 1977-01-04 | Gibbons James F | Semiconductor p-n junction solar cell and method of manufacture |
US4255211A (en) * | 1979-12-31 | 1981-03-10 | Chevron Research Company | Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface |
DE3036260A1 (de) * | 1980-09-26 | 1982-04-29 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren zur herstellung von elektrischen kontakten an einer silizium-solarzelle |
US4338480A (en) * | 1980-12-29 | 1982-07-06 | Varian Associates, Inc. | Stacked multijunction photovoltaic converters |
US4881979A (en) * | 1984-08-29 | 1989-11-21 | Varian Associates, Inc. | Junctions for monolithic cascade solar cells and methods |
JPH0666274B2 (ja) * | 1987-07-01 | 1994-08-24 | 日本電気株式会社 | ▲iii▼−v族化合物半導体の形成方法 |
US4759803A (en) * | 1987-08-07 | 1988-07-26 | Applied Solar Energy Corporation | Monolithic solar cell and bypass diode system |
US4824489A (en) * | 1988-02-02 | 1989-04-25 | Sera Solar Corporation | Ultra-thin solar cell and method |
US4963949A (en) * | 1988-09-30 | 1990-10-16 | The United States Of America As Represented Of The United States Department Of Energy | Substrate structures for InP-based devices |
EP0369666B1 (en) * | 1988-11-16 | 1995-06-14 | Mitsubishi Denki Kabushiki Kaisha | Solar cell |
US5053083A (en) * | 1989-05-08 | 1991-10-01 | The Board Of Trustees Of The Leland Stanford Junior University | Bilevel contact solar cells |
US5021360A (en) * | 1989-09-25 | 1991-06-04 | Gte Laboratories Incorporated | Method of farbicating highly lattice mismatched quantum well structures |
US5019177A (en) * | 1989-11-03 | 1991-05-28 | The United States Of America As Represented By The United States Department Of Energy | Monolithic tandem solar cell |
US5322572A (en) * | 1989-11-03 | 1994-06-21 | The United States Of America As Represented By The United States Department Of Energy | Monolithic tandem solar cell |
US5342453A (en) * | 1992-11-13 | 1994-08-30 | Midwest Research Institute | Heterojunction solar cell |
US5376185A (en) * | 1993-05-12 | 1994-12-27 | Midwest Research Institute | Single-junction solar cells with the optimum band gap for terrestrial concentrator applications |
US5405453A (en) * | 1993-11-08 | 1995-04-11 | Applied Solar Energy Corporation | High efficiency multi-junction solar cell |
JP3169497B2 (ja) * | 1993-12-24 | 2001-05-28 | 三菱電機株式会社 | 太陽電池の製造方法 |
US5479032A (en) * | 1994-07-21 | 1995-12-26 | Trustees Of Princeton University | Multiwavelength infrared focal plane array detector |
JPH09232691A (ja) * | 1995-07-24 | 1997-09-05 | Fujitsu Ltd | 半導体レーザ |
US6281426B1 (en) * | 1997-10-01 | 2001-08-28 | Midwest Research Institute | Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge |
US6482672B1 (en) * | 1997-11-06 | 2002-11-19 | Essential Research, Inc. | Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates |
US5944913A (en) * | 1997-11-26 | 1999-08-31 | Sandia Corporation | High-efficiency solar cell and method for fabrication |
US6232138B1 (en) * | 1997-12-01 | 2001-05-15 | Massachusetts Institute Of Technology | Relaxed InxGa(1-x)as buffers |
US6043426A (en) * | 1998-02-20 | 2000-03-28 | The United States Of America As Represented By The United States Department Of Energy | Thermophotovoltaic energy conversion system having a heavily doped n-type region |
US6166318A (en) * | 1998-03-03 | 2000-12-26 | Interface Studies, Inc. | Single absorber layer radiated energy conversion device |
US6300557B1 (en) * | 1998-10-09 | 2001-10-09 | Midwest Research Institute | Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters |
US6239354B1 (en) * | 1998-10-09 | 2001-05-29 | Midwest Research Institute | Electrical isolation of component cells in monolithically interconnected modules |
US6165873A (en) * | 1998-11-27 | 2000-12-26 | Nec Corporation | Process for manufacturing a semiconductor integrated circuit device |
JP3657143B2 (ja) * | 1999-04-27 | 2005-06-08 | シャープ株式会社 | 太陽電池及びその製造方法 |
US6252287B1 (en) * | 1999-05-19 | 2001-06-26 | Sandia Corporation | InGaAsN/GaAs heterojunction for multi-junction solar cells |
JP4642276B2 (ja) * | 2000-06-16 | 2011-03-02 | パナソニック株式会社 | 半導体装置の製造方法及び記録媒体 |
JP4269541B2 (ja) * | 2000-08-01 | 2009-05-27 | 株式会社Sumco | 半導体基板と電界効果型トランジスタ並びにSiGe層の形成方法及びこれを用いた歪みSi層の形成方法と電界効果型トランジスタの製造方法 |
JP3909811B2 (ja) * | 2001-06-12 | 2007-04-25 | パイオニア株式会社 | 窒化物半導体素子及びその製造方法 |
US6660928B1 (en) * | 2002-04-02 | 2003-12-09 | Essential Research, Inc. | Multi-junction photovoltaic cell |
US6690041B2 (en) * | 2002-05-14 | 2004-02-10 | Global Solar Energy, Inc. | Monolithically integrated diodes in thin-film photovoltaic devices |
US20060162768A1 (en) * | 2002-05-21 | 2006-07-27 | Wanlass Mark W | Low bandgap, monolithic, multi-bandgap, optoelectronic devices |
US6794631B2 (en) * | 2002-06-07 | 2004-09-21 | Corning Lasertron, Inc. | Three-terminal avalanche photodiode |
US20060048700A1 (en) * | 2002-09-05 | 2006-03-09 | Wanlass Mark W | Method for achieving device-quality, lattice-mismatched, heteroepitaxial active layers |
US7122734B2 (en) * | 2002-10-23 | 2006-10-17 | The Boeing Company | Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers |
US7071407B2 (en) * | 2002-10-31 | 2006-07-04 | Emcore Corporation | Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell |
AU2003297649A1 (en) * | 2002-12-05 | 2004-06-30 | Blue Photonics, Inc. | High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same |
JP4471584B2 (ja) * | 2003-04-28 | 2010-06-02 | シャープ株式会社 | 化合物太陽電池の製造方法 |
KR101098065B1 (ko) * | 2003-07-22 | 2011-12-26 | 아크조 노벨 엔.브이. | 임시기판을 사용하여 태양전지 호일을 제조하는 프로세스 |
US20050211291A1 (en) * | 2004-03-23 | 2005-09-29 | The Boeing Company | Solar cell assembly |
DE102004023856B4 (de) * | 2004-05-12 | 2006-07-13 | Rwe Space Solar Power Gmbh | Solarzelle mit integrierter Schutzdiode und zusätzlich auf dieser angeordneten Tunneldiode |
JP4518886B2 (ja) * | 2004-09-09 | 2010-08-04 | シャープ株式会社 | 半導体素子の製造方法 |
US7846759B2 (en) * | 2004-10-21 | 2010-12-07 | Aonex Technologies, Inc. | Multi-junction solar cells and methods of making same using layer transfer and bonding techniques |
FR2878076B1 (fr) * | 2004-11-17 | 2007-02-23 | St Microelectronics Sa | Amincissement d'une plaquette semiconductrice |
US10374120B2 (en) * | 2005-02-18 | 2019-08-06 | Koninklijke Philips N.V. | High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials |
US7166520B1 (en) * | 2005-08-08 | 2007-01-23 | Silicon Genesis Corporation | Thin handle substrate method and structure for fabricating devices using one or more films provided by a layer transfer process |
US7732705B2 (en) * | 2005-10-11 | 2010-06-08 | Emcore Solar Power, Inc. | Reliable interconnection of solar cells including integral bypass diode |
US8637759B2 (en) * | 2005-12-16 | 2014-01-28 | The Boeing Company | Notch filter for triple junction solar cells |
US20100122724A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers |
US20090078308A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support |
US20100186804A1 (en) * | 2009-01-29 | 2010-07-29 | Emcore Solar Power, Inc. | String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers |
US20100229926A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer |
US20100229913A1 (en) * | 2009-01-29 | 2010-09-16 | Emcore Solar Power, Inc. | Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells |
US20090078310A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells |
US8536445B2 (en) * | 2006-06-02 | 2013-09-17 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells |
US20080029151A1 (en) * | 2006-08-07 | 2008-02-07 | Mcglynn Daniel | Terrestrial solar power system using III-V semiconductor solar cells |
US20100203730A1 (en) * | 2009-02-09 | 2010-08-12 | Emcore Solar Power, Inc. | Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
US7842881B2 (en) * | 2006-10-19 | 2010-11-30 | Emcore Solar Power, Inc. | Solar cell structure with localized doping in cap layer |
US20080149173A1 (en) * | 2006-12-21 | 2008-06-26 | Sharps Paul R | Inverted metamorphic solar cell with bypass diode |
US20110041898A1 (en) * | 2009-08-19 | 2011-02-24 | Emcore Solar Power, Inc. | Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells |
US20080245409A1 (en) * | 2006-12-27 | 2008-10-09 | Emcore Corporation | Inverted Metamorphic Solar Cell Mounted on Flexible Film |
US20100093127A1 (en) * | 2006-12-27 | 2010-04-15 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film |
US20080185038A1 (en) * | 2007-02-02 | 2008-08-07 | Emcore Corporation | Inverted metamorphic solar cell with via for backside contacts |
US20090038679A1 (en) * | 2007-08-09 | 2009-02-12 | Emcore Corporation | Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support |
US20090078311A1 (en) * | 2007-09-24 | 2009-03-26 | Emcore Corporation | Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells |
US20100233838A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Mounting of Solar Cells on a Flexible Substrate |
US20090155952A1 (en) * | 2007-12-13 | 2009-06-18 | Emcore Corporation | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells |
US20090223554A1 (en) * | 2008-03-05 | 2009-09-10 | Emcore Corporation | Dual Sided Photovoltaic Package |
US20090229658A1 (en) * | 2008-03-13 | 2009-09-17 | Emcore Corporation | Non-Isoelectronic Surfactant Assisted Growth In Inverted Metamorphic Multijunction Solar Cells |
US20090229662A1 (en) * | 2008-03-13 | 2009-09-17 | Emcore Corporation | Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells |
US20090272430A1 (en) * | 2008-04-30 | 2009-11-05 | Emcore Solar Power, Inc. | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells |
US20100012175A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Solar Power, Inc. | Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells |
US20090272438A1 (en) * | 2008-05-05 | 2009-11-05 | Emcore Corporation | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell |
US20090288703A1 (en) * | 2008-05-20 | 2009-11-26 | Emcore Corporation | Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells |
US20100012174A1 (en) * | 2008-07-16 | 2010-01-21 | Emcore Corporation | High band gap contact layer in inverted metamorphic multijunction solar cells |
US8263853B2 (en) * | 2008-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Wafer level interconnection of inverted metamorphic multijunction solar cells |
US7741146B2 (en) * | 2008-08-12 | 2010-06-22 | Emcore Solar Power, Inc. | Demounting of inverted metamorphic multijunction solar cells |
US8236600B2 (en) * | 2008-11-10 | 2012-08-07 | Emcore Solar Power, Inc. | Joining method for preparing an inverted metamorphic multijunction solar cell |
US20100122764A1 (en) * | 2008-11-14 | 2010-05-20 | Emcore Solar Power, Inc. | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells |
US20100147366A1 (en) * | 2008-12-17 | 2010-06-17 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector |
US7785989B2 (en) * | 2008-12-17 | 2010-08-31 | Emcore Solar Power, Inc. | Growth substrates for inverted metamorphic multijunction solar cells |
US7960201B2 (en) * | 2009-01-29 | 2011-06-14 | Emcore Solar Power, Inc. | String interconnection and fabrication of inverted metamorphic multijunction solar cells |
US20100229933A1 (en) * | 2009-03-10 | 2010-09-16 | Emcore Solar Power, Inc. | Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating |
US20100282288A1 (en) * | 2009-05-06 | 2010-11-11 | Emcore Solar Power, Inc. | Solar Cell Interconnection on a Flexible Substrate |
US8263856B2 (en) * | 2009-08-07 | 2012-09-11 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells with back contacts |
-
2007
- 2007-09-24 US US11/860,183 patent/US20090078309A1/en not_active Abandoned
-
2008
- 2008-07-25 DE DE102008034711A patent/DE102008034711A1/de active Pending
- 2008-07-25 TW TW097128500A patent/TWI488314B/zh not_active IP Right Cessation
- 2008-09-22 CN CN2008102114162A patent/CN101399298B/zh active Active
- 2008-09-24 JP JP2008243637A patent/JP2009076920A/ja active Pending
-
2014
- 2014-06-11 JP JP2014120291A patent/JP6194283B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6340788B1 (en) * | 1999-12-02 | 2002-01-22 | Hughes Electronics Corporation | Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications |
US20060144435A1 (en) * | 2002-05-21 | 2006-07-06 | Wanlass Mark W | High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters |
Also Published As
Publication number | Publication date |
---|---|
CN101399298B (zh) | 2012-06-27 |
JP2014195118A (ja) | 2014-10-09 |
DE102008034711A1 (de) | 2009-04-16 |
CN101399298A (zh) | 2009-04-01 |
JP2009076920A (ja) | 2009-04-09 |
JP6194283B2 (ja) | 2017-09-06 |
US20090078309A1 (en) | 2009-03-26 |
TW200915588A (en) | 2009-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI488314B (zh) | 反向變質多接點太陽能電池之障壁層 | |
US9691929B2 (en) | Four junction inverted metamorphic multijunction solar cell with two metamorphic layers | |
US8969712B2 (en) | Four junction inverted metamorphic multijunction solar cell with a single metamorphic layer | |
US8039291B2 (en) | Demounting of inverted metamorphic multijunction solar cells | |
TWI441343B (zh) | 反向變質多接面太陽能電池中異質接面子電池 | |
US8236600B2 (en) | Joining method for preparing an inverted metamorphic multijunction solar cell | |
TWI482300B (zh) | 具有iv/iii-v族混合合金之反轉多接面太陽能單元 | |
US9018521B1 (en) | Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell | |
US20090272430A1 (en) | Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells | |
US20150340530A1 (en) | Back metal layers in inverted metamorphic multijunction solar cells | |
US20090288703A1 (en) | Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells | |
US20090078311A1 (en) | Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells | |
US20090272438A1 (en) | Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell | |
US20100206365A1 (en) | Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers | |
US20100012174A1 (en) | High band gap contact layer in inverted metamorphic multijunction solar cells | |
US20100122764A1 (en) | Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells | |
US20090229658A1 (en) | Non-Isoelectronic Surfactant Assisted Growth In Inverted Metamorphic Multijunction Solar Cells | |
US20100147366A1 (en) | Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector | |
EP2040309A2 (en) | Thin inverted metamorphic multijunction solar cells with rigid support | |
US11063168B1 (en) | Inverted multijunction solar cells with distributed bragg reflector | |
EP2148378B1 (en) | Barrier layers in inverted metamorphic multijunction solar cells | |
US10170656B2 (en) | Inverted metamorphic multijunction solar cell with a single metamorphic layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |