CN101316655A - 高比表面积纳米多孔催化剂的制备工艺及催化剂载体结构 - Google Patents

高比表面积纳米多孔催化剂的制备工艺及催化剂载体结构 Download PDF

Info

Publication number
CN101316655A
CN101316655A CNA2006800432969A CN200680043296A CN101316655A CN 101316655 A CN101316655 A CN 101316655A CN A2006800432969 A CNA2006800432969 A CN A2006800432969A CN 200680043296 A CN200680043296 A CN 200680043296A CN 101316655 A CN101316655 A CN 101316655A
Authority
CN
China
Prior art keywords
catalyst
slaine
preparation technology
intermediate product
technology according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800432969A
Other languages
English (en)
Inventor
简·普罗查兹卡
蒂莫西·M·斯皮特莱尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altairnano Inc
Original Assignee
Altair Nanomaterials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altair Nanomaterials Inc filed Critical Altair Nanomaterials Inc
Publication of CN101316655A publication Critical patent/CN101316655A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/18Methods for preparing oxides or hydroxides in general by thermal decomposition of compounds, e.g. of salts or hydroxides
    • C01B13/185Preparing mixtures of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种制备具有高比表面积的纳米多孔氧化物陶瓷催化剂的工艺及由该工艺制备的催化剂。制备方法包括:(a)配制初始溶液,初始溶液含有第一种金属盐和第二种金属盐,第一种金属盐为热不稳定盐,第二种金属盐可溶于水,同时具有热稳定性,通常此类盐为一种碱金属盐。(b)对初始溶液进行喷雾干燥,得到第一中间产物。(c)对第一中间产物进行煅烧,得到第二中间产物。(d)水洗第二中间产物,除去第二种金属盐,从而得到第三中间产物。(e)将第三中间产物过滤并干燥,最终得到具有高比表面,纳米多孔氧化物陶瓷催化剂。

Description

高比表面积纳米多孔催化剂的制备工艺及催化剂载体结构
技术领域
本发明涉及一种具有高比表面积的纳米多孔氧化物陶瓷催化剂的制备工艺及由该工艺制备的催化剂。
背景技术
催化作用是比表面积的一项功能,科学家及研究员因此已经在研究增加可及催化剂表面积的方法,主要有两种。首先,通过变换催化剂载体的方式提高催化剂的比表面积,即将催化剂配合到蜂窝状材料、颗粒物以及纤维等载体上,该方法改变了催化剂仅有一个裸露的顶面参与催化作用的缺点,使反应物能从不同角度与催化剂接触。其次,研究员已经将重点放在通过改变催化剂自身结构的模式增大其比表面积,即制备具有更小颗粒度的催化剂,另外也可使催化剂的孔隙度增大以达到大幅增加催化剂比表面积的目的。
有人曾通过制备具有单一或混合氧化物的纳米级大小颗粒来解决比表面积问题。例如,美国专利(专利号6440388)讲述的是利用一种湿法冶金工艺,从含钛溶液,特别是从氯化钛溶液中制备了超细或具有纳米级大小的二氧化钛颗粒。该工艺对含钛溶液进行了完全蒸发,即将温度升高到溶液的沸点温度以上,当有大量晶体生成时,再将温度调整到溶液沸点以下,在这一过程中,可向其中添加用于调控颗粒形成大小的化学添加剂,通过煅烧后,即得到具有纳米级大小的颗粒产物。
美国专利(专利号6548039)同样讲述了用一种湿法冶金工艺,从含钛溶液中制备色素级二氧化钛。该工艺在严格控制温度的条件下,通过完全蒸发溶液的方式将含钛化合物水解,得到具有界定特点的钛氧化物,水解过程可以通过喷雾水解的方式在喷雾干燥机中完成,随后煅烧钛的氧化物,得到具有锐钛矿型或金红石型结构的二氧化钛,最后碾碎二氧化钛而获得具有理想大小的颗粒物。
美国专利(专利号6689716)描述了一种可用于催化剂载体的微孔结构的制备工艺。该工艺将一种金属盐的水溶液与一种低浓度的化学调控试剂混合,配成中间溶液,该溶液优选澄清溶液。制得的微孔结构具有高孔隙度、高热稳定性,良好的机械强度及相对高的比表面积。
本发明的目的是提供一种制备具有高比表面积,纳米多孔氧化物陶瓷催化剂结构物的新方法及用该方法制备的催化剂结构物。
发明内容
本发明提供一种制备具有高比表面积的纳米多孔氧化物陶瓷催化剂的工艺及由该工艺制备的催化剂。
本发明方法方面提供了一种制备具有高比表面积的纳米多孔氧化物陶瓷催化剂的工艺,其制备方法的步骤包括:(a)、配制初始溶液,初始溶液含有第一种金属盐和第二种金属盐,第一种金属盐为热不稳定金属盐,第二种金属盐可溶于水,同时具有热稳定性(即在1000℃条件下能稳定存在),通常此类盐为碱金属盐。(b)、对初始溶液进行喷雾干燥,得到第一中间产物。(c)、对第一中间产物进行煅烧,得到第二中间产物。(d)、水洗第二中间产物,除去第二种金属盐,从而得到第三中间产物。(e)、将第三中间产物过滤并干燥,最终得到具有高比表面,纳米多孔氧化物陶瓷催化剂。
本发明合成物方面提供了一种纳米陶瓷氧化物催化剂,在一实施例中,该催化剂包含钛、锡、钼、铜、硅、锗、铝、镓、钒、铪、钇、铌、钽、铋、铅、铈、钨、钴、锰、砷、锆、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥及其混合物。催化剂宏观上大致呈球形,并由原生颗粒组成,原生颗粒的一般粒度为1nm~500nm,催化剂颗粒比表面积则一般为50m2/g~300m2/g。
附图1大体描述了本发明的制备工艺。将热不稳定金属盐2,热稳定金属盐4及一种可选择性添加的活性盐6混合,配成初始溶液10;随后对初始溶液10进行喷雾干燥处理20;接下来对得到的固体氧化物材料进行煅烧30;煅烧产物一般用水溶液进行洗涤40,除去热稳定盐;最后经过过滤50,干燥,得到本发明的一种催化剂。下面内容对本工艺进行了更详细的描述。
本发明中使用的初始溶液是用一种溶剂溶解热不稳定金属盐(即热不稳定盐)与热稳定金属盐(即热稳定盐)得到的,所用溶剂通常为水或者稀酸液。热不稳定金属盐可以是任何能够在喷雾干燥过程中被热分解而形成不定形氧化物的盐类。这类盐包括,但不仅限于,氯化物、氯氧化物、硝酸盐、亚硝酸盐、硫酸盐、碱式硫酸盐;所述金属盐中的金属包括:钛、锡、钼、铜、硅、锗、铝、镓、钒、铪、钇、铌、钽、铋、铅、铈、钨、钴、锰、砷、锆、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥及其混合物。热不稳定盐还可以是可溶于水的醋酸盐、柠檬酸盐以及其它在氧化环境下对热不稳定的有机物。
对于热稳定盐,可以是任一满足下列条件的无机物:在溶液中不与热不稳定金属盐作用而形成沉淀,不会在本发明所述的热处理过程中分解,在本发明工艺的温度下不与陶瓷氧化物反应。该盐甚至在工艺结束后还能被循环利用。这类盐包括,但不仅限于,碱金属盐及其混合物,优选NaCl,KCl,LiCl,Na2SO4,K2SO4及Li2SO4
热稳定盐在初始溶液中的浓度,以重量百分比计,为在热分解中氧化物生成量的5%~500%,较优的是10%~100%,优选15%~30%。通常,本发明所述的热不稳定盐与热稳定盐,具有相同的阴离子,两种盐均优选为氯化物。
在一些情况下,初始溶液中的热稳定盐不需外加,只需通过初始溶液内的反应生成。例如,在一种含有TiOCl2的溶液中,氯化钠可以通过碳酸钠与过量的氯化氢反应生成。
初始溶液还可选择包含第三种金属盐(即活性盐),第三种金属盐能与热不稳定盐反应生成一种混合的金属氧化物。通常该活性盐的通式为MxAy,其中该化学通式组成元素如下:M一般为一种碱土金属(铍,镁,钙,锶,钡),钪,钇,铬,铁,镍或锌,A一般为一种阴离子,x是个整数,其数值范围一般为0~5,y是个整数,其数值范围一般为0~5。
作为一个优选的例子,活性盐为YCl3,在一种ZrOCl2溶液体系中可生成Y2O3-ZrO2混合氧化物。活性盐也可以是,但不仅限于,CuCl2,FeCl3,ZnCl2,NiCl2以及LaCl3,另外,在一些高温条件下活性盐可以是锂盐,所述锂盐可以是硝酸锂,醋酸锂,该类盐在超过500℃的条件下容易在TiOCl2溶液体系中反应形成TiO2
通常初始溶液的金属浓度为10g/L~200g/L。
将初始溶液通过与热表面接触或者在热气流中喷雾(即喷雾干燥)的方式充分蒸发,得到一种中间产物。喷雾干燥的温度应能使热不稳定盐分解成不溶于水的固体氧化物,但应低于在指定的晶格内形成陶瓷氧化物颗粒所需的温度。通常喷雾干燥的温度为150℃~350℃,较优的是200℃~250℃。
喷雾干燥得到的产物由空心的薄膜球体或部分球体构成,球体粒度为0.1μm~100μm,优选粒度为5μm~50μm。该中间产物为无定形氧化物及热稳定盐的均匀混合物,其通常所包含的1%~30%挥发性物质可在下一步的煅烧过程中除去。
中间产物煅烧后,生成了原生颗粒及氧化物结晶体。煅烧可使热不稳定盐及热稳定盐的晶体并排(一个接一个)熔合,形成由热稳定盐与氧化物混合组成的更大颗粒。专业人员可通过调控煅烧温度,得到具有特定颗粒粒度、比表面积、结晶相及晶体孔隙度的氧化物颗粒。煅烧后,氧化物颗粒在一种海绵状结构内相互连接。
煅烧的温度一般控制在250℃~1100℃,通常为500℃~1000℃,优选温度应该控制在热稳定盐的熔点之下。
附图5是YSZ颗粒粒度随煅烧温度升高而变化的XRD图,附图5提供了与颗粒粒度相关的另外一些参数,包括两次超过热稳定盐熔点(KCl~771℃)的煅烧温度。喷雾干燥后的中间产物比表面积通常为5m2/g。然而再经煅烧后,其比表面积却可达到两个数量级以上。
专业人员可任选以下两种方法,使颗粒的形状在煅烧过程中始终保持为空心球:1、在托盘中煅烧,所需煅烧温度低于热稳定盐的熔点;2、在旋转式煅烧机中煅烧。当煅烧过程必须在高于热稳定盐熔点的温度下进行时,应当将煅烧过程放置在旋转式煅烧机或流体床上进行,以便使颗粒形状保持为空心球。
通常煅烧后,中间产物的比表面积为5m2/g~50m2/g,用去离子水或其它溶液(例如弱酸或弱碱溶液)水洗后,通常可使比表面积大幅度增加。这是因为,煅烧后,由氧化物与热稳定盐形成的薄膜是紧密的,将中间产物置于合适的溶液中,可以溶解热稳定盐晶体,致使材料内形成开孔的孔隙,从而使其比表面积增加。
为防止破坏其空心球状的宏观结构,选择在没有相对压力的情况下对水洗后无盐氧化物催化剂结构物进行过滤。用普通滤纸或膜进行重力过滤即可,也可将过滤和水洗放在一个步骤中进行。
接下来对过滤产物进行干燥,以备后期使用或处理。干燥方式可以是任何合适的方式,例如,可将潮湿的过滤产物放在干燥炉的架子上,也可将其放置在运作的带式炉(belt oven)或推式炉(pusher oven)上。另一种干燥装置是旋转式干燥炉,还可用喷雾干燥对其进行干燥。
本发明所制备的催化剂为金属氧化物或混合的金属氧化物,当所述催化剂为单一金属氧化物时,通常至少含有下面所列中的一种金属:钛、锡、钼、铜、铍、镁、硅、锗、铝、镓、钒、铪、钇、铌、钽、铋、铅、铈、钨、钴、锰、砷、锆、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥及其混合物,所述催化剂也可选择包含锂、铍、镁、钙、锶、钡、钪、钇、铬、铁、镍或者锌。
当本发明所制备的催化剂为混合的金属氧化物时,通常至少含有下面所列中的一种金属:锂、钠、钾、铷、铯、钛、锡、钼、铜、铍、镁、硅、锗、铝、镓、钒、铪、钇、铌、钽、铋、铅、铈、钨、钴、锰、砷、锆、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥及其混合物,所述催化剂也可选择包含铍、镁、钙、锶、钡、钪、钇、铬、铁、镍或者锌。
催化剂的比表面积一般为1m2/g~300m2/g,通常为5m2/g~200m2/g,对许多催化剂应用而言,优化的比表面积为50m2/g~200m2/g。
所述催化剂的总孔隙率通常达到70%以上,一般为90%~98%。在空隙空间上,缩孔结构的占有率控制在40%~98%。对于氧化物结构的微孔度,用比表面积来表示,则一般为1m2/g~300m2/g,优选5m2/g~200m2/g。
所述催化剂趋向于以空心的,大体球形(或部分球形)颗粒的形式存在,这种球形颗粒具有一层薄膜或者薄壳,其粒度为0.1μm~100μm,优选5μm~40μm。
通常本发明工艺所备的具有多孔空心球结构的催化剂能吸收相当于其本身体积95%以上的液体。
本发明所制备的催化剂一般用于分解空气或水中有机污染物的光催化反应。另外,也可将其作为有机合成中起防雾作用的催化剂载体结构,还可以被用来当作杀菌剂或杀真菌剂。
YSZ催化剂,在其它领域,则可当作耐  高温催化剂载体结构。
附图说明
附图1为本发明所述的一种制备具有高比表面积的纳米多孔氧化物陶瓷催化剂的一般工艺流程图;
附图2为实施例1中的合成物在水洗前后的XRD(x射线衍射)图;
附图3为实施例1中的合成物经过500℃煅烧后及再经水洗后的XRD图;
附图4为实施例1中的合成物在500℃煅烧及水洗这两步前后的XRD图;
附图5为LiCl-TiOCl2溶液在喷雾干燥后所得的合成物,经300℃煅烧5小时后及再经水洗后的XRD图;
附图6为XRD图,描述了以KCl为热稳定盐,构成薄膜空心球体的YSZ颗粒的形成情况;
附图7为XRD图,描述了以KCl为热稳定盐所形成的中间产物在温度为500℃,600℃,700℃,800℃,900℃下,YSZ结晶的情况;
附图8为XRD图,描述了Na2SO4-TiOCl2溶液经喷雾干燥形成的粉末,该粉末由不定形的二氧化钛及Na2SO4构成,在煅烧温度为500℃,600℃,700℃,800℃,900℃下煅烧后的晶相变化;
附图9为一张图表,描述了附图8中煅烧产物的孔隙度变化;
附图10显示了经本发明工艺制备的一种ZrO2基合成物的孔隙开孔度数。
具体实施方式
实施例1
将NaCl溶液倒入到TiOCl2溶液中,得到含有约50gTi(大约为83gTiO2中钛的含量)的澄清溶液,再向溶液加入若干NaCl,使该溶液的NaCl浓度达到21g/L左右(最终溶液含有104g纯固体),NaCl与TiO2的重量比为0.25。随后将溶液喷雾干燥,得到具有12m2/g比表面积的空心球形固体。其中的海绵状薄膜由TiO2构成,NaCl均匀地分布在该氧化物上。用去离子水洗涤,充分除去NaCl后,空心球形固体的比表面积达到65m2/g,整个固体布满已开孔的纳米孔,附图2至附图4为所得中间产物在水洗操作前后的x射线衍射图,从附图2(2号线)可知,加入的氯化钠盐略微过量,TiO2的晶相不明显。附图2还显示了NaCl在水洗过后消失了(1号线),仅留下大多由无定形氧化物构成的纳米级大小的串形结构。
实施例2
将实施例1中经喷雾干燥机干燥的产物,再进行煅烧,煅烧温度为500℃,时间为5小时(见图3,3号线),随后用去离子水除去颗粒上的NaCl(见附图3,4号线)。煅烧过程中,其比表面积从12m2/g增加到30m2/g,煅烧后的物质经去离子水水洗后,可去除颗粒上的NaCl,其比表面积可达到62m2/g。附图4将TiO2在煅烧后的结晶情况(5号线)与煅烧前的无定形TiO2进行对比(6号线)。作为对照,在没有NaCl的加入的情况下,TiO2固体在500℃煅烧温度下煅烧5小时,其比表面积通常为15m2/g~20m2/g。
实施例3
将LiCl溶液倒入到TiOCl2溶液中,得到含有约50gTi的淡黄溶液,再向该溶液加入若干LiCl,使Li与Ti的摩尔比为4∶5,随后将溶液喷雾干燥,再在300℃条件下煅烧5小时,用去离子水洗涤,干燥,所得产物的比表面积为205m2/g(见附图5,x射线衍射图),该产物为由多孔单层薄膜形成的空心球,并由不可溶的TiO2构成。用水洗后,在海绵状氧化物薄膜上形成了一种多孔篦齿式结构。在煅烧过程中还形成了直径为7nm的锐钛矿型结晶颗粒,其孔隙的大小与氧化物原生颗粒相近。
实施例4
将LiNO3溶液倒入到TiOCl2溶液中,得到含有约40gTi的澄清溶液,再向该溶液加入若干LiNO3,使Li与Ti的摩尔比为4∶5,随后将溶液喷雾干燥,再在300℃条件下煅烧5小时,用去离子水洗涤,干燥,得到比表面积为147m2/g的产物,该产物为由多孔单层薄膜形成的空心球,并由不可溶的TiO2构成,在薄膜上还形成了一种多孔篦齿式结构。煅烧过程中还产生了锐钛矿型晶相,产物上的所有孔隙均与外界连通。将产物在无盐条件下用400℃温度煅烧4小时,再500℃煅烧3小时,其颗粒增大的同时,比表面积却大幅减小,从先前的147m2/g减少到30m2/g,氧化物的介孔特征也消失了。
实施例5
将KCl溶液倒入到TiOCl2溶液中,得到含有约70gTi的溶液,再向该溶液加入若干KCl,使该溶液的KCl与TiO2的重量比为0.25,随后将溶液喷雾干燥,再在300℃条件下煅烧,得到比表面积为14m2/g的颗粒物,用去离子水洗涤并干燥后,产物的比表面积从14m2/g提高到207m2/g。分析显示,产物中含有将近500ppm的钾元素。
实施例6
向Ti含量为110g/L的氯氧化钛溶液中加入一种由NaCl、KCl及LiCl组成的共熔体,该共熔体的熔点大约为346℃,加入量为溶液中Ti含量重量的20%,这一重量相当于等当量的TiO2(即为本工艺下,从溶液中生成的TiO2)重量的12%。随后在250℃下用喷雾干燥机将溶液蒸发,形成含有含盐的钛的无定形无机中间体,将该中间体在300℃条件下煅烧7小时,再经水洗后,得到比表面积为140m2/g的TiO2颗粒。
实施例7
将KCl溶液倒入到ZrOCl2溶液中,得到含有约70gZr的溶液,再向溶液加入若干KCl,使该溶液的KCl与ZrO2的重量比为0.25,随后将溶液在250℃条件下喷雾干燥,形成无定形固态中间体。将该中间体分别用500℃,600℃,700℃,800℃,900℃的温度进行煅烧,所得颗粒用去离子水洗涤。对于在未加入金属盐的情况下通过本工艺得到的颗粒产物,现有颗粒与其相比具有不同的孔隙度。尽管颗粒的粒度很小,在600℃以上,ZrO2能够从其立方晶体转化为单斜晶体。对于形成分子距离大小纳米颗粒的过程,盐晶体充当了将氧化物分子构建在晶体颗粒上的一种模板剂。
实施例8
由YCl3及ZrOCl2组成的溶液,计量比上其中Y2O3占ZrO2的摩尔百分数为8%,向该溶液倒入KCl溶液,KCl的加入量为ZrO2重量的25%,最终溶液每升的Zr含量达到约50g,随后将溶液喷雾干燥,并分别用500℃/7小时,600℃/6小时,700℃/5小时,800℃/4小时,900℃/3小时的条件进行煅烧,所得颗粒用去离子水洗涤,其比表面积分别为77m2/g,63m2/g,54m2/g,51m2/g,28m2/g。附图6~7,x射线衍射图显示了结晶度及颗粒大小的增长情况,相关数据如表1所示。相比于未加入盐而生成的产物,现有产物具有优良的可磨削性能。将产物研磨成原生颗粒,研磨后的产物不具有空心球状结构,且颗粒几乎完全被碾碎消散。
表1
对含盐YSZ的处理 煅烧温度/小时(℃/h) XDR测得的颗粒粒度(nm) BET比表面积(m2/g) 比重(g/cm3) BET测得的颗粒粒度(nm)   SEM(扫描电镜)测得的颗粒粒度(nm)   颗粒粒度比率(XRD/BET)(%)
  干燥、煅烧、水洗 500℃/7h 10 77 5.5 14 10 70
  干燥、煅烧、水洗 600℃/6h 13 63 5.6 17 10-15 76
  干燥、煅烧、水洗 700℃/5h 17 54 5.5 20 15-20 85
  干燥、煅烧、水洗 800℃/4h 17 51 5.6 21 20 81
  干燥、煅烧、水洗 900℃/3h 19 28 5.9 37 30-40 52
实施例9
每升含有130g钛的氯氧化钛溶液加入Na2SO4处理,所加入的热稳定惰性盐共熔体的量为溶液中TiO2重量的20%。随后在250℃下用喷雾干燥机将溶液蒸发,得到含盐的二氧化钛无定形无机中间体,并分别用300℃,400℃,500℃,600℃,700℃,800℃的温度对其进行煅烧。结果显示在800℃温度下,不生成金红石型晶相。附图8为煅烧后含盐二氧化钛的晶相及颗粒变化的相关XRD图谱,附图9则用比表面积描述了含盐二氧化钛颗粒大小及其形成开孔孔隙的情况。如经300℃煅烧并水洗后,能够得到比表面积为119m2/g的TiO2颗粒。
实施例10
由YCl3及ZrOCl2组成的溶液,计量比上其中Y2O3占ZrO2的摩尔百分数为8%,将该溶液与镍盐溶液混合,混合后,NiO占YSZ的摩尔百分数为8%,随后加入若干KCl,使KCl的重量百分数达到25%。再将溶液在250℃温度下进行喷雾干燥,并分别在700℃及900℃下煅烧。将所得颗粒用去离子水洗涤,以除去KCl盐。根据EDX分析指出,YSZ与NiO的晶相分开了,将所得颗粒用盐酸浸析并再冲洗一遍。浸析后,两种颗粒比表面积分别从19m2/g提高到21m2/g(700℃),从8m2/g提高到9.5m2/g(900℃)。YSZ中所含的剩余Ni的浓度在500ppm以下,这证明了上述两种晶相的分裂。

Claims (22)

1.一种具有高比表面积的纳米多孔氧化物陶瓷催化剂的制备工艺,制备步骤包括:
(a)、配制初始溶液,其中该初始溶液含有第一种金属盐和第二种金属盐,第一种金属盐为热不稳定金属盐,第二种金属盐为热稳定盐;
(b)、在氧化气氛下对初始溶液进行喷雾干燥,得到第一中间产物;
(c)、在氧化气氛下煅烧第一中间产物,得到第二中间产物;
(d)、水洗第二中间产物以除去第二种金属盐,得到第三中间产物;
(e)、将第三中间产物过滤并干燥,
从而得到具有高比表面的纳米多孔氧化物陶瓷催化剂。
2.根据权利要求1所述的制备工艺,其特征在于,其中第一种金属选自一组可溶金属盐盐,包括:氯化物、氯氧化物、硝酸盐、亚硝酸盐、硫酸盐、碱式硫酸盐;所述金属盐中的金属选择范围是:钛、锡、钼、铜、硅、锗、铝、镓、钒、铪、钇、铌、钽、铋、铅、铈、钨、钴、锰、砷、锆、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥以及其混合物。
3.根据权利要求1所述的制备工艺,其特征在于,其中第二种金属盐为对热稳定的碱金属盐或其混合物。
4.根据权利要求1所述的制备工艺,其特征在于,其中初始溶液还包括第三种金属盐,该金属盐的化学通式为MxAy,其中该化学通式组成元素如下:M为钪,钇,铬,铁,镍或锌;A为一种阴离子;x是个整数,其数值范围是0~5;y是个整数,其数值范围是0~5。
5.根据权利要求1所述的制备工艺,其特征在于,其中蒸发步骤通过喷雾干燥的方式完成。
6、根据权利要求1所述的制备工艺,其特征在于,其中煅烧步骤在250℃~1000℃温度下进行。
7.根据权利要求1所述的制备工艺,其特征在于,其中喷雾干燥步骤在200℃~250℃温度下进行。
8、根据权利要求1所述的制备工艺,其特征在于,其中初始溶液中第二种金属盐的重量百分比浓度为15%~30%。
9.根据权利要求1所述的制备工艺,其特征在于,其中初始溶液中所含金属的浓度为1g/L~200g/L。
10.根据权利要求2所述的制备工艺,其特征在于,其中第二种金属盐选自下面几种金属,包括:NaCl,KCl,LiCl,Na2SO4,K2SO4,Li2SO4
11.根据权利要求10所述的制备工艺,其特征在于,其中蒸发步骤在200℃~250℃的温度下进行。
12.根据权利要求11所述的制备工艺,其特征在于,其中煅烧步骤在500℃~1000℃温度下进行。
13.根据权利要求12所述的制备工艺,其特征在于,其中初始溶液中第二种金属盐的重量百分比浓度为15%~30%。
14.根据权利要求13所述的制备工艺,其特征在于,其中第一种金属盐为钛盐或锆盐。
15.一种纳米多孔氧化物陶瓷催化剂,其中所述催化剂包含钛、锡、钼、铜、硅、锗、铝、镓、钒、铪、钇、铌、钽、铋、铅、铈、钨、钴、锰、砷、锆、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥及其混合物,所述催化剂大致呈球形,粒度为0.1μm~100μm,催化剂颗粒比表面积为1m2/g~300m2/g。
16.根据权利要求15所述的催化剂,其特征在于,其中催化剂的总孔隙度为40%~98%。
17.根据权利要求15所述的催化剂,其特征在于,其中催化剂的结构是空心的。
18.根据权利要求15所述的催化剂,其特征在于,其中催化剂结构的微孔度为1m2/g~300m2/g。
19.根据权利要求15所述的催化剂,其特征在于,其中催化剂含有钛或锆。
20.根据权利要求19所述的催化剂,其特征在于,其特征在于催化剂颗粒的比表面积为5m2/g~300m2/g。
21.根据权利要求20所述的催化剂,其特征在于,其中催化剂的总孔隙度为40%~98%。
22.根据权利要求21所述的催化剂,其特征在于,其中催化剂结构的微孔度为5m2/g~200m2/g。
CNA2006800432969A 2005-11-22 2006-11-20 高比表面积纳米多孔催化剂的制备工艺及催化剂载体结构 Pending CN101316655A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73892505P 2005-11-22 2005-11-22
US60/738,925 2005-11-22

Publications (1)

Publication Number Publication Date
CN101316655A true CN101316655A (zh) 2008-12-03

Family

ID=38067555

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800432969A Pending CN101316655A (zh) 2005-11-22 2006-11-20 高比表面积纳米多孔催化剂的制备工艺及催化剂载体结构

Country Status (5)

Country Link
US (1) US20070173402A1 (zh)
EP (1) EP1971434A1 (zh)
JP (1) JP2009516589A (zh)
CN (1) CN101316655A (zh)
WO (1) WO2007062356A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799192A (zh) * 2022-04-20 2022-07-29 北京航空航天大学 一种多孔结构ZrCo合金及制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070196268A1 (en) * 2006-02-22 2007-08-23 Smith John R Thermal activation of photocatalytic generation of hydrogen
US20090321244A1 (en) * 2008-06-25 2009-12-31 Hydrogen Generation Inc. Process for producing hydrogen
EP2580163B1 (en) 2010-06-08 2014-08-13 The Shepherd Color Company Substituted tin niobium oxide pigments
CN103717536B (zh) 2011-06-02 2017-02-15 康奈尔大学 氧化锰纳米粒子、方法和应用
FR3029909B1 (fr) * 2014-12-16 2017-01-20 Commissariat Energie Atomique Procede de preparation d'un substrat en ceramique oxyde mettant en œuvre une resine echangeuse d'ions
CN105289461A (zh) * 2015-10-22 2016-02-03 苏州莲池环保科技发展有限公司 一种汽车三元催化器配方及其制备方法
CN108726485B (zh) * 2018-06-29 2020-07-10 华中科技大学 一种多孔中空氧化物纳米微球及其制备方法与应用
CN112705215B (zh) * 2019-10-25 2023-08-29 中国石油化工股份有限公司 核壳型催化剂及其制备方法与应用
CN116422350B (zh) * 2023-03-30 2024-10-11 国家能源集团科学技术研究院有限公司 烟气净化用脱硝催化剂及其制备方法
CN117797658B (zh) * 2024-02-26 2024-05-17 山东硅苑新材料科技股份有限公司 具有催化臭氧氧化功能层的陶瓷膜及其制备方法与应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976761A (en) * 1974-08-14 1976-08-24 The United States Of America As Represented By The Secretary Of The Interior Preparation of TiO2 and artificial rutile from sodium titanate
US4462979A (en) * 1982-02-25 1984-07-31 E. I. Du Pont De Nemours And Company Process for preparing soft TiO2 agglomerates
IE58110B1 (en) * 1984-10-30 1993-07-14 Elan Corp Plc Controlled release powder and process for its preparation
US6162530A (en) * 1996-11-18 2000-12-19 University Of Connecticut Nanostructured oxides and hydroxides and methods of synthesis therefor
WO1999011574A1 (fr) * 1997-09-02 1999-03-11 Ishihara Sangyo Kaisha, Ltd. Poudre fine creuse, poudre d'oxyde de titane fine et floconneuse, preparee par pulverisation de la poudre fine creuse et procede de preparation de ces deux poudres
JP2004508261A (ja) * 2000-09-05 2004-03-18 アルテア ナノマテリアルズ インコーポレイテッド 混合した金属酸化物及び金属酸化物のコンパウンドの製造方法
US6521562B1 (en) * 2000-09-28 2003-02-18 Exxonmobil Chemical Patents, Inc. Preparation of molecular sieve catalysts micro-filtration
EP1331995B1 (en) * 2000-10-17 2005-03-09 Altair Nanomaterials Inc. Method for producing catalyst structures
US6974640B2 (en) * 2001-07-09 2005-12-13 The University Of Connecticut Duplex coatings and bulk materials, and methods of manufacture thereof
BRPI0500609A (pt) * 2004-03-10 2007-07-10 Rohm & Haas processos para preparar um ou mais catalisadores modificados, e, para a criotrituração de um ou mais catalisadores de óxido metálico

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799192A (zh) * 2022-04-20 2022-07-29 北京航空航天大学 一种多孔结构ZrCo合金及制备方法

Also Published As

Publication number Publication date
JP2009516589A (ja) 2009-04-23
WO2007062356A1 (en) 2007-05-31
EP1971434A1 (en) 2008-09-24
US20070173402A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
CN101316655A (zh) 高比表面积纳米多孔催化剂的制备工艺及催化剂载体结构
Mamaghani et al. Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance
CN1913961B (zh) 具有高的热稳定性的纳米结构颗粒
TWI651269B (zh) 二氧化鈦粒子及其製備方法
Iida et al. Titanium dioxide hollow microspheres with an extremely thin shell
Ismail et al. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms
CN101311119B (zh) 网状纳米孔氧化锌微米空心球及其制备方法
EP2247369B1 (en) Titanium dioxide catalyst structure for processes up to 1000 °c and the manufacturing thereof
CN102239003A (zh) 用于在存在氯化氢和/或氯情况下进行的氧化反应的催化剂、其生产方法及其用途
Jiang et al. Enhanced visible-light-driven photocatalytic activity of mesoporous TiO 2− x N x derived from the ethylenediamine-based complex
JP2009507751A (ja) 金属酸化物の表面に金属酸化物超微粒子をコートする方法、およびこれから製造されたコーティング体
Wang et al. 7 Preparation of
US7683005B2 (en) Photocatalyst, manufacturing method therefor and articles comprising photocatalyst
CN101001813B (zh) 涂覆有至少一种ⅳ族过渡金属化合物的碱土金属碳酸盐核
CN103331155A (zh) 一种可见光敏化半导体复合光催化材料及其制备方法
CN102730753A (zh) 一种制备锐钛矿多孔TiO2球、核壳结构和空心球的方法
CN102319903B (zh) 空心微球的制备方法
JP2002028485A (ja) 多孔質4族金属酸化物、その製造方法及びその用途
KR101659419B1 (ko) 나노입자 담지 촉매의 제조방법
JP4785641B2 (ja) 光触媒材料の製造方法及び光触媒材料
JP5062988B2 (ja) 新規酸化チタンおよび新規酸化チタンの合成方法
Dontsova et al. Characterization and properties of titanium (iv) oxide, synthesized by different routes
Zagaynov et al. CeO2–TiO2 oxides with core-shell structure
KR102474055B1 (ko) 초임계 이산화탄소 추출을 이용한 금속산화물 촉매들의 합성
KR101519563B1 (ko) 가시광 감응성 바나디아-티타니아 광촉매의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081203