CN101395102B - 陶瓷蜂窝构造体的制造方法 - Google Patents

陶瓷蜂窝构造体的制造方法 Download PDF

Info

Publication number
CN101395102B
CN101395102B CN2007800071024A CN200780007102A CN101395102B CN 101395102 B CN101395102 B CN 101395102B CN 2007800071024 A CN2007800071024 A CN 2007800071024A CN 200780007102 A CN200780007102 A CN 200780007102A CN 101395102 B CN101395102 B CN 101395102B
Authority
CN
China
Prior art keywords
microcapsule
honeycomb structure
pore
volume density
fill volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800071024A
Other languages
English (en)
Other versions
CN101395102A (zh
Inventor
冈崎俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of CN101395102A publication Critical patent/CN101395102A/zh
Application granted granted Critical
Publication of CN101395102B publication Critical patent/CN101395102B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Abstract

本发明提供一种陶瓷蜂窝构造体的制造方法,至少将陶瓷原料和造孔材料进行混合、混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥、烧结,由此制造陶瓷蜂窝构造体,该制造方法的特征在于,根据所述造孔材料的充填体积密度,调节所述造孔材料的添加量。

Description

陶瓷蜂窝构造体的制造方法
技术领域
本发明涉及构成净化废气的蜂窝过滤器等的陶瓷蜂窝构造体的制造方法。
背景技术
在柴油发动机的废气中,包括以炭(煤等)及高沸点炭化氢为主要成分的微粒子(Particulate Matter),这些被释放到大气中后,可能会对人体和环境造成恶劣影响。因此,目前在柴油发动机的排气管的中途安装有用于除去微粒子、净化废气的陶瓷蜂窝过滤器(以下也称为“蜂窝过滤器”)。如图1所示,蜂窝过滤器10包括:陶瓷蜂窝构造体11,其由形成多个流路3、4的多孔质隔壁2和外周壁1构成;密封部6a、6b,其将流路3、4的两端面8、9交互密封成格子状构成。废气由流出侧密封流路3流入,通过隔壁2,从流入侧密封流路4排出。废气通过设置于隔壁表面及内部的细孔时,微粒子状物质被捕获到隔壁表面及细孔中。上述细孔尺寸大时,废气通过蜂窝过滤器时的压力损失变小,但是微粒子状物质的捕集率恶化。相反,细孔尺寸小时,捕集率提高,但是压力损失增加。另外,细孔的全容积过小时压力损失增加,过大时蜂窝过滤器的强度降低。因此,调节煤粉及小麦粉等造孔材料对原料粉的添加量,控制细孔的尺寸和容积而达到使用目的。近年来,代替上述煤粉及小麦粉,使用了特开2003-38919号记载的内包了气体的中空树脂即微胶囊作为造孔材料。
上述微胶囊由于制造批次其性状有时不均匀,因此,在制造蜂窝构造体时即使对陶瓷粉末添加同样量的微胶囊,当使用的微胶囊的制造批次不同时,也存在烧结后的蜂窝构造体的细孔容积(下面,将烧结后的蜂窝构造体的细孔容积也单称为细孔容积)改变的问题。
WO2005/068398号公示的方法为,通过规定在40℃环境下保管了四周时间的微胶囊中内包的气体的重量,得到即使使用长期保存的微胶囊其也稳定的细孔容积的蜂窝构造体的方法。但是,在WO2005/068398号记载的方法中,需要将实际使用的微胶囊在40℃环境下保管四周时间且进行预备试验,在微胶囊的制造批次等变更时,在短时间内难以把握造孔材料的适当的添加量。因此,存在不能适应突发生产变更的问题和在微胶囊的保管中耗费成本的问题。
特开2005-314218号公示的方法为,原料每变更批次变更时采取蜂窝构造体的挤出原料的一部分进行挤压成形,测定其成形体烧结后的细孔特性并预先掌握挤出原料的不均匀性,并调节向原料添加的造孔材料和水的添加量,由此制造具有稳定的细孔特性的多孔质构造体。特开2005-314218号记载的方法由于在成形、烧结及评价时需要较长的时间,因此存在难以在短时间内掌握造孔材料的适当的添加量、且耗费生产成本的问题。
如上所述,在现有的技术中,需要耗费时间进行造孔材料的批次试验,理想的是能够在短时间内用简单的方法使蜂窝构造体的细孔容积稳定的技术。
发明内容
因此,本发明的目的在于,提供一种蜂窝构造体的制造方法,即使微胶囊的性状变化,也能够在短时间内调节造孔材料的添加量,且能够以低成本得到具有稳定的细孔容积的蜂窝构造体。
本发明者鉴于上述目的锐意研究的结果发现,微胶囊的充填体积密度和蜂窝构造体的细孔容积之间有较强的相关关系,通过利用这种关系,能够掌握用于得到具有所希望的细孔容积的蜂窝构造体的微胶囊的适当的添加量,想到了本发明。
即,本发明一方面提供制造陶瓷蜂窝构造体的方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,根据所述微胶囊的充填体积密度,调节所述微胶囊的添加量。
本发明另一方面提供陶瓷蜂窝构造体的制造方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,为得到与对所述陶瓷原料添加M1(质量%)的充填体积密度为Q1(g/cm3)的微胶囊A而制造的陶瓷蜂窝构造体同样细孔容积的陶瓷蜂窝构造体,对充填体积密度为Q2(g/cm3)的微胶囊B相对于所述陶瓷原料的添加量M2(质量%)进行调节,以使Q1>Q2时M2>M1、或者Q1<Q2时M2<M1。
本发明再另一方面提供陶瓷蜂窝构造体的制造方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,根据所述微胶囊的充填体积密度和陶瓷蜂窝构造体的细孔容积的关系、及所述微胶囊的添加量和陶瓷蜂窝构造体的细孔容积的关系,决定与所述充填体积密度对应的所述微胶囊的添加量,得到具有所希望的细孔容积的陶瓷蜂窝构造体。
本发明再另一方面提供陶瓷蜂窝构造体的制造方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,通过混合充填体积密度不同的至少两种微胶囊,调节混合后的微胶囊的充填体积密度。
本发明再另一方面提供陶瓷蜂窝构造体的制造方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,所述微胶囊的压缩力为0.13MPa时的充填体积密度为0.13~0.17g/cm3
优选所述微胶囊的比表面积为0.058~0.218m2/ml。
即使微胶囊的性状变动,与目前那样对陶瓷粉末添加一定量的微胶囊的情况相比,更能够减少蜂窝构造体的细孔容积在每次制造时的变动。另外,可不像现有那样每批次把握烧结后的细孔特征和挤出原料的偏差,而能够在短时间内调节微胶囊的适当的添加量。
附图说明
图1是表示陶瓷蜂窝过滤器之一例的模式剖面图;
图2是用于说明充填体积密度的测定方法的模式图;
图3是表示微胶囊的充填体积密度和蜂窝构造体的细孔容积的关系的图表;
图4是表示微胶囊的添加量和蜂窝构造体的细孔容积的关系的图表。
具体实施方式
[1]制造方法
本发明的陶瓷蜂窝构造体的制造方法,其特征在于,和细孔容积有强的相关关系,根据微胶囊的充填体积密度的大小调节微胶囊的添加量。通过该方法,与对现有那样的陶瓷粉末添加一定量的微胶囊来进行制造的情况时比,得到制造批次间的细孔容积的变动被抑制得很小的陶瓷蜂窝构造体。另外,目前需要对每一个原料批次测定烧结后的细孔特性,并掌握挤出原料的偏差,但是,根据本发明的方法,能够在短时间内调节微胶囊的适当的添加量,这样能够得到具有稳定的细孔容积的蜂窝构造体。
(1)充填体积密度和细孔容积的关系
本发明者认为微胶囊的添加质量即使同样,得到的蜂窝构造体的细孔容积也不同的原因由于是微胶囊的每单位质量的真正的容积发生变化,为掌握微胶囊的真正的容积想到了测定充填体积密度。本发明者首先假设微胶囊的真正的容积越大充填体积密度越小,细孔容积越大,但是,实验结果惊异的发现,充填密度越大,细孔容积越大。
即,对陶瓷粉末添加一定质量的微胶囊时,微胶囊的充填体积密度越小细孔容积越小,充填体积密度越大细孔容积越大,不能得到所希望的细孔容积的蜂窝构造体。因此,在使用充填体积密度小的微胶囊时,通过增多添加量能够得到所希望的细孔容积的蜂窝构造体,反之,在使用充填体积密度大的微胶囊时,通过减少添加量能够得到所希望的细孔容积的蜂窝构造体。
使用的微胶囊的充填体积密度越大,得到的蜂窝构造体细孔容积越大的理由未必明确,但是,认为有如下的理由。所谓的充填体积密度大表示的是微胶囊的粒径分布范围广,粒径较小的微胶囊大量存在。认为在制作坯土时,由于有该粒径小的微胶囊存在,从而微胶囊彼此的距离比较小,气孔彼此的连通性提高且气孔容积提高。另外,在本发明中细孔容积通过水银压入法进行测量。
作为其它理由,认为粒径小的微胶囊(粒径30μm以下)作为坯土进行混练时,难以受到陶瓷原料粒子破坏,因此,有效的造孔材料含量增多,其结果是细孔容积增大。
(2)添加量和细孔容积的关系
微胶囊的添加量和陶瓷蜂窝构造体的细孔容积的关系,通过变更充填体积密度相同的微胶囊的添加量而制造陶瓷蜂窝构造体得到。因此,通过测定使用的微胶囊的充填体积密度,由上述的微胶囊的充填体积密度和陶瓷蜂窝构造体的细孔容积的关系能够预测得到的蜂窝构造体的细孔容积,另外,由微胶囊的添加量和陶瓷蜂窝构造体的细孔容积的关系能够决定用于得到所希望的细孔容积的微胶囊的添加量。
(3)充填体积密度
所谓充填体积密度是对微胶囊施加规定的压缩力时的体积密度。对微胶囊的充填体积密度的测定方法的一例进行说明。如图2所示,(a)将微胶囊30投入内径30mm及深度100mm的有底的管状容器20内,(b)在利用外径约30mm的棒40以规定的压缩力(例如0.13MPa)压缩容器20内的微胶囊30的状态下,测定容器20的开口端21和压缩后的微胶囊30的上面31间的距离L,求取压缩后的微胶囊30的体积。将由微胶囊30和容器20的合计质量减去容器20的质量而求得的微胶囊30的质量,除以上述压缩后的微胶囊30的体积,由此求出微胶囊30的充填体积密度。另外,所谓上述压缩力是将棒40挤压微胶囊30的力除以微胶囊30的上面31的面积(=管状容器20的内径截面积)的值,优选0.08~0.2MPa。将压缩力设定为0.08~0.2MPa时,在细孔容积和充填体积密度之间得到较高相关关系。压缩力更优选0.12~0.13MPa,最优选0.13MPa。
(4)具体的设计例
说明在对陶瓷原料添加M1(质量%)的充填体积密度为Q1(g/cm3)的微胶囊A而得到的蜂窝构造体A的细孔容积为V1(cm3/g)时,将用充填体积密度为Q2(g/cm3)的微胶囊B得到的蜂窝构造体B的细孔容积V2(cm3/g)设定为和蜂窝构造体A的细孔容积V1(cm3/g)同样的方法。
(a)Q1>Q2的情况,即微胶囊B的充填体积密度Q2比微胶囊A的充填体积密度Q1更小时,将微胶囊B的添加量M2(质量%)设定为和M1同样时,充填体积密度小,因此细孔容积变小。即为V1>V2。因此,为了使蜂窝构造体B的细孔容积V2与蜂窝构造体A的细孔容积V1接近,需要比微胶囊A的添加量M1更多地添加微胶囊B。即,只要是M1<M2即可。
(b)反之,Q1<Q2的情况,即微胶囊B的充填体积密度Q2比微胶囊A的充填体积密度Q1更大时,将微胶囊B的添加量M2(质量%)设定为和M1同样时,充填体积密度大,因此细孔容积变大。即为V1<V2。因此,为了使蜂窝构造体B的细孔容积V2与蜂窝构造体A的细孔容积V1接近,需要比微胶囊A的添加量M1更少地添加微胶囊B。即,只要是M1>M2即可。
即,为得到与对陶瓷原料添加M1(质量%)的充填体积密度为Q1(g/cm3)的微胶囊A而制造的陶瓷蜂窝构造体同样细孔容积的陶瓷蜂窝构造体,将充填体积密度为Q2(g/cm3)的微胶囊B相对于陶瓷原料的添加量M2(质量%)在Q1>Q2时,需要调节为M2>M1、Q1<Q2时调节为M2<M1,由此,与现有那样的对于陶瓷粉末添加一定量的微胶囊的情况相比,能够得到每次制造时的细孔容积的变动少的蜂窝构造体。另外,可如现有那样不对每批次把握烧结后的细孔特征和挤出原料的偏差,而能够在短时间内调节微胶囊的适当的添加量。
(5)混合充填体积密度不同的微胶囊的方法
混合充填体积密度不同的两种以上的微胶囊,以成为所希望的充填体积密度,由此,能够得到具有稳定的细孔容积的蜂窝构造体。作为目标的充填体积密度Q的微胶囊通过分别适量地混合具有比充填体积密度Q大的充填体积密度Q1的微胶囊和具有比充填体积密度Q小的充填体积密度Q2的微胶囊而得到。通过调节微胶囊的充填体积密度使其成为一定值,由此能够减小蜂窝构造体的细孔容积的制造的变动。通过用这种方法进行制造,即使在微胶囊的批次间有性状变动时,也能够得到具有稳定的细孔容积的蜂窝构造体。
(6)以充填体积密度规定的方法
通过只使用充填体积密度在一定范围内的微胶囊,就可得到每次制造的细孔容积的变动少的蜂窝构造体。尤其是,通过使用压缩力为0.13MPa时的充填体积密度为0.13~0.17g/cm3范围内的微胶囊,能够得到具有稳定的细孔容积的蜂窝构造体。微胶囊的上述充填体积密度的更优选的范围为0.14~0.16g/cm3
(7)微胶囊的比表面积
在混合陶瓷原料、微胶囊等,添加水而制成的坯土的硬度,即使水的添加量为一定,也会根据微胶囊的比表面积而发生变化,挤压成形性也会变化。为提高坯土的成形性,优选微胶囊的比表面积为0.058~0.218m2/ml。微胶囊的比表面积比0.218m2/ml大时,坯土的硬度增高,在挤压用模型内坯土不能流畅地流动。微胶囊的比表面积比0.058m2/ml小时,挤压后的成形体恐怕会因自重产生变形。微胶囊的比表面积更优选0.13~0.18m2/ml,特别优选0.14~0.17m2/ml。微胶囊的比表面积可以用微磁道公司的粒度分布测定装置进行测定。
(8)制造工序
本发明的制造方法也可以包括:把握造孔材料即微胶囊的充填体积密度和细孔容积的相关关系的工序、根据使用的微胶囊的充填体积密度调节微胶囊的添加量的工序。
本发明的另外的制造方法也可以包括:把握造孔材料即微胶囊的充填体积密度和细孔容积的相关关系的工序、把握使用的微胶囊的添加量和细孔容积的相关关系的工序、根据使用的微胶囊的充填体积密度调节微胶囊的添加量的工序。
[材料]
(1)微胶囊
本发明中使用的微胶囊是被树脂制的壳包围的内部含有气体的发泡剂发泡树脂,作为造孔材料和陶瓷原料进行混合。对于树脂的材质没有特别的限定,但是,优选由丙烯类、异丁烯酸酯类、羧酸类等均聚物或共聚物构成,壳的厚度优选0.1~0.8μm。另外,优选上述微胶囊含有70~95%的水分。微胶囊的平均粒径对蜂窝构造体的平均细孔径造成影响,因此,根据作为目标的平均细孔径适当选定,平均粒径为38~60μm时微胶囊的充填体积密度和细孔容积得到较强相关关系,因此优选。作为微胶囊,可以使用特开2003-38919记载的微球等。微胶囊的添加量相对于陶瓷原料优选4~12质量%,更优选6~10质量%。另外,作为造孔材料内含有液体的树脂一般也称为“微胶囊”,但是,本发明的微胶囊指内含有气体的树脂,即发泡剂的发泡树脂。
(2)陶瓷原料
陶瓷原料的材质没有特别限定,通常对于作为蜂窝构造体的原料使用的所有物质都是有效的,优选含有堇青石、氧化铝、多铝红柱石、氮化硅、硅铝氧氮陶瓷、碳化硅、钛酸铝、氮化铝LAS等的至少一种。其中,以堇青石为主结晶的陶瓷蜂窝构造体具有耐热性、并且热膨胀系数低、耐热冲击性优异、且能够以低成本制造,因此优选。
在本发明中,作为造孔材料也可以含有微胶囊以外的粉末,例如以石墨等碳为主要成分的粉末、小麦粉、玉米粉等淀粉粉末、聚乙烯·对苯二酸酯、聚甲基丙烯酸甲酯等树脂粉末的一种或两种。
[3]实施例
将本发明通过以下实施例进行更详细的说明,但是,本发明不局限于这些。
(1)微胶囊的性状
用表1记载的同一材质,对平均直径不同的10种类的微胶囊A~J按以下的顺序求取充填体积密度。如图2(a)所示,将各微胶囊30分别投入内径为30mm及深度为100mm的有底的管状容器20内,如图2(b)所示,在利用外径约30mm的棒40以0.13MPa压缩容器20内的微胶囊30的状态下,测定容器20的开口端21和微胶囊30的上面31间的距离L,求出压缩后的微胶囊30的体积。将由微胶囊30和容器20的合计质量减去容器20的质量而求得的微胶囊30的质量除以上述压缩后的微胶囊30的体积,由此求出微胶囊的充填体积密度。微胶囊A~J的比表面积及粒径通过微磁道公司的粒度分布测定装置测定。将结果计入表1。
(2)蜂窝成形体的形成
相对于在适量调节了由高岭土、滑石、熔融硅石、氧化铝、氢氧化铝构成的氧化物类陶瓷的粉末的堇青石生成原料粉末中,分别添加8质量%的上述的微胶囊A~J。作为成形辅助剂适量添加纤维素甲醚、添加水后混合及混练,制造表1所示的试验No.1~10的10种坯土。将该10种坯土分别自公知的蜂窝构造体用口承向重力方向挤压成形,干燥后得到各种蜂窝成形体。用以下标准评价这些蜂窝成形体的成形性,计入表1。
得到了外观上都没有问题的蜂窝成形体的用○表示
外观上没有问题,但只是产生了隔壁的裂纹和变形的用△表示
外观上成为问题、产生了隔壁的裂纹和变形的用×表示
微胶囊的比表面积比0.218m2/ml大时(试验No.1及2)、及比0.058m2/ml小时(试验No.8~10),外观上没有问题,但只是隔壁产生了裂纹和变形,不优选。
将上述10种蜂窝成形体进行干燥及烧结,得到了隔壁厚度0.3mm、隔壁间距1.5mm、外径267mm及全长304mm的10种蜂窝构造体(试验No.1~10)。利用水银压入法求出得到的各蜂窝构造体的细孔容积。结果将示于表1。图3的图表表示试验No.1~10的微胶囊A~J的充填体积密度和得到的蜂窝构造体的细孔容积的关系。由图3可知,微胶囊的充填体积密度和得到的蜂窝构造体的细孔容积存在比例关系。图3中的近似直线用式:细孔容积=2.083×充填体积密度+0.3444表示。
[表1]
Figure GSB00000737457500091
实施例1
如表1所述,相对于堇青石生成原料粉末添加了8质量%的充填体积密度为0.150g/cm3的微胶囊C(试验No.3)时,得到的蜂窝构造体的细孔容积为0.657cm3/g。为了使用充填体积密度比微胶囊C更小的0.140g/cm3的微胶囊G(试验No.7)得到具有0.657cm3/g细孔容积的蜂窝构造体,只要使微胶囊G的添加量比8质量%更大即可。具体而言,可以如下求出添加量。
使用试验No.7的微胶囊G,如表2所述那样使其添加量变化,除此之外,和试验No.7同样制作7种蜂窝构造体,测定这些细孔容积。将结果示于表2。
[表2]
图4中用图表表示表2所示的微胶囊G的添加量和蜂窝构造体的细孔容积的关系。图4中的近似直线用式:细孔容积=0.0576×添加量+0.1753表示。可知,为使用充填体积密度0.140g/cm3的微胶囊G得到具有和添加了8质量%的充填体积密度为0.150g/cm3的微胶囊C时的蜂窝构造体的细孔容积0.657cm3/g同等的细孔容积的蜂窝构造体,只要将添加量增加到8.36质量%即可。另外,反之,为使用充填体积密度比试验No.3的微胶囊更大的0.160g/cm3即微胶囊B(试验No.2)得到细孔容积为0.657cm3/g的蜂窝构造体,只要同样地求出微胶囊B的添加量和蜂窝构造体的细孔容积的关系,决定微胶囊B的添加量即可。
实施例2
将充填体积密度为0.165g/cm3的微胶囊D和充填体积密度为0.140g/cm3的微胶囊G等量混合,测定该混合后的微胶囊C`的充填体积密度时为0.149g/cm3,得到了和微胶囊C大致相等的微胶囊。使用该微胶囊C`和试验No.3同样制造蜂窝构造体,细孔容积为0.655cm3/g。通过混合微胶囊D及G来调节充填体积密度,能够得到具有和使用微胶囊C得到的蜂窝构造体(试验No.3)大致相等的细孔容积的蜂窝构造体。
实施例3
在试验No.1~10中使用的各微胶囊中,使用充填体积密度为0.13~0.17g/cm3的微胶囊B~H制造蜂窝构造体时,如表1所示,可知,试样间的细孔容积的变动幅度小,稳定在0.611~0.698cm3/g的狭小范围内。另外可知,使用充填体积密度在0.14~0.157g/cm3范围的微胶囊C(试验No.3)及微胶囊E~G(试验No.5~8)得到的蜂窝构造体,细孔容积进一步稳定在0.636~0.670cm3/g的狭小范围内。
比较例1
如表1所示,相对于堇青石生成原料粉末添加一定量(8质量%)微胶囊而制作蜂窝构造体时,由于充填体积密度的不同,细孔容积在0.585~0.722cm3/g的范围变动,蜂窝构造体的性能不稳定。尤其是使用了充填体积密度0.13g/cm3小的微胶囊I~J(试验No.9~10)时,细孔容积比0.6cmA3/g更小,使用了充填体积密度0.17g/cm3大的微胶囊I~J(试验No.1)时超过了0.7cm3/g。
实施例4
在实施例1中,变更充填体积密度0.14g/cm3的微胶囊G的添加量而制作7种蜂窝构造体,求出微胶囊的添加量和蜂窝构造体的细孔容积的相关关系,这些关系如图4所示可用直线近似。因此,微胶囊的添加量只要是两点就可以求出和该关系同等的关系式。实际上用由两点求出的关系式就足够了。另外,预先测定充填体积密度不同的每一种微胶囊的添加量和蜂窝构造体的细孔容积的关系,根据使用的微胶囊的充填体积密度,可以求出用于设定为目标的细孔容积的微胶囊的适当的添加量。
这时,即使不是全部同样的值的充填体积密度的测定结果的情况下,也可以由已知的结果,通过进行内插和外插而精度优良地求出微胶囊的添加量和蜂窝构造体的细孔容积的关系。例如,在表示图4所示的充填体积密度0.14g/cm3的微胶囊的添加量和细孔容积的关系的近似直线a的基础上,求出例如显示充填体积密度0.18g/cm3的微胶囊的添加量和细孔容积的关系的近似直线b,由此,通过自近似直线a及近似直线b进行内插和外插,可以求出具有任意的充填体积密度的微胶囊的添加量和细孔容积的关系。

Claims (6)

1.一种陶瓷蜂窝构造体的制造方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,所述微胶囊是被树脂制的壳包围的内部含有气体的发泡剂发泡树脂,根据对所述微胶囊施加0.08~0.2MPa的压缩力时的充填体积密度,通过如下方式调节所述陶瓷蜂窝构造体的细孔容积,即在使用所述充填体积密度小的微胶囊时,增多所述微胶囊的添加量,在使用所述充填体积密度大的微胶囊时,减少所述微胶囊的添加量。
2.一种陶瓷蜂窝构造体的制造方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,
所述微胶囊是被树脂制的壳包围的内部含有气体的发泡剂发泡树脂,
为得到与对所述陶瓷原料以质量%计添加M1的施加0.08~0.2MPa的压缩力时的充填体积密度为Q1的微胶囊A而制造的陶瓷蜂窝构造体同样细孔容积的陶瓷蜂窝构造体,对所述充填体积密度为Q2的微胶囊B相对于所述陶瓷原料的以质量%计的添加量M2进行调节,
使Q1>Q2时M2>M1、
Q1<Q2时M2<M1,
其中,所述充填体积密度的单位为g/cm3
3.一种陶瓷蜂窝构造体的制造方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,
所述微胶囊是被树脂制的壳包围的内部含有气体的发泡剂发泡树脂,
根据对所述微胶囊施加0.08~0.2MPa的压缩力时的充填体积密度,在使用充填体积密度小的微胶囊时,增多所述微胶囊的添加量,在使用充填体积密度大的微胶囊时,减少所述微胶囊的添加量,如此求出所述微胶囊的添加量和陶瓷蜂窝构造体的细孔容积的相关关系,根据所述关系决定用于形成目标细孔容积的所述微胶囊的添加量,得到具有所希望的细孔容积的陶瓷蜂窝构造体。
4.一种陶瓷蜂窝构造体的制造方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,所述微胶囊是被树脂制的壳包围的内部含有气体的发泡剂发泡树脂,通过混合施加0.08~0.2MPa的压缩力时的充填体积密度不同的至少两种微胶囊,调节混合后的微胶囊的充填体积密度。
5.一种陶瓷蜂窝构造体的制造方法,将陶瓷原料粉末及由微胶囊构成的造孔材料进行混合及混练,制成坯土,将挤压成形所述坯土而得到的蜂窝成形体进行干燥及烧结,其特征在于,所述微胶囊是被树脂制的壳包围的内部含有气体的发泡剂发泡树脂,所述微胶囊的压缩力为0.13MPa时的充填体积密度为0.13~0.17g/cm3
6.如权利要求1~5中任一项所述的陶瓷蜂窝构造体的制造方法,其特征在于,所述微胶囊的比表面积为0.058~0.218m2/ml。
CN2007800071024A 2006-09-25 2007-09-25 陶瓷蜂窝构造体的制造方法 Expired - Fee Related CN101395102B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP258594/2006 2006-09-25
JP2006258594 2006-09-25
PCT/JP2007/068548 WO2008041548A1 (en) 2006-09-25 2007-09-25 Method for producing ceramic honeycomb structure

Publications (2)

Publication Number Publication Date
CN101395102A CN101395102A (zh) 2009-03-25
CN101395102B true CN101395102B (zh) 2013-02-27

Family

ID=39268409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800071024A Expired - Fee Related CN101395102B (zh) 2006-09-25 2007-09-25 陶瓷蜂窝构造体的制造方法

Country Status (6)

Country Link
US (1) US8309012B2 (zh)
EP (1) EP2070892B1 (zh)
JP (1) JP5304246B2 (zh)
KR (1) KR101425497B1 (zh)
CN (1) CN101395102B (zh)
WO (1) WO2008041548A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769978B2 (ja) * 2009-10-01 2011-09-07 住友化学株式会社 チタン酸アルミニウム系セラミックス焼成体の製造方法
US8821609B2 (en) 2010-04-01 2014-09-02 Hitachi Metals, Ltd. Ceramic honeycomb filter and its production method
CN104876637A (zh) * 2015-05-25 2015-09-02 中航复合材料有限责任公司 一种纤维增强纯无机阻燃泡沫复合材料及其制备方法
US20180326613A1 (en) * 2015-11-13 2018-11-15 Asahi Kasei Kabushiki Kaisha Methods for producing ceramic green body molded article and ceramic molded article
CN105665692B (zh) * 2016-03-24 2018-05-11 洛阳理工学院 一种长水口用抗热震内衬复合体及其制备工艺
JP6811769B2 (ja) * 2016-03-30 2021-01-13 日本碍子株式会社 ハニカム成形体の乾燥方法及びハニカム構造体の製造方法
CN107935618B (zh) * 2017-12-08 2020-08-25 温岭市腾锋鞋业有限公司 一种生态装饰硅藻泥-人造砂岩复合板及制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176054A (en) * 1962-04-09 1965-03-30 Harbison Walker Refractories Insulating refractories
JP4927268B2 (ja) 2001-07-27 2012-05-09 積水化学工業株式会社 多孔質セラミックフィルタの製造方法
JP4266103B2 (ja) * 2001-12-07 2009-05-20 日本碍子株式会社 多孔質セラミック体の製造方法
JP4476631B2 (ja) * 2002-03-29 2010-06-09 日本碍子株式会社 コーディエライト質多孔体の製造方法
JP4227347B2 (ja) 2002-03-29 2009-02-18 日本碍子株式会社 多孔質材料及びその製造方法
JP4222600B2 (ja) * 2003-01-07 2009-02-12 日本碍子株式会社 セラミックハニカム構造体の焼成方法
US7179316B2 (en) * 2003-06-25 2007-02-20 Corning Incorporated Cordierite filters with reduced pressure drop
WO2005068398A1 (ja) 2004-01-13 2005-07-28 Ngk Insulators, Ltd. セラミック構造体の製造方法
US7387829B2 (en) * 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
JP2005230782A (ja) * 2004-02-23 2005-09-02 Ngk Insulators Ltd 多孔質ハニカム構造体の製造方法
JP2005314218A (ja) 2004-03-31 2005-11-10 Ngk Insulators Ltd 多孔質構造体の細孔特性の制御方法
EP1785408A1 (fr) * 2005-11-15 2007-05-16 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé d'élaboration de supports poreux céramiques de microstructure contrôlée

Also Published As

Publication number Publication date
JPWO2008041548A1 (ja) 2010-02-04
WO2008041548A1 (en) 2008-04-10
JP5304246B2 (ja) 2013-10-02
EP2070892B1 (en) 2015-02-25
CN101395102A (zh) 2009-03-25
EP2070892A4 (en) 2013-12-11
US20090008811A1 (en) 2009-01-08
US8309012B2 (en) 2012-11-13
EP2070892A1 (en) 2009-06-17
KR20090054944A (ko) 2009-06-01
KR101425497B1 (ko) 2014-08-01

Similar Documents

Publication Publication Date Title
CN101395102B (zh) 陶瓷蜂窝构造体的制造方法
JP5741760B2 (ja) セラミックハニカムフィルタの製造方法
EP2098493B1 (en) Process for producing aluminum-titanate-based ceramic honeycomb structure
JP5502000B2 (ja) ハニカム構造体及びパティキュレートフィルタ
JP3277939B2 (ja) コージーライトボディの製造方法
JP7396989B2 (ja) 予備反応させた球状無機粒子および球状細孔形成剤を含むバッチ組成物ならびにそれからのハニカム体の製造方法
WO2007015495A1 (ja) セラミックハニカム構造体の製造方法
EP0232621B1 (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
CN107129318B (zh) 蜂窝结构体的制造方法
US7481962B2 (en) Method of manufacturing cordierite honeycomb structure including measuring cleavage index of kaolin particles
JP2007084380A (ja) 多孔質体の製造方法
KR20100135852A (ko) 다공질 티탄산알루미늄 및 그의 소결체, 및 그의 제조 방법
JP2011005417A (ja) ハニカムフィルタ及びその製造方法
JPH0416572A (ja) 触媒用アルミナの製造方法
WO2010143494A1 (ja) 柱状チタン酸アルミニウム及びその製造方法並びにハニカム構造体
JP2003191216A (ja) セラミックハニカム構造体の製造方法
Görlich The structure of SiO2—Current views
Boch et al. Sintering, oxidation and mechanical properties of hot pressed aluminium nitride
Gogotsi et al. Statistical studies of the strength of inelastic ceramics
Treheux et al. Bulk and grain boundary diffusion of 14C in tungsten hemicarbide
Suyama et al. Characterization and sintering of Mg Al spinel prepared by spray-pyrolysis technique
JPH07165460A (ja) マグネシア成形体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130227

Termination date: 20200925