CN101316902A - 镍油墨及用该镍油墨形成的导体膜 - Google Patents

镍油墨及用该镍油墨形成的导体膜 Download PDF

Info

Publication number
CN101316902A
CN101316902A CN 200680040828 CN200680040828A CN101316902A CN 101316902 A CN101316902 A CN 101316902A CN 200680040828 CN200680040828 CN 200680040828 CN 200680040828 A CN200680040828 A CN 200680040828A CN 101316902 A CN101316902 A CN 101316902A
Authority
CN
China
Prior art keywords
nickel
ink
electrically conductive
conductive film
nickel ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200680040828
Other languages
English (en)
Inventor
上郡山洋一
泽本裕树
堀内干正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of CN101316902A publication Critical patent/CN101316902A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明提供将镍粒子分散在分散介质中而形成的镍油墨。上述分散介质是将选自在常压下的沸点在300℃以下的醇类、二醇类中的1种或2种以上组合而成的介质。上述镍粒子的构成粒子的平均一次粒径为50nm以下。用该镍油墨形成的导体膜具有平均表面粗糙度(Ra)在10nm以下、最大表面粗糙度(Rmax)在200nm以下的平滑表面。

Description

镍油墨及用该镍油墨形成的导体膜
技术领域
本发明涉及镍油墨及其制造方法,具体来说,涉及例如能够减小通过利用喷墨法等描绘电路形状等并使其固化而形成的电路表面的粗糙度的镍油墨。
背景技术
近年来,作为利用纳米级粒径的金属纳米粒子的电路图案形成(布图)技术,提出了许多通过使用喷墨印刷装置或分配器涂布装置将导电性金属油墨(含有金属纳米粒子的金属油墨)直接描画在各种基板上之后进行烧成来获得作为导体的布线或电极的方法。
作为上述的利用金属纳米粒子在各种各样的基板上通过低温烧成来形成电路图案的技术,一直提倡的是日本特开2002-334618号公报记载的技术。而且,作为使用导电性金属油墨并利用喷墨印刷法来形成电路的技术,日本特开2002-324966号公报中有记载。
一直以来,与普遍使用的利用光刻法的电路图案形成技术相比,用这种喷墨方式等将导电性金属油墨直接印刷到基板上的方法由于其工序数少、且由工序中排出的废弃物量也少,因此作为能够显著削减生产成本的技术而受到关注。作为这种现有方法,例如作为在各种基板上形成电路图案的方法,有日本特开平9-246688号公报中公开的光刻法。
由上述的光刻法开始,产生了向喷墨印刷法、分配器涂布法的技术进步,从而在基板上的电路形成可以变得更加简便、便宜。
然而,这种通过喷墨印刷法、分配器涂布法并利用导电性油墨来形成电路的技术还没有成为广泛普及的技术。作为其原因,主要列举出如下(i)~(ii)的理由。
(i)由于形成后的导体膜的特性即对各种基板的粘附性有所欠缺,因此还是难以满足作为电路基板的基本特性。
(ii)无法得到作为形成后的导体膜的特性的导体表面的平滑性。通常,由于电路是包含基材层的层叠构造体,因此,如果导体膜表面的平滑性不足,就会在各种意义上限制其利用的领域。例如,即使想要在其粗糙的导体膜表面上形成异种成分层,也会产生受到基底的导体膜表面粗糙度的影响,异种成分层不能维持良好的膜厚均匀性等不良情况。
对于上述(i)的问题,构成导电性油墨的分散介质方面的特性有着较大的影响。即,这是由于,通过加热来烧结、固化而形成导体膜时的与基材的粘附性依赖于分散介质中含有的粘合剂成分与基材之间的化学反应。另外,对于(ii)的问题,构成导电性油墨的金属粉(金属粒子)和分散介质双方的特性都有影响。即,可知,若金属粒子自身较粗,则根本不可能形成具有光滑表面的导体膜。除此以外,在烧成加工时,如果分散介质气化并由导体膜内部挥发时的气体产生等非常激烈,则导体表面的粗糙度也不可能光滑。
根据以上所述,作为对使用导电性油墨形成的导体膜的要求,要求与各种基板的粘附性优异、其导体膜的表面尽可能光滑。尤其在使用镍油墨形成导体膜的情况下,根据其应用领域,要求其平均表面粗糙度(Ra)为10nm以下,最大表面粗糙度(Rmax)为200nm以下。
发明内容
因此,为了达到上述目的,以使用纳米镍粒子为前提,本发明人等进行了深入的研究,结果发现,通过采用以下构成的镍油墨而形成的导体膜能够得到与各种基材的良好的粘附性,显示出低电阻,能形成平均表面粗糙度(Ra)为10nm以下、最大表面粗糙度(Rmax)为200nm以下的光滑导体膜。
本发明的镍油墨为使镍粒子分散在分散介质中而形成的镍油墨,其特征在于,上述分散介质为将选自常压下的沸点在300℃以下的醇类、二醇类中的1种或2种以上组合而成的介质,上述镍粒子使用构成粒子的平均一次粒径在50nm以下的镍粒子。
另外,为了得到导体表面的平滑性,本发明的镍油墨中含有的镍粒子更优选其构成粒子的平均一次粒径为10nm~30nm。
本发明的镍油墨优选进一步含有选自硅烷偶联剂、钛偶联剂、氧化锆偶联剂、铝偶联剂中的1种或2种以上。这些偶联剂根据下层基材来适当选择使用。
另外,优选将本发明的镍油墨的表面张力调整至15mN/m~50mN/m的范围内。
优选将本发明的镍油墨在25℃下的粘度调整至60cP以下。
另外,对于使用以上所述的本发明的镍油墨、在各种基板上进行烧成而形成的导体膜,可以使其平均表面粗糙度(Ra)为10nm以下、最大表面粗糙度(Rmax)为200nm以下。
附图说明
图1为表示实施例1中得到的导体膜的表面状态的扫描型电子显微镜观察图像。
图2为表示比较例2中得到的导体膜的表面状态的扫描型电子显微镜观察图像。
具体实施方式
<本发明的镍油墨>
如上所述,本发明的导电性油墨是将镍粒子分散在分散介质中而形成的镍油墨,其特征在于,上述分散介质是将选自常压下的沸点在300℃以下的醇类、二醇类中的一种或2种以上组合而成的介质,上述镍粒子使用构成粒子的平均一次粒径在50nm以下的镍粒子。由这样的基本组成可知,该镍油墨的特正在于其中使用的镍粒子和分散介质。进而,其特征还在于,在以形成电路为目的而将该镍油墨印刷在基板表面上时,可以根据其印刷方法,通过调整表面张力和粘度来容易地调整各印刷方法的印刷精度。另外,其特征还在于,根据必要,可以通过在镍油墨中添加偶联剂来调整与基板材质的粘附性。
另外,若从不同的观点来捕捉本发明的镍油墨的特征,则会发现,近年来的导电性油墨为了寻求多功能化,作为分散介质的组成,有添加其它多种组合物的趋势。与之相对,本发明的镍油墨使用非常简单组成的分散介质而使整体的构成简单化,因而,可以根据镍油墨的印刷方法以及根据形成镍导体的基板材质来选择适宜的添加剂,因而在解决上述问题这一点上也具有特征。
本发明的镍油墨中使用的镍粒子
这里所说的镍粒子使用平均一次粒径在50nm以下的粒子。使用这样的镍粒子是为了使形成的导体膜的平均表面粗糙度(Ra)在10nm以下、最大表面粗糙度(Rmax)在200nm以下。因而,该镍粒子优选具有以下的粉体特性。
首先,若考虑到在喷墨方式等中的使用,则镍粒子的平均一次粒径优选600nm以下。平均一次粒径超过600nm时,极端情况下,导电性油墨容易堵塞喷墨喷嘴而难以连续印刷。即使可以印刷,形成的布线或电极的膜厚也会过厚,因此不能形成目标的微细布线。但是,仅仅凭借这个条件,形成的导体膜的表面粗糙度并不能光滑到目标水平。
即,为了降低形成的导体膜的表面粗糙度,要适当选择使用具有合适的一次粒径的微粒镍粒子。即,镍粒子的平均一次粒径需要在50nm以下。进而,为了使形成的导体膜的表面粗糙度(Ra)在10nm以下而得到平滑的表面,镍粒子的平均一次粒径优选在3nm~50nm的范围,尤其优选3nm~30nm的范围。此处,使粒子的一次粒径的优选下限值为3nm的理由为,实际上在现阶段,用于制造粒子分散性优异的制品的制法还并未确立。因此,如果确立了粒子分散性优异的微粒的镍粒子的制造方法,则粒子的平均一次粒径的下限值也可以小于3nm。另一方面,若平均一次粒径超过50nm,则得不到目标的导体膜的表面粗糙度,是不合适的。作为趋势,镍粒子的一次粒径越细微,则导体表面的平滑性指标Ra为越低的值。本发明中所说的平均一次粒径指的是用扫描型电子显微镜观察时,观察一个视野中含有的最少200个粒子的粒径,通过将它们累计并平均而得到的粒径。粒子的形状为球状时,粒径指的就是直径。粒子的形状为针状时,粒径指的是短轴的长度。粒子的形状为片状时,粒径指的是厚度方向的长度。粒子的形状为不定形时,粒径指的是该粒子中最短部分的长度。
镍粒子的平均一次粒径小是判断为微细粒子的根据,但即使是微粒,若导电性油墨中的粒子之间发生凝集,作为二次构造体的粒径变大,则导体表面的平滑性还是会恶化。因此,用实验确认导体表面的平均粗糙度(Ra)在10nm以下的范围内时,若使导电性油墨中的作为镍粒子的二次构造体的凝集粒子的最大粒径在0.45μm以下,则可以基本确实地使导体表面的粗糙度达到平均表面粗糙度(Ra)在10nm以下、最大表面粗糙度(Rmax)在200nm以下。进而,若该凝集粒子的最大粒径在0.45μm以下,则使用喷墨印刷方法时,则也可以基本确实地防止喷墨喷嘴的堵塞。为了使凝集粒子的最大粒径在0.45μm以下,例如在油墨的配制工序中,使用孔径为0.45μm的膜滤器除去粗大的粒子即可。因此,这里所说的凝集粒子的最大粒径并不是指该凝集粒子的粒径的实测值,而是指膜滤器的孔径。
另外,本发明的镍油墨中含有的镍粒子的粒子形态是假定粒子形状为球状。从而,只要不会成为导致镍油墨的经时变化增大、烧结特性恶化、形成的导体膜的电阻上升等的阻碍要素,也可以选用用油酸或硬脂酸等进行过表面处理的镍粒子。
镍粒子的制备方法没有特别限制。例如,可以将含有镍盐、多元醇和贵金属催化剂的反应液加热至反应温度,在维持该反应温度的同时将该反应溶液中的镍离子还原,接着用有机溶剂置换,从而得到含有镍粒子的料浆。
作为镍盐,例如可以使用氢氧化镍、硫酸镍、氯化镍、溴化镍、醋酸镍等。镍盐的浓度优选以反应液中的镍换算计为1g/L~100g/L。
多元醇是为了还原反应液中的镍离子而使用的。作为多元醇,可以列举出乙二醇、二乙二醇、三乙二醇、四乙二醇、1,2-丙二醇、二丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,5-戊二醇等。反应液中的多元醇的浓度优选相对于镍为11当量~1100当量。
贵金属催化剂是为了促进多元醇还原镍离子而使用的。作为贵金属催化剂,例如可以列举出氯化钯、硝酸钯、醋酸钯、氯化铵钯等钯化合物、硝酸银、乳酸银、氧化银、硫酸银、环己烷银、醋酸银等银化合物、氯化铂酸、氯化铂酸钾、氯化铂酸钠等铂化合物、氯化金酸、氯化金酸钠等金化合物。反应液中的贵金属催化剂的量会影响镍离子的还原速度。还原速度慢时,镍粒子有粗大化的趋势。还原速度快时,镍粒子的粒径容易产生不均。从这些观点出发,反应液中的贵金属催化剂的量优选为0.01mg/L~0.5mg/L。
反应液例如可以通过在水中加入镍盐、多元醇以及贵金属催化剂并搅拌混合来配制。当贵金属催化剂例如硝酸钯那样以水溶液形式存在时,不需有水,只需要将镍盐、多元醇和贵金属催化剂混合即可配制。
优选向配制后的反应液中添加氨基酸。通过这种添加,可以容易地得到一次粒径小的镍粒子。作为氨基酸,优选使用沸点或分解点在反应温度以上的、且在多元醇中与镍和贵金属催化剂形成络合物的氨基酸。例如,优选使用L-精氨酸和L-胱氨酸。氨基酸的添加量优选相对于反应液中的镍为0.01重量%~20重量%。
将反应液加热至发生镍离子还原的反应温度,在维持该温度的状态下进行镍离子的还原。由此生成镍粒子。反应温度优选为150℃~210℃。反应时间通常为1小时~20小时。
用有机溶剂置换生成了镍粒子的反应溶液,由此可以得到镍料浆。作为有机溶剂,例如可以使用松油醇、二氢松油醇等萜类、乙二醇等二醇类、辛醇、癸醇等醇。
作为用上述方法配制镍粒子的替代,也可以使用市售品作为镍粒子。例如,也可以使用本申请人市售的纳米镍粒子NN-20(商品名)。除此之外,例如还可以通过以下(1)至(6)的方法来制造镍粒子。
(1)用还原性气体来还原镍化合物粉末的干式还原法(参照日本特开2004-323887号公报)
(2)用胺或肼等还原性化合物来还原镍盐溶液或镍化合物料浆的湿式还原法(参照日本特开2004-124237号公报和日本特开2005-82818号公报)、
(3)用微波照射含有镍盐的还原性溶剂以使其还原的微波加热法(参照日本特开2000-256707号公报)
(4)将镍盐溶液制成细微的液滴并加热使其热分解的喷雾分解法(参照日本特开平11-124602号公报)
(5)将加热蒸发后的镍盐用还原性气体还原的化学气相蒸镀法(参照日本特开2005-240075号公报)
(6)将用等离子熔融蒸发后的镍冷却而制成微粉的物理气相蒸镀法(参照日本特开2005-307229号公报)
镍油墨中的镍粒子的浓度优选为2~76重量%,更优选为5~76重量%,进一步优选为5~60重量%。
镍油墨的分散介质
本发明的导电性油墨中的分散介质可以使用具有作为后述的主溶剂、表面张力调节剂和粘度调节剂等的作用的介质。有时也可以根据分散介质的种类,使用不同的化合物分别作为主溶剂、表面张力调节剂和粘度调节剂,有时若某种化合物具有两种以上的作用时,使用两种或一种化合物就足够了。无论在哪种情况下,油墨中的主溶剂、表面张力调节剂和粘度调节剂的合计比例即油墨中的分散介质的比例优选为20~95重量%,尤其优选为60~95重量%。
分散介质中,优选使用有机溶剂作为主溶剂。具体来说,可以使用将选自常压下的沸点在300℃以下的醇类、二醇类中的1种或2种以上组合而成的介质。当分散介质由2种以上的有机溶剂组成时,主溶剂未必指的是比例最高的有机溶剂。优选不使用水作为分散介质。但这并不意味着本发明的油墨中不含有水。
此处,“常压下的沸点在300℃以下”的限定是由于在沸点超过300℃的温度范围下,在还原烧成工序中形成电极时,由于高温使溶剂气化,该气体会使电极内产生微小的裂缝或空隙,因而不仅不能形成致密的电极,结果也无法实现导体膜的致密化,因此不仅不能发挥与各种基材之间的高粘附强度,而且导体膜的电阻也会上升。
使用醇类作为主溶剂时,优选使用选自1-丙醇、1-丁醇、1-戊醇、1-己醇、环己醇、1-庚醇、1-辛醇、1-壬醇、1-癸醇、缩水甘油、苯甲醇、甲基环己醇、2-甲基-1-丁醇、3-甲基-2-丁醇、4-甲基-2-戊醇、异丙醇、2-乙基丁醇、2-乙基己醇、2-辛醇、松油醇、二氢松油醇、2-甲氧基乙醇、2-乙氧基乙醇、2-丙氧基乙醇、2-正丁氧基乙醇、2-苯氧基乙醇、卡必醇、乙基卡必醇、正丁基卡必醇、二丙酮醇、二甲基卡必醇、二乙基卡必醇中的1种或2种以上组合使用。其中优选在常压下的沸点为80℃~300℃、且在室温的常压下难以气化的醇。具体来说,更优选使用1-丁醇、1-辛醇、松油醇、二氢松油醇、2-甲氧基乙醇、2-乙氧基乙醇、2-正丁氧基乙醇、二丙酮醇。
使用二醇类作为主溶剂时,优选使用选自乙二醇、二乙二醇、三乙二醇、四乙二醇、丙二醇、1,3-丙二醇、二丙二醇、三丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、己二醇中的1种或2种以上组合使用。其中优选常温下的粘度在100cP以下的二醇。具体来说,优选使用乙二醇、二乙二醇、丙二醇、1,4-丁二醇、二丙二醇。这是因为,若粘度过高,则在将本发明的油墨作为例如喷墨用油墨使用时会难以调整到适宜喷墨的粘度。
主溶剂优选在本发明的油墨中混合6~90重量%,更优选混合30~90重量%,进一步优选混合30~80重量%。
在本发明的油墨中,作为分散介质,除了上述主溶剂之外还可以含有其它的有机溶剂。其它的有机溶剂主要具有作为表面张力调节剂或粘度调节剂的作用。通过使油墨中含有具有作为表面张力调节剂和粘度调节剂的作用的有机溶剂,本发明的油墨的表面张力和粘度可以在喷墨印刷方式的适当范围内。作为表面张力调节剂和粘度调节剂使用的有机溶剂优选与主溶剂具有相容性。对于表面张力调节剂和粘度调节剂的详细情况在后文中叙述。
镍油墨的平坦性和粘附性提高剂
本发明的镍油墨优选含有选自由硅烷偶联剂、钛偶联剂、氧化锆偶联剂、铝偶联剂组成的组中的1种或2种以上。在将本发明的镍油墨涂布在各种基板上而形成导体膜时,这些偶联剂具有提高该导体膜的平坦性、并提高该导体膜和基板之间的粘附性的作用。
上述的各种偶联剂不仅可以使用选自上述组中的1种成分,也可以将2种以上组合使用。即,通过含有多种成分,可以控制与进行电路等的形成的基板性质相配的粘附性、形成的电路表面的粗糙度。
上述各种偶联剂的配合量由与油墨中含有的镍粒子的配合量的关系来决定。具体来说,偶联剂的配合量优选偶联剂/镍粒子的重量比为0.05~0.6,尤其优选0.1~0.4。这些成分的配合还优选偶联剂和镍粒子的合计相对于油墨整体的比例为5~80重量%,尤其优选5~40重量%。通过使偶联剂的配合量在此范围内,将本发明的油墨烧成而形成的导体膜和基板之间的粘附性变得足够高,且该导体膜的表面平滑性也变得足够高。并且,该导体膜的导电性也变得足够高。偶联剂相对于镍粒子的重量比如上所述,但是,以满足上述重量比为条件,油墨中的偶联剂自身的浓度优选为0.2~60重量%,尤其优选为1~60重量%,特别优选为1~48重量%。
作为此处所说的偶联剂,优选使用乙烯基三氯硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、3-缩水甘油氧基丙基三甲氧基硅烷、3-缩水甘油氧基丙基甲基二乙氧基硅烷、3-缩水甘油氧基丙基三乙氧基硅烷、对苯乙烯基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基甲基二乙氧基硅烷、3-甲基丙烯酰氧基丙基三乙氧基硅烷、3-丙烯酰氧基丙基三甲氧基硅烷、N-2(氨乙基)3-氨丙基甲基二甲氧基硅烷、N-2(氨乙基)3-氨丙基三甲氧基硅烷、N-2(氨乙基)3-氨丙基三乙氧基硅烷、3-氨丙基三甲氧基硅烷、3-氨基三乙氧基硅烷、3-三乙氧基甲硅烷基-N-(1,3-二甲基-亚丁基)丙胺、N-苯基-3-氨丙基三甲氧基硅烷、N-(乙烯基苄基)-2-氨乙基-3-氨丙基三甲氧基硅烷盐酸盐、3-脲基丙基三乙氧基硅烷、3-氯丙基三甲氧基硅烷、3-巯基丙基甲基二甲氧基硅烷、3-巯基丙基三甲氧基硅烷、双(三乙氧基甲硅烷基丙基)四硫化物、3-异氰酸酯基丙基三乙氧基硅烷、四甲氧基硅烷、四乙氧基硅烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基三乙氧基硅烷、苯基三乙氧基硅烷、六甲基二硅氨烷、己基三甲氧基硅烷、癸基三甲氧基硅烷中的任意一种。其中,从谋求与基板的粘附性的稳定化的观点出发,优选使用能够发挥稳定性能的甲基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基三乙氧基硅烷等。另外,上述的硅烷偶联剂也可以是多个偶联剂通过硅氧烷键而成为聚合状态的寡聚物或聚硅氧烷的状态。
作为此处所说的钛偶联剂,优选使用钛酸四异丙酯、钛酸四正丁酯、钛酸丁酯二聚物、钛酸四(2-乙基己基)酯、钛酸四甲酯、乙酰丙酮钛、四乙酰丙酮钛、乙基乙酰乙酸钛、辛烷二油酸钛、乳酸钛、三乙醇胺钛、聚羟基钛硬脂酸酯中的任意一种。其中,从谋求与基板的粘附性的稳定化的观点出发,优选使用能够发挥稳定性能的钛酸四异丙酯、钛酸四正丁酯、乳酸钛等。
作为这里所说的锆偶联剂,可以使用正丙醇锆、正丁醇锆(zirconiumn-butylate)、四乙酰基丙酮锆、单乙酰基丙酮锆、二乙酰基丙酮锆、单乙基乙酰乙酸锆、乙酰丙酮酸酯二乙基乙酰乙酸锆、乙酸锆、单硬脂酸锆中的任意一种。其中,从谋求与基板的粘附性的稳定化的观点出发,优选使用能够发挥稳定性能的正丙醇锆、正四丁氧基锆、四乙酰基丙酮锆、单乙酰基丙酮锆、二乙酰基丙酮锆、单乙基乙酰乙酸锆、乙酰丙酮酸酯二乙基乙酰乙酸锆、乙酸锆。
作为这里所说的铝偶联剂,优选使用选自异丙醇铝、单仲丁氧基铝二异丙酯、仲丁醇铝(aluminium-sec-butylate)、乙醇铝、乙基乙酰乙酸铝二异丙酯、三(乙基乙酰乙酸)铝、烷基乙酰乙酸铝二异丙酯、单乙酰丙酮酸酯二(乙基乙酰乙酸)铝、三(乙酰丙酮)铝、单异丙氧基单油酰氧基(oleoxy)乙基乙酰乙酸铝、环状氧化铝异丙酯、环状氧化铝辛酯、环状氧化铝硬脂酸酯中的任意一种。其中,从谋求与基板的粘附性的稳定化的观点出发,优选使用能够发挥稳定性能的乙基乙酰乙酸铝二异丙酯、三(乙基乙酰乙酸)铝、烷基乙酰乙酸铝二异丙酯、单乙酰丙酮酸酯二(乙基乙酰乙酸)铝、三(乙酰丙酮)铝。
镍油墨的表面张力
以下所述的本发明的镍油墨的表面张力优选调整为25℃下为15mN/m~50mN/m,尤其优选调整为20mN/m~40mN/m。通过将表面张力调整到这个范围内,在将本发明的镍油墨用于例如喷墨法、分配器法时会容易形成电路等。若镍油墨的表面张力在上述范围之外,尤其是在用于喷墨印刷时会发生镍油墨不能从喷嘴喷出的情况。即使可以从喷嘴喷出,有时也会发生偏离目标印刷位置、不能连续印刷等现象。因此,通过在本发明中将镍油墨的表面张力调整到适宜使用喷墨法的上述范围内,可以使用喷墨装置来形成微细电路布线等。
表面张力的调整
为了调整油墨的表面张力,例如优选使用25℃下表面张力为20mN/m~45mN/m的添加剂(以下称表面张力调节剂)。通过使用具有这样的表面张力的表面张力调节剂,可以使适宜用于包括喷墨印刷法和分配器印刷法的各种印刷法中的油墨的表面张力调整变得非常容易,可以形成微细的布线电路。作为表面张力调节剂,优选使用将选自常压下的沸点为100℃~300℃的醇类、二醇类、醚类或酮类、且25℃下的表面张力为20mN/m~45mN/m的1种或2种以上组合而成的表面张力调节剂。另外,根据使用的表面张力调节剂的种类,有时上述中说明的主溶剂可以兼作调整表面张力。在这种情况下,就不需要将主溶剂再和另外的表面张力调节剂配合。进而,根据后述的粘度调节剂的种类,有时该粘度调节剂也兼作调整表面张力。在这种情况下,也不需要将粘度调节剂再和另外的表面张力调节剂配合。
作为在25℃下的表面张力为20mN/m~45mN/m的醇等,例如可以列举出1-丁醇、1-戊醇、1-己醇、1-辛醇、4-甲基-2-戊醇、2-甲氧基乙醇、2-乙氧基乙醇、2-丙氧基乙醇、2-正丁氧基乙醇、甲基卡必醇、乙基卡必醇、二甲基卡必醇、二乙基卡必醇、正丁基卡必醇等。作为在25℃下的表面张力为20mN/m~45mN/m的二醇等,可以列举出丙二醇、二丙二醇。另外,作为醚等,可以列举出1,4-二噁烷、γ-丁内酯、二正丁基醚。作为在25℃下的表面张力为20mN/m~45mN/m的酮等,可以列举出乙酰丙酮、双丙酮醇、2-庚酮等。在本发明中,从维持作为镍油墨的长期质量稳定性的观点出发,在表面张力调节剂中优选使用2-正丁氧基乙醇或2-乙氧基乙醇。
表面张力调节剂的混合量由与主溶剂混合量之间的关系来决定。具体来说,优选表面张力调节剂/主溶剂的重量比为0.1~1.2,尤其优选为0.1~0.5。以满足上述重量比作为条件,表面张力调节剂在油墨中的自身浓度优选为0.8~80重量%,更优选为4~80重量%,进一步优选为5~50重量%。若表面张力调节剂的量不足0.8重量%,则有时不能有效地进行表面张力的调节。若表面张力调节剂的添加量超过80重量%,则有时在添加表面张力调节剂的前后,镍油墨中含有的镍粒子的分散状态发生较大变化,结果镍粒子开始凝集,镍油墨中最为重要的镍粒子的均匀分散受到破坏。
镍油墨的粘度
本发明中,可以根据印刷方法来调节适宜的镍油墨的粘度。尤其是为了使在镍油墨的粘度左右印刷精度的喷墨法或分配器法中更容易形成电路等,优选将镍油墨在25℃下的粘度调整为60cP以下,尤其优选调整到30cP以下。粘度的下限值没有特别限制。其理由为,使用镍油墨形成电路的场所和目的各不相同,所期待的布线、电极大小及其形状也各不相同。若在25℃下的粘度超过60cP,即使想利用喷墨法或分配器法来形成微细的布线或电极,由于镍油墨的粘度高至从喷嘴喷出镍油墨的能量以上,因此有时镍油墨的液滴很难稳定地从喷嘴中喷出。若25℃下的粘度在60cP以下,可以用喷墨法或分配器法形成微细的布线或电极,这是由本发明人通过实验证明的。
粘度的调节
为了调节油墨的粘度,优选使用例如将选自常压下的沸点为100℃~300℃的醇类、萜类、醚类、酮类中的1种或2种以上组合而成的添加剂(以下称粘度调节剂)。根据所用的粘度调节剂的种类,有时上述中说明的主溶剂兼作调节粘度。在这种情况下,就不需要将主溶剂与另外的添加粘度调节剂配合。进而,根据上述的表面张力调节剂的种类,有时该表面张力调节剂兼作调整浓度。在这种情况下,也不需要将表面张力调节剂与另外的粘度调节剂配合。
作为常压下的沸点在100℃~300℃的醇等,例如可以列举出1-戊醇、2-戊醇、2-甲基-2-丁醇、3-甲基-1-丁醇、异丁基乙醇、十一烷醇、2-乙基丁醇、2-乙基己醇、2-辛醇、1-辛醇、缩水甘油、环己醇、3,5-二甲基-1-己基-3-醇、1-癸醇、四氢呋喃甲醇、松油醇、新戊醇、1-壬醇、1-丁醇、糠醇、丙炔醇、1-己醇、1-庚醇、2-庚醇、3-庚醇、苄醇、3-戊醇、甲基环己醇、2-甲基-1-丁醇、3-甲基-2-丁醇、3-甲基-1-丁烯-3-醇、4-甲基-2-戊醇、3-甲基-1-戊烯-3-醇、乙二醇、乙二醇单醋酸酯、2-异丙氧基乙醇、2-乙氧基乙醇、2-苯氧基乙醇、2-丁氧基乙醇、乙二醇单己基醚、2-甲氧基乙醇、2-氯乙醇、1,3-辛二醇、甘油、甘油1,3-二醋酸酯、甘油二烷基醚、甘油单醋酸酯、氯甘油、3-氯-1,2-丙二醇、二乙二醇、2-(2-氯代乙氧基)乙醇、2-(2-乙氧基乙氧基)乙醇、丁基卡必醇、甲基卡必醇、环己二醇、二丙二醇、二丙二醇单乙醚、二丙二醇单丁基醚、二丙二醇单丙基醚、二丙二醇单甲基醚、四乙二醇、三乙二醇、三乙二醇单乙醚、三乙二醇单甲基醚、三丙二醇、三丙二醇单甲基醚、1,3-丙二醇、三羟甲基乙烷、三羟甲基丙烷、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,4-丁烯二醇、丙二醇、1-乙氧基-2-丙醇、1-丁氧基-2-丙醇、1-甲氧基-2-丙醇、氯丙醇、己二醇、季戊四醇、1,5-戊二醇、聚乙二醇、2-甲氧基甲氧基乙醇等。
作为常压下的沸点为100℃~300℃的萜类,例如可以列举出松油醇、二氢松油醇等。
作为常压下的沸点为100℃~300℃的醚类,例如可以列举出苯甲醚、乙基异戊基醚、乙基苄基醚、表氯醇、甲苯基甲基醚、异戊醚、乙缩醛、二噁烷、桉树脑、苯基醚、丁基醚、苄基醚、三噁烷、二氯乙基醚、苯乙醚、丁基苯基醚、糠醛、单氯二乙基醚、1,2-二乙氧基乙烷、乙二醇二缩水甘油醚、1,2-二丁氧基乙烷、2-乙氧基乙基-2-甲氧基乙基醚、二乙基卡必醇、二丁基卡必醇、二乙二醇二甲基醚、三乙二醇二甲基醚、二氯代三甘醇、γ-丁内酯等。
作为常压下的沸点为100℃~300℃的酮类,例如可以列举出乙酰丙酮、苯乙酮、异佛尔酮、乙基丁基酮、二丙酮醇、二异丁基酮、二异丙基酮、3-戊酮、环己酮、4-庚酮、佛尔酮、甲醚、2-庚酮、甲基异丁基酮、甲基环己酮、2-己酮、2-戊酮、2-辛酮、2-壬酮等。
其中,从油墨的质量稳定性的观点出发,尤其优选使用二噁烷或γ-丁内酯。
粘度调节剂的混合量由与主溶剂的混合量之间的关系来决定。具体来说,粘度调节剂/主溶剂的重量比优选为0.1~1.2,尤其优选为0.5~1.2。以满足上述的重量比为条件,油墨中粘度调节剂自身的浓度优选为0.8~80重量%,更优选为4~80重量%,进一步优选为4~50重量%。
<本发明的镍油墨的制造方法>
关于以上所述的镍油墨的制造方法,没有特别的限定。无论采用什么方法,只要是最终至少能够使镍粒子和分散介质均匀分散的方法就可以。然而,为了提高粒子分散性,优选在制造镍油墨的前阶段,多阶段地实施充分提高粒子分散性的分散处理。
具体来说,首先将镍粒子和分散介质混合来配制母镍料浆。使用分散机进行母镍料浆的分散处理。接着,使用膜滤器等过滤材除去镍的一次粒子的凝集粒子后,用离心分离器进行镍粒子的浓度调整。在如此制得的镍料浆中加入各种添加剂,并充分混合。由此制得目标的镍油墨。
将这样制得的油墨通过喷墨印刷方式或分配器涂布方式涂布在玻璃、氧化铟锡(ITO)、银、酮、硅等各种基材上。优选在150~950℃、更优选在200~400℃下烧成通过涂布形成的涂膜。烧成的气氛没有特别的限制,优选在氮气氛下、氩气氛下、氢-氮混合气氛下等进行烧成。在氢-氮混合气氛下进行烧成时,优选氢气浓度为1~4体积%左右。无论使用何种气氛,烧成时间均优选为0.5~2小时左右。
如以上详细所述,本发明的镍油墨适用于采用分配器涂布方式或喷墨印刷方式来形成准确且细微的布线或电极。因此,本发明的镍油墨对于各种基板、由异种元素形成的电路等的粘附性优异。并且,本发明的镍油墨可以使使用其而形成的导体膜的表面光滑(平均表面粗糙度(Ra)为10nm以下,最大表面粗糙度(Rmax)为200nm以下)。因此,该镍油墨适用于在玻璃、ITO、银、铜、硅等各种基材上形成薄膜镍电极或布线的用途中。
实施例
以下,通过实施例对本发明进行更详细的说明。但本发明的范围并不仅限于实施例。
[实施例1]
在该实施例中,按照以下顺序配制镍油墨,使用该镍油墨来确认喷墨印刷性,并形成导体膜,进行导体电阻、粘附性、电极表面平滑性的状态观察。
镍料浆的配制:
将镍粒子(三井金属矿业公司制造,NN-20,球状粒子,平均一次粒径为20nm)50g与作为分散介质的乙二醇950g混合,配制1000g的母镍料浆。
分散处理1:
将上述的镍料浆用将氧化锆珠粒(株式会社Nikkato制造,0.1mmφ)作为介质的涂料振动器(paint shaker)(浅田铁钢株式会社制造)进行30分钟的分散处理。
分散处理2:
之后,用高速乳化分散机T.K.Filmix(特殊机化工业株式会社制造)进行分散化处理,制得使镍粒子分散了的镍料浆。
除去凝集粒子:
将溶液通过膜滤器(Advantec东洋株式会社制造,孔径为0.45μm),从而除去所得到的料浆中含有的凝集粒子,制得不含有粗大粒子的镍料浆。
浓度调节:
通过离心分离机将上述镍料浆的镍浓度调整为17.9重量%后,用T.K.Filmix(特殊机化工业株式会社制造)进一步进行分散处理,制得浓度调节后的镍料浆。
导电性油墨的配制:
在上述镍料浆100g中加入硅烷偶联剂7.2g(信越Silicones公司制KBE-603)、作为粘度调节剂的γ-丁内酯36.0g(和光纯药工业株式会社制)、作为表面张力调节剂的2-乙氧基乙醇36.0g(和光纯药工业株式会社制),用T.K.Filmix(特殊机化工业株式会社制造)进行混合,制得导电性油墨A。
印刷性的评价:
用粘度测定装置(山一电机公司制造VM-100A)测定导电性油墨A的粘度,结果在25℃下的粘度为24cP。另外,用表面张力测定装置(A&D公司制造DCW-100W)测定导电性油墨A的表面张力,结果在25℃下的表面张力为35mN/m。对于该导电性油墨A,用市售的喷墨打印机(SEIKOEPSON株式会社制造PM-G700),在无碱玻璃基板(日本电气硝子株式会社制造OA-10)上印刷布线图案(线与间隙:100μm、长度为2cm),结果导电性油墨A可以不堵塞喷墨喷嘴地进行印刷。而且,100次连续印刷或放置1小时后的间歇印刷也可以进行。用光学显微镜观察布线图案,结果在布线图案上未发现断线或油墨的飞散,是良好的布线图案。
导体膜的制作:
使用旋涂机(MIKASA公司制造)、在1000rpm、10秒的条件下,将导电性油墨A在无碱玻璃基板(日本电气硝子株式会社制造OA-10)上成膜。之后,在大气压下、100℃下进行10分钟加热干燥,进而,在氢气含量为1体积%的氢-氮混合气氛下、300℃下进行1小时的加热烧成,制得导体膜A。
导电性的评价:
用扫描型电子显微镜(FEI COMPANY公司制造FE-SEM)观察上述导体膜A的剖面,结果膜厚为400nm。另外,用四探针电阻测定机(三菱化学株式会社制造LOREST GP)测定导体膜A的比电阻,结果为2.0×10-3Ω·cm。
粘附性的评价:
按照JIS K 56005-6段落的划格法(cross-cut test)来评价上述导体膜A和玻璃基板之间的粘附性,结果分类为0,具有良好的粘附性。另外,将上述导体膜A在水中进行10分钟超声波洗涤,之后在丙酮中进行10分钟超声波洗涤,然后用显微镜观察,结果未发现导体膜A的剥离。
表面平滑性的评价:
用扫描型电子显微镜(FEI COMPANY公司制造FE-SEM)观察上述导体膜A的剖面,结果得到了表面平滑的膜。另外,用东京精密制造的SURFCOM 130A测定表面的凹凸,结果Ra=9nm,Rmax=70nm。图1表示该导体膜A的剖面的扫描型电子显微镜照片。
[实施例2]
镍料浆的配制:
将镍粒子(三井金属矿业公司制造,NN-20,球状粒子,平均一次粒径为20nm)50g与作为分散介质的1-戊醇950g混合,配制1000g的母镍料浆。之后按照与实施例1同样的方法制得镍浓度调整为17.9重量%的镍料浆。
在制得的镍料浆100g中加入7.7g钛偶联剂(MATSUMOTO贸易公司制造ORGATICS TC-401),用T.K.Filmix(特殊机化工业株式会社制造)进行混合,制得导电性油墨B。
用制得的导电性油墨B,按照与实施例1相同的操作来确认喷墨印刷性,并形成导体膜,进行导体电阻、电极表面平滑性的状态观察。其结果是,导电性油墨B在25℃下的粘度和表面张力分别为13cP和25mN/m。另外,导电性油墨B可以不堵塞喷墨喷嘴地进行印刷。进而,由导电性油墨B形成的导体膜(膜厚为400nm)的比电阻为3.1×10-3Ω·cm,与实施例1的导体膜同程度地为比电阻的值较低的导体膜。另外,该导体膜的Ra为9nm,Rmax为93nm,表面平滑性良好。
[比较例1]
除了使用950g水代替乙二醇作为分散剂之外,采用与实施例1相同的方法进行镍料浆的配制。但是,由于得到的料浆中的镍粒子的粒径较大,镍粒子无法通过孔径为0.45μm的膜滤器,未能制得导电性油墨。
[比较例2]
除了使用镍粒子(三井金属矿业公司制造NN-100,球状粒子,平均一次粒径为100nm)之外,采用与实施例1相同的方法进行镍料浆的配制,制得导电性油墨C。使用得到的导电性油墨C,采用与实施例1相同的操作来确认喷墨印刷性,并形成导体膜,进行导体电阻、电极表面平滑性的状态观察。结果是,导电性油墨C在25℃下的粘度和表面张力分别为19cP和33mN/m。另外,导电性油墨C可以不堵塞喷墨喷嘴地进行印刷。但是,由导电性油墨C形成的导体膜(厚度为500nm)的比电阻为5.3×10-3Ω·cm,高于实施例1的导体膜的比电阻值。另外,该导体膜的Ra为48nm,Rmax为320nm,表面平滑性差。图2表示该导体膜的剖面的扫描型电子显微镜照片。
本发明的镍油墨在能够使使用该镍油墨形成的导体膜的表面光滑(平均表面粗糙度(Ra)为10nm以下,最大表面粗糙度(Rmax)为200nm)这一点上具有显著特征。并且,由于使用本发明的镍油墨形成的导体膜与各种基材的粘附性和膜密度优异,因此可以形成低电阻且高品质的导体电路。另外,本发明的镍油墨由于含有此前没有的镍纳米粒子,因此也适于使用喷墨方式或分配器方式在基板上形成微细的布线或电极的用途等中。
另外,本发明的镍油墨是可以调节与各种基板之间的粘附性、且可以形成微细的布线或电极的镍油墨。例如,可以在各种基板上形成电路、在铜或银布线上形成镍电极、或在使用ITO的透明电极等上形成镍电极、直接形成镍保护电路、镍保护被覆膜等。因此,可以在以平板显示面板等为代表的各种电子产业领域中广泛使用。

Claims (6)

1.一种镍油墨,其特征在于,其是将镍粒子分散在分散介质中而形成的镍油墨,所述分散介质为将选自常压下的沸点为300℃以下的醇类、二醇类中的1种或2种以上组合而成的介质,所述镍粒子的构成粒子的平均一次粒径为50nm以下。
2.根据权利要求1中记载的镍油墨,其特征在于,所述镍粒子的平均一次粒径为10nm~30nm。
3.根据权利要求1中记载的镍油墨,其特征在于,其还含有选自硅烷偶联剂、钛偶联剂、氧化锆偶联剂、铝偶联剂中的1种或2种以上。
4.根据权利要求1中记载的镍油墨,其特征在于,其表面张力被调节至15mN/m~50mN/m的范围内。
5.根据权利要求1中记载的镍油墨,其特征在于,其在25℃下的粘度被调节至60cP以下。
6.一种导体膜,其特征在于,其是使用权利要求1中记载的镍油墨在基板上进行烧成而形成的导体膜,该导体膜的平均表面粗糙度Ra为10nm以下,最大表面粗糙度Rmax为200nm以下。
CN 200680040828 2005-11-04 2006-10-27 镍油墨及用该镍油墨形成的导体膜 Pending CN101316902A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005321423 2005-11-04
JP321423/2005 2005-11-04
JP242793/2006 2006-09-07

Publications (1)

Publication Number Publication Date
CN101316902A true CN101316902A (zh) 2008-12-03

Family

ID=40107352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200680040828 Pending CN101316902A (zh) 2005-11-04 2006-10-27 镍油墨及用该镍油墨形成的导体膜

Country Status (1)

Country Link
CN (1) CN101316902A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103804996A (zh) * 2012-11-09 2014-05-21 株式会社Enjet 导电性纳米油墨组合物,利用该组合物的电极线以及透明电极
CN104203519A (zh) * 2012-03-30 2014-12-10 琳得科株式会社 印刷电路基板制造用剥离膜
CN104284952A (zh) * 2012-02-29 2015-01-14 耶路撒冷希伯来大学伊森姆研究发展有限公司 包含金属前体纳米颗粒的油墨
CN106024918A (zh) * 2012-01-06 2016-10-12 日立化成株式会社 带钝化膜的半导体基板及其制造方法、以及太阳能电池元件及其制造方法
CN109642101A (zh) * 2016-08-26 2019-04-16 爱克发-格法特公司 金属纳米颗粒分散体
CN113122055A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 墨水及其制备方法、量子点发光二极管

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024918A (zh) * 2012-01-06 2016-10-12 日立化成株式会社 带钝化膜的半导体基板及其制造方法、以及太阳能电池元件及其制造方法
CN104284952A (zh) * 2012-02-29 2015-01-14 耶路撒冷希伯来大学伊森姆研究发展有限公司 包含金属前体纳米颗粒的油墨
US10590295B2 (en) 2012-02-29 2020-03-17 Singapore Asahi Chemical & Solder Ind. Pte. Ltd Inks containing metal precursors nanoparticles
US12054626B2 (en) 2012-02-29 2024-08-06 Singapore Asahi Chemical & Solder Ind. Pte. Ltd Inks containing metal precursors nanoparticles
CN104203519A (zh) * 2012-03-30 2014-12-10 琳得科株式会社 印刷电路基板制造用剥离膜
CN104203519B (zh) * 2012-03-30 2016-08-24 琳得科株式会社 印刷电路基板制造用剥离膜
CN103804996A (zh) * 2012-11-09 2014-05-21 株式会社Enjet 导电性纳米油墨组合物,利用该组合物的电极线以及透明电极
CN109642101A (zh) * 2016-08-26 2019-04-16 爱克发-格法特公司 金属纳米颗粒分散体
CN109642101B (zh) * 2016-08-26 2022-01-25 爱克发-格法特公司 金属纳米颗粒分散体
CN113122055A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 墨水及其制备方法、量子点发光二极管

Similar Documents

Publication Publication Date Title
KR20080069606A (ko) 니켈 잉크 및 그 니켈 잉크로 형성한 도체막
JP5068374B2 (ja) 複数のインクから光起電性の導電性フィーチャを形成するプロセス
CN101316902A (zh) 镍油墨及用该镍油墨形成的导体膜
WO2006041030A1 (ja) 導電性インク
JP5258150B2 (ja) インク組成物
EP1847575A1 (en) Conductive ink
JP5065613B2 (ja) ニッケルインク
JP4766281B2 (ja) インクジェット記録用非水系インク組成物、インクジェット記録方法および記録物
JP5214103B2 (ja) メタリック顔料、インク組成物およびインクジェット記録方法
US20140035995A1 (en) Aerosol jet printable metal conductive inks, glass coated metal conductive inks and uv-curable dielectric inks and methods of preparing and printing the same
WO2006101054A1 (ja) メタリック顔料、顔料分散液、メタリック顔料インク組成物およびインクジェット記録方法
EP2774962B1 (en) Viscosity modifier for high concentration dispersion of inorganic fine particles and high concentration dispersion of inorganic fine particles containing the same
TW201903076A (zh) 導電性墨水及導電性基板的製造方法
JP5020130B2 (ja) 透明導電膜形成用インク、及び透明導電膜
CN111051448B (zh) 涂料组合物、导电性膜和液晶显示面板
JP6136551B2 (ja) パターン形成方法及び塗布液
JP5166844B2 (ja) Itoインク
JP4756628B2 (ja) 水系itoインク
JP7388069B2 (ja) メタリック塗液及び被塗工物
JP2011144389A (ja) インクジェット記録用非水系インク組成物、インクジェット記録方法および記録物
JP6366891B1 (ja) 導電性インク及び導電性基板の製造方法
JP2011187286A (ja) 透明導電膜及びその製造方法
JP2020043008A (ja) 銀微粒子分散体
JP2011140660A (ja) メタリック顔料、インク組成物およびインクジェット記録方法
JP2005336263A (ja) 膜形成用インクおよび膜形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081203