CN101288159B - 具有多晶硅电极的半导体器件 - Google Patents

具有多晶硅电极的半导体器件 Download PDF

Info

Publication number
CN101288159B
CN101288159B CN2006800213073A CN200680021307A CN101288159B CN 101288159 B CN101288159 B CN 101288159B CN 2006800213073 A CN2006800213073 A CN 2006800213073A CN 200680021307 A CN200680021307 A CN 200680021307A CN 101288159 B CN101288159 B CN 101288159B
Authority
CN
China
Prior art keywords
gate electrode
polysilicon
semiconductor chip
semiconductor device
exposed surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800213073A
Other languages
English (en)
Other versions
CN101288159A (zh
Inventor
巴特罗米杰·J·帕夫拉克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imec Corp
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101288159A publication Critical patent/CN101288159A/zh
Application granted granted Critical
Publication of CN101288159B publication Critical patent/CN101288159B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

一种制造例如MOS晶体管的半导体器件的方法。所述器件包括在半导体基片(12)中形成的多晶硅栅极(10)和掺杂区(22,24),它们通过一个沟道区(26)分隔开。所述半导体基片的暴露表面例如通过离子轰击被非结晶化,以便在加温退火期间禁止掺杂剂离子的随后扩散。低热预算对于所述激活和多晶硅再生长是有利的,以便确保用于所述源极/漏极区域的突变掺杂分布图。因此所述栅电极的上部(10b)保持非晶态。所述栅电极的上部被除去以便允许与所述多晶硅下部(10a)产生低电阻接触。

Description

具有多晶硅电极的半导体器件
技术领域
本发明涉及一种制造具有经过非结晶和再结晶处理的多晶硅电极的半导体器件的方法。具体地说,但不是唯一地,本发明涉及一种制造具有多晶硅栅电极的MOS晶体管的方法。
背景技术
在半导体器件制造领域需要不断地减小器件尺寸。这种减小允许在一个给定尺寸的晶片上并入更多的器件。同样,也需要保持(如果不能改善)器件的性能。随着器件元件的尺寸被做得较小,某些不希望的电子效应将变得更加明显。
其中发生这种影响的器件的一个好例子是MOSFET。这里,由半导体沟道区分开的源极和漏极扩展区包括掺杂半导体晶片的各个掺杂部分。如果基片是N型掺杂的,则植入P型掺杂剂,例如硼。如果基片是p型掺杂的,则植入N型掺杂剂,例如磷或者砷。因此,提供一个p-n结,其为在所述源极和漏极区之间流动的电流产生一个势垒。施加在布置于沟道上面的绝缘栅电极上的电压控制所述势垒的高度,并因此控制流过所述沟道区的电流。
期望形成具有浅的但是突变的结分布的源极和漏极扩展区以便避免由相对较短的沟道区所引起的不利的电子效应。结典型地是通过将掺杂剂植入到半导体晶片或者基片中形成的。通过使用所述已经形成的栅极屏蔽所述沟道区来将掺杂剂植入到所述半导体晶片的顶面中。然后通过加热退火激活所述掺杂剂。随后对半导体的加热会使掺杂剂更深地扩散到所述半导体中,由此能够减小结分布的突变。这是一个公认的问题。
美国专利申请No.US-2004/0115889披露了一种能够在植入掺杂剂物质的前后执行的非结晶植入处理。植入物质(例如硅或者锗)会使所述半导体基片的上部区域变成非结晶的。继非结晶植入和n型或者p型掺杂植入之后,执行加热退火以激活所述掺杂剂并使所述非结晶区再结晶。
图1a表示在类似于在US-2004/0115889中披露的非结晶步骤期间的基片的高度示意剖面图。最初由多晶硅(polysilicon)组成的栅电极10通过栅极电介质14而与半导体基片12绝缘。如箭头100所示,所述半导体基片的暴露表面通过植入锗原子而被非结晶化。由所述植入的锗携带的能量用于瓦解靠近所述多晶硅表面的规则结晶栅格,由此产生一个非结晶区。然后将N型或者p型掺杂剂离子植入(未示)到所述基片的非结晶区域中。
执行加热退火以驱动所述非结晶区域的固相外延再生长并连同激活所述掺杂剂。这种非结晶和再生长处理已经被示出用于提供出色的掺杂剂激活水平和突变结分布。参照图1b,所述激活的源极和漏极扩展22、24被与所述栅极10的边缘对齐并由所述无掺杂的沟道区26分离开。所述非结晶用于产生一个非结晶/结晶边界,其禁止掺杂剂离子的扩散,由此有助于突变结形成。
与在掺杂剂激活之前执行非结晶植入相关的问题是所述多晶硅栅极的至少一部分也变成非结晶的。使栅极再结晶所需的热预算大大高于块状半导体所需的热预算。当使用低温预算时,这将导致栅极的局部再结晶。如图1b中举例说明的,栅极10a的下部被成功地再生长,而上部10b保持非结晶态。
图2为表示继锗的预先非结晶植入(PAI)和1分钟的加热退火(再生长)之后的多晶硅栅极的电阻率值的试验结果的曲线图。由菱形表示的‘D02’图表示未经过PAI的栅极电阻。能够看出用于具有较高能量的锗的PAI的曲线图示出了在较低热预算下的极大增加的电阻。
图3表示经历了锗的PAI和在680℃下加热退火一分钟的栅极的截面X-TEM图。这在图2中由高亮显示为‘X’的数据点表示。在图2中由所述箭头指示的所述栅极的上部仍然是非结晶的。该栅极的相对较高的电阻和所导致的较差器件性能归因于该非结晶部分。
在大约780℃以上的热预算下,所述栅极变成完全再结晶,并且因此具有较低的、更加有利的电阻。然而,在这些高温下,所述源极和漏极结开始减活,这是由掺杂剂的增加扩散所引起的。因此,不存在栅极能够被完全地再结晶并且所述结能够被保持充足地突变的工艺窗口(process window)。
发明内容
本发明的一个目的是提供一种制造半导体器件的改进方法。
本发明的另一个目的是提供一种制造包括被完全地再结晶的栅极和被保持充足突变的结的半导体器件的方法。
根据本发明,提供一种制造半导体器件的方法,所述方法包括下述步骤:在半导体基片上形成多晶硅的栅电极,使所述半导体基片和栅电极的暴露表面非结晶化,对邻接所述栅电极的半导体基片的区域进行掺杂,然后,使所述栅电极和所述半导体基片的一部分进行再结晶,和除去所述栅电极的上部。通过在所述再结晶步骤之后除去所述栅电极的上部,对于处理温度的选择自由度得以提高。可自由使用低热预算以确保期望的结分布被保持,同时栅电极的再结晶程度并不紧要。所述栅电极中的任何剩余非晶硅被方便地除去以确保能与其进行低电阻接触。
术语‘非结晶化’意味着将材料的基本上结晶区转换成基本上非结晶区的任何处理。相关术语,例如‘非结晶’和‘非结晶的’之后将采用取自上述定义的含义。
除去栅电极的上部非结晶部分可例如通过对所述电极的最上端暴露表面进行抛光或者蚀刻来执行。这些处理每个都很简单,并且不需要除了在CMOS或者高级CMOS生产线中已有设备以外的额外设备。
所述栅电极的大约20-50nm的最上端表面被除去,即使这将取决于硅栅极的再生长程度。如上述,随后除去栅电极的非结晶部分将允许利用低温。例如,非结晶化区域的固相外延再生长是通过将所述基片加热至600℃-750℃范围内的温度而执行的。加热的持续时间将取决于采用的温度。
除去栅电极的高电阻部分允许与其产生低电阻接触。这种接触可以通过在所述栅电极上形成硅化物接触区被进一步增强。优选的,其是如下实现的:即在所述除去步骤之后在所述栅电极之上沉淀金属层、然后加热所述基片以便在所述栅电极上形成硅化物接触区。
在一个优选实施例中,根据本发明制造的半导体器件被并入到一个集成电路芯片中。这可使用建造好的CMOS或者高级CMOS处理工厂来制造。
附图说明
现在将参考附图仅以实例的方式说明本发明的实施例,其中:
图1表示在已知制造工艺的两个阶段中的贯穿MOS晶体管的栅极和沟道区的高度示意剖面图;
图2为表示已经以变化的热预算被非结晶化和再生长的栅极电阻的曲线图,所述结果是从实验得到的;
图3为已经在680℃被非结晶化和再生长一分钟的栅极的X-TEM图像;和
图4表示贯穿借助根据本发明的方法制造的MOS晶体管的栅极和沟道区的示意剖面图。
应该意识到所述附图仅仅是示意图。相同的参考数字通篇用于表示相同或者相似的部分。
具体实施方式
本发明提供一种制造具有低电阻多晶硅栅极的MOS晶体管同时适应形成浅的、突变结所需的非结晶和低温再生长处理的简单方法。图1和4现在将被用于说明根据本发明的方法的一个示例实施例。
参考图1a,一个介电层被沉积在硅基片12上。例如,所述介电层可由二氧化硅或者四氮化三硅组成。然后在所述基片上沉积一个厚约100nm的多晶硅层10。
栅极介电层14和多晶硅层10的沉淀是使用已知的沉积技术(例如外延生长、化学汽相淀积(CVD)或者原子层沉积(ALD))执行的。
然后使用标准平版印刷技术模制所述多晶硅层和所述介电层以便在所述硅基片12上提供具有多晶硅栅电极10的栅极叠层,所述多晶硅栅电极10通过一个栅极电介质14与所述硅基片12分离开。例如,可利用光致抗蚀剂来屏蔽基片上与将要形成隔离栅极叠层的期望位置相对应的多个区域。然后可使用蚀刻步骤来除去多晶硅层10和介电层14的多余区域。然后在基片上除去所述光致抗蚀剂以保留隔离栅叠层。应该意识到在一个典型的集成电路器件中,在单个晶片上将形成许多分离的栅极叠层。然而,为了保持说明本发明的简单性,将只说明关于单个栅极叠层(如图1a所示)的方法。
然后如箭头100所示,执行锗植入来使所述硅基片和所述栅电极10的暴露表面非结晶化。所述植入是用5e14至1e15at/cm3的剂量以8至30kev的能量执行的。在最高表面上的原子轰击动作使所述结晶结构瓦解,由此提供有限深度的非晶硅。该非结晶化用于限制随后掺杂剂离子扩散到所述硅晶片12的深度,由此提供期望的浅源极/漏极区域。
眼下,可形成邻接所述栅电极的绝缘隔离片(没有示出)以在随后的p型掺杂处理中屏蔽下面基片的各个区域。
再次参考图1b,以0.2-10keV、5e14和5e15at/cm3之间的剂量植入硼离子。该硼植入用于对与所述栅电极10邻接的硅基片的区域22、24进行掺杂。所述掺杂区域最终将用作p型掺杂导电源极和漏极区。在另一个实施例中,相反地通过在所述基片的区域中植入N型磷离子而可以提供N型半导体器件。
然后执行低温退火以激活所述器件的非结晶部分22、24(包括栅电极的一部分)的固相外延再生长。除了对所述栅电极的10a部分和所述半导体基片22、24进行再结晶之外,所述退火还用于激活所述植入的硼掺杂剂。
在600-750℃之间(典型地为650℃)的保持一分钟的热预算被用于执行这种退火。设想对于一个短期间使用较高的温度,只要不超出所述温度便可以破坏所述突变结分布。参考图1b,由此提供再结晶源极和漏极区22和24并通过所述无掺杂的沟道区26将二者分离开。此外,加热退火会使栅极10的硅再结晶至一个程度以便形成多晶硅下部10a和非晶硅上部10b。
根据本发明的一个优选实施例,然后通过对其最上端暴露表面进行抛光以除去栅电极的上部10b。可以利用化学机械抛光(CMP)。CMP用于从所述栅极10的最上端表面除去顶部20-50nm。然而,设想除去部分的厚度取决于所述栅极在所述固相外延再生长期间被再结晶的程度。有利地,所述抛光将基本上除去所述栅极的全部非结晶高电阻区域,由此允许形成低电阻接触。由于CMP处理的性质,抛光的程度在所述晶片上会有+/-20nm的变动。
在另一个优选实施例中,通过有选择的蚀刻来除去所述多晶硅栅极的非结晶部分。在此情况中,例如可使用基于HF的酸来执行湿式蚀刻以除去所述栅电极的非晶硅部分10b。有利地,只有栅极的高电阻部分被除去。
在另一个实施例中,使用等离子(干式)蚀刻除去所述栅电极的上部10b。
图4表示除去顶端部分10b之后的栅极叠层。
然后使用标准沉积技术在所述栅电极上面沉积厚度为20-40nm的镍层(没有示出)。然后加热所述基片以便将所述镍和下面的多晶硅的一部分转变成硅化物接触区。所述硅化物有利地提供与所述器件的均匀低电阻接触。然后例如使用湿式蚀刻除去任何无用的镍。虽然在本实施例中使用了镍,但也可设想使用适合于形成硅化物的其它金属来代替。
然后执行基片的进一步前端处理以对所述半导体器件提供触点,其然后可在一个集成电路芯片内部继续形成一个元件。然而,将不说明进一步的处理,因为它与本发明并不直接相关。
概括地说,提供一种制造半导体器件(例如MOS晶体管)的方法。所述器件包括多晶硅栅极和在半导体基片中形成的掺杂区域,它们由一个沟道区分开。所述半导体基片的暴露表面例如通过离子轰击被非结晶化,以便在加温退火期间禁止掺杂剂离子的随后扩散。低热预算对于所述激活和多晶硅再生长是有利的,以便确保用于所述源极/漏极区域的突变掺杂分布图。因此栅电极的上部保持非结晶。所述栅电极的上部被除去以便允许与所述多晶硅下部产生低电阻接触。
通过读取本公开,其它变化和修改对于本领域技术人员将是显而易见的。这种变化和修改可包括在半导体的设计、制造和使用中已知的和除了此处所述的特征之外或者代替所述特征使用的等同物和其它特征。虽然在本申请中已经将权利要求表达为特征的特定组合,但应该理解所述公开的范围还包括文中或明示或暗示或者概括得出的任何新颖的特征及其组合,而不论它是否会缓和本发明所处理的任何或者全部相同技术问题。本申请人在此声明,在本申请或者源自本申请的进一步申请的受理期间,可以根据任意此类特征和/或其组合而构成新的权利要求。

Claims (8)

1.一种制造半导体器件的方法,所述包括步骤:
在半导体基片(12)上形成多晶硅的栅电极(10);
使所述半导体基片和栅电极的暴露表面非结晶化;
对邻接所述栅电极的半导体基片的区域(22,24)进行掺杂;然后
使所述栅电极和所述半导体基片的下部(10a)进行再结晶;和
除去所述栅电极的上部非结晶部分(10b)。
2.根据权利要求1所述的方法,其中所述除去步骤包括对所述栅电极的最上端的暴露表面进行抛光。
3.根据权利要求1所述的方法,其中所述除去步骤包括对所述栅电极的最上端的暴露表面进行蚀刻。
4.根据任何一个前述权利要求所述的方法,其中所述除去步骤用于从所述电极的最上端表面除去具有20-50nm的厚度的层。
5.根据任何一个前述权利要求所述的方法,其中所述再结晶步骤包括固相外延再生长。
6.根据权利要求5所述的方法,其中所述再生长是通过将所述基片加热至600℃-750℃范围内的温度而执行的。
7.根据任何一个前述权利要求所述的方法,还包括步骤:
在所述除去步骤之后在所述栅电极之上沉淀金属层;以及然后加热所述基片以便在所述栅电极上形成硅化物接触区。
8.一种集成电路芯片,其包括根据任何一个前述权利要求制造的半导体器件。
CN2006800213073A 2005-06-16 2006-06-13 具有多晶硅电极的半导体器件 Active CN101288159B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05105323.9 2005-06-16
EP05105323 2005-06-16
PCT/IB2006/051879 WO2006134553A2 (en) 2005-06-16 2006-06-13 Semiconductor device having a polysilicon electrode

Publications (2)

Publication Number Publication Date
CN101288159A CN101288159A (zh) 2008-10-15
CN101288159B true CN101288159B (zh) 2010-10-06

Family

ID=37532687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800213073A Active CN101288159B (zh) 2005-06-16 2006-06-13 具有多晶硅电极的半导体器件

Country Status (5)

Country Link
US (1) US7790545B2 (zh)
EP (1) EP1894243A2 (zh)
JP (1) JP5010589B2 (zh)
CN (1) CN101288159B (zh)
WO (1) WO2006134553A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194752B (zh) * 2010-03-11 2013-06-12 中芯国际集成电路制造(上海)有限公司 一种互补金属氧化物半导体器件结构的制作方法
US8748256B2 (en) * 2012-02-06 2014-06-10 Texas Instruments Incorporated Integrated circuit having silicide block resistor
US9958424B2 (en) * 2012-10-01 2018-05-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method of identifying airborne molecular contamination source
CN106952918A (zh) * 2016-01-05 2017-07-14 中芯国际集成电路制造(上海)有限公司 分离栅快闪存储器的制备方法
US10522557B2 (en) 2017-10-30 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Surface topography by forming spacer-like components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727815A2 (en) * 1995-02-14 1996-08-21 Nec Corporation Method for manufacturing semiconductor device with salicide portions
US5966597A (en) * 1998-01-06 1999-10-12 Altera Corporation Method of forming low resistance gate electrodes
US6335253B1 (en) * 2000-07-12 2002-01-01 Chartered Semiconductor Manufacturing Ltd. Method to form MOS transistors with shallow junctions using laser annealing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297148A (ja) * 1990-04-16 1991-12-27 Fujitsu Ltd 半導体装置の製造方法
JPH0458524A (ja) * 1990-06-27 1992-02-25 Fujitsu Ltd 半導体装置の製造方法
JPH07263684A (ja) * 1994-03-25 1995-10-13 Mitsubishi Electric Corp 電界効果トランジスタの製造方法
JPH0923007A (ja) * 1995-07-07 1997-01-21 Sony Corp 半導体装置およびその製造方法
US6297115B1 (en) * 1998-11-06 2001-10-02 Advanced Micro Devices, Inc. Cmos processs with low thermal budget
JP2000260728A (ja) * 1999-03-08 2000-09-22 Nec Corp 半導体装置の製造方法
US6424001B1 (en) * 2001-02-09 2002-07-23 Micron Technology, Inc. Flash memory with ultra thin vertical body transistors
JP2003332565A (ja) * 2002-05-08 2003-11-21 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2003022984A (ja) * 2002-05-31 2003-01-24 Sharp Corp 半導体装置の製造方法
US20040115889A1 (en) 2002-12-17 2004-06-17 Amitabh Jain Ultra shallow junction formation
US7247566B2 (en) * 2003-10-23 2007-07-24 Dupont Air Products Nanomaterials Llc CMP method for copper, tungsten, titanium, polysilicon, and other substrates using organosulfonic acids as oxidizers
EP1650796A3 (fr) 2004-10-20 2010-12-08 STMicroelectronics (Crolles 2) SAS Procédé de prise de contact sur une région d'un circuit intégré, en particulier sur les électrodes d'un transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727815A2 (en) * 1995-02-14 1996-08-21 Nec Corporation Method for manufacturing semiconductor device with salicide portions
US5966597A (en) * 1998-01-06 1999-10-12 Altera Corporation Method of forming low resistance gate electrodes
US6335253B1 (en) * 2000-07-12 2002-01-01 Chartered Semiconductor Manufacturing Ltd. Method to form MOS transistors with shallow junctions using laser annealing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 6335253 B1,说明书第4栏第30行至第7栏第18行.

Also Published As

Publication number Publication date
US7790545B2 (en) 2010-09-07
WO2006134553A3 (en) 2008-06-19
EP1894243A2 (en) 2008-03-05
JP5010589B2 (ja) 2012-08-29
WO2006134553A2 (en) 2006-12-21
CN101288159A (zh) 2008-10-15
JP2008544517A (ja) 2008-12-04
US20090159992A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
US7531436B2 (en) Highly conductive shallow junction formation
US7355255B2 (en) Nickel silicide including indium and a method of manufacture therefor
KR100440840B1 (ko) 반도체 장치의 제조 방법 및 반도체 장치
TW200915436A (en) Formation of shallow junctions by diffusion from a dielectric doped by cluster or molecular ion beams
US6365475B1 (en) Method of forming a MOS transistor
US20010015922A1 (en) Semiconductor device with an integrated CMOS circuit with MOS transistors having silicon-germanium (Si1-xGex) gate electrodes, and method of manufacturing same
CN103855028A (zh) 半导体器件及其形成方法
CN101288159B (zh) 具有多晶硅电极的半导体器件
JP3545526B2 (ja) 半導体装置の製造方法
US7138307B2 (en) Method to produce highly doped polysilicon thin films
TW200416898A (en) Semiconductor component and method of manufacture
US7615430B2 (en) Field effect transistor and method of manufacturing a field effect transistor
WO2005062387A1 (en) Formation of abrupt junctions in devices by using silicide growth dopant snowplow effect
WO2006041837A1 (en) Pre-silicidation amorphization in semiconductor device nickel sili cide
KR100271265B1 (ko) 비정질화된폴리실리콘을사용하는서브미크론마이크로일렉트로닉스응용을위한자기정렬poci₃제조방법
US6451644B1 (en) Method of providing a gate conductor with high dopant activation
KR100898581B1 (ko) 반도체 소자의 콘택 형성방법
US7348229B2 (en) Method of manufacturing a semiconductor device and semiconductor device obtained with such a method
KR100238872B1 (ko) 반도체 장치의 제조 방법
JPH11330439A (ja) 超薄型soi静電気放電保護素子の形成方法
KR100705233B1 (ko) 반도체 소자의 제조 방법
KR20100129624A (ko) 상변화 기억 소자의 제조방법
JP2004281693A (ja) 半導体装置及びその製造方法
JP2005039184A (ja) 半導体素子の製造方法
KR20020091889A (ko) 엔모스 게이트의 동시 도핑 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: IMEC CORP.

Free format text: FORMER OWNER: KONINKL PHILIPS ELECTRONICS NV

Effective date: 20120326

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120326

Address after: Leuven

Patentee after: IMEC Corp.

Address before: Eindhoven

Patentee before: Koninkl Philips Electronics NV