CN1012848B - 检测圆管和棒上缺陷的方法及装置 - Google Patents
检测圆管和棒上缺陷的方法及装置Info
- Publication number
- CN1012848B CN1012848B CN87104550A CN87104550A CN1012848B CN 1012848 B CN1012848 B CN 1012848B CN 87104550 A CN87104550 A CN 87104550A CN 87104550 A CN87104550 A CN 87104550A CN 1012848 B CN1012848 B CN 1012848B
- Authority
- CN
- China
- Prior art keywords
- transducer
- peak
- pulse
- signal
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4454—Signal recognition, e.g. specific values or portions, signal events, signatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/07—Analysing solids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/34—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
- G01N29/341—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
- G01N29/343—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/36—Detecting the response signal, e.g. electronic circuits specially adapted therefor
- G01N29/38—Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/48—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/011—Velocity or travel time
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/048—Transmission, i.e. analysed material between transmitter and receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/262—Linear objects
- G01N2291/2626—Wires, bars, rods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/263—Surfaces
- G01N2291/2634—Surfaces cylindrical from outside
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/263—Surfaces
- G01N2291/2636—Surfaces cylindrical from inside
Landscapes
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Eye Examination Apparatus (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
本发明涉及检测圆管或棒上不同位置的缺陷的方法。其中,非转动地沿着被测物体在轴向经过的路径的周围布置发射换能器和接收换能器,在被测物体上导向正切旋转脉冲波在循环内产生并被接收,一个循环里依次接收到的信号的幅值在计算机中得到处理,通过计算出一个比值来确定缺陷的存在。接收信号以具有同一频率、适当的延续时间和起始延迟的形式与脉冲信号串同步,接收信号被送到峰值检波器,其幅值在计算机中进行数字化处理。
Description
本发明涉及一种按类别检测圆管或棒上缺陷的方法及实现这种方法的装置。
德国专利公报2605405号中公布了一种方法,本发明就是在此基础上提出的,并作了进一步的发展。这种已知结构的优点在于,在被检测物体上产生超声波,特别是通过一些电动式换能器产生超声波,这些换能器面对面地围绕被检测物体布置在不同位置上,它们在工作时不需要液体耦合,还避免了被检测物体相对于超声换能器的旋转运动。但是事实证明,只通过在已有技术中的一个比值来对在一个发射循环内显示的缺陷指示进行评价是不可靠的。
由于在被检物体的两端会发生寄生的反射和干涉,这些寄生的反射和干涉信号会对接收信号产生影响,而这些寄生信号又是单调不衰减的信号,所以造成上述的缺陷指示不能可靠地显示被检测物体的缺陷。另外证实,只从两个最大幅值中得出的比值对于统计干扰是非常灵敏的,在实际情况中是先把所有的接收信号数字化,再寻找每个最大幅值,接着进行评价,这种做法很浪费时间。
本发明的任务是提高此方法的检验速度和关于缺陷的计算处理结果的可靠性。解决这一问题的方法是:
(1)产生若干次检测循环,利用发射换能器在每个检测循环中发射一个特定的脉冲声波,该脉冲声波分两路沿着围绕该圆柱形物体
的轴线的圆周向两个方向传播,
(2)利用接收换能器接收沿着圆周路线传播的该分开传播的脉冲波,从而使接收换能器在该检测循环中产生若干个脉冲,该分开传播的脉冲的幅度是逐渐衰减的,
(3)提供一个序列短促脉冲信号,在每个限定期间内作为定时和选通的参考信号,这些短促脉冲信号根据发射和接收换能器所预期的传播时间按每个该圆周路线重复,
(4)按每个圆周路线,与这些参考信号同步地在限定的时间内对接收到的两路信号进行峰值检波,
(5)对这些检过波的峰值信号数字化并处理这些数字化的峰值信号,由此计算出在一个检测循环中两组峰值信号的比值。
(6)根据该比值对被检测物体的缺陷进行评价。
在计算机中,先将较早出现的若干个数字化峰值相加作为第一个和,再对较晚出现的若干个数字化后的峰值求和作为第二个和,然后计算这两个和的比值。
实现上述方法的装置中,沿被测物体经过的路径固定放置的发射换能器(例如电动式换能器)与供给计算机触发脉冲的脉冲信号串发生器相连,接收换能器与脉冲信号串输出端通过一个峰值检波器相连,峰值检波器又与计算机相连。
通过采用短促脉冲串信号,代替了传统装置中为寻找最大幅值而采用的对接收的所有信号数字化,更确切地说,根据现在的建议,在每个循环中实际上只产生一个对应于在一个限定的选通周期内出现的最大值的峰值数字信号。因此,可以使每个发射循环中的数字值的评价量减少,这样就可以通过先对脉冲序列编组,然后再进行处理的方
式来完成对这些峰值信号的评价程序。
本发明的方法为了适合各种可能的测试设备和被测物体的不同要求,只需要通过选择短促脉冲信号串的频率,必要的时候还可以选择脉冲延迟时间和脉宽来实现。
特别是,在只用单个换能器的情况,可以得到一些简单的结果,在这种情况下,换能器在向被测物体发射一个激励脉冲之后又被用作接收换能器,也可以在被测物体周围重叠放置两个换能器线圈来进行工作,其中一个用作发射换能器,另一个用作接收换能器。如果换能器互相相对放置,则可以得到另一简单关系。在所有这些布置中,围绕被检测物体沿两个方向传播的波可能发生干涉,该波在每次循环中向接收端送去一个峰值,利用简单方法可以测量出在循环内的衰减的脉冲峰值序列。与上述布置不同,如果使发射和接收换能器相距大约半个载波波长的距离,则在这个循环之内同样可以出现均匀的峰值序列。此外,若将发射换能器和接收换能器相对于被测物体互成90°放置,则可以形成一个很简单的峰值序列结构。在这种情况下,来自两个方向的波交替到达接收换能器,并以完全一样的时间间隔形成一个峰值序列。
如果通过上述结构在这个循环内产生具有相同时间间隔的接收信号序列,则本方法工作如下:借助一个信号源产生一个脉冲信号,其频率与循环内的峰值频率相同,其长度与可测的峰值序列的长度大致相等。脉冲信号串的形状和占空比要符合要求,最好是用简单的方波信号。为使测量信号与短促脉冲信号串同步,驱动发射换能器的发送器和产生短促脉冲信号串的信号源受相同的时钟脉冲控制,这个时钟脉冲由时钟发生器或计算机产生,在这还考虑到使测量信号与脉冲信
串之间有一个可调的时间延迟。这样的一个接收信号用相对于时间轴19的图形1a表示。在同一时间轴上的图形1b表示短促脉冲信号串,形成的可调时间延迟与图中所示图形同步。因而通过短促脉冲信号串的作用,峰值检波器总是在一个时间窗口中被激励,在这个窗口中可以等待到一个接收信号。峰值检波器保持在时间窗口中获得的峰值,直至在下一个时间窗口中获得一个新的最大值。将一个由短促脉冲信号串产生的触发信号送至模数转换器,转换器将峰值检波器的输出信号作数字化处理。在最简单的情况下,这一触发信号是通过短促脉冲信号串的时间延迟而产生的,最终数字值序列被读到一计算机中,计算机对整个序列进行计算处理,由峰值检波器给出的信号如图形1c所示。
本发明也可应用于换能器在被检测物体周围非对称放置的情况,在这种情况下将产生一个具有不同时间间隔的峰值序列。不同的时间间隔可以这样产生,由换能器在被测物体上产生的超声波在被测物体上不仅以左旋而且以右旋的方向传播,而两个波列不同时到达接收换能器;或者是,两个波列中的一个不是正好滞后另一个的半个循环周期而到达接收器,如同换能器互成90°放置的情况那样。这个一般的方法将通过图2和图3所示的实施例作进一步的说明。
图3示出装置的布置以及发射换能器4和接收换能器6在被测物体5附近的安排,在这里涉及到电动式换能器,它从发射换能器4起右旋一个介于90°-180°之间的角度。在这样一种布置中,为一检定的开始,计算机1给信号源2一个起始时钟触发信号,信号源将信号通过发送放大器3送给发射换能器4的线圈。发射换能器在被测物体5上产生引导波,该波以右旋和左旋的方向沿被测物体表面均
匀传播。接收换能器6首先接收到被测物体5上的右旋波的信号,它在图2a中由时间轴20上的21来表示。然后,左旋波的信号被接收换能器6接收,这个信号由图2a中的22表示。通过波的继续旋转,又接收到信号23,25直至35和信号24,26直至36。这些信号在前置放大器7和放大器8中进行窄频带放大,并可以送到观测部分9。放大后的信号还通过整流器10和低通滤波器11送入峰值检波器12。
计算机产生的用于起始检验的触发信号还通过一个延迟网络13到达信号源14,它向峰值检波器提供在计算机处理中必需的同步短促脉冲信号串,这个脉冲信号串由图2b所示,它通过下一个延迟网络15作为触发信号送入模数转换器16,模数转换器将峰值检波器的输出信号数字化(见图2C)。数字值数据被读入计算机中并在计算机中进行计算处理。其结果产生于标记单元17和记录或存储单元18。
计算机1还能对附属装置编程,以便在测量交替过程中,使得电子线路能在短时间内适应这一交替过程。
根据本发明,计算机是根据数值序列进行计算处理的,而不是只考虑到一个或两个数值。从迅速而准确地进行计算处理的观点来说,首先要建立起峰值序列的多个峰值的和,因此这里的第一个单独值也应是可靠的。例如,先是前两个峰值幅度之和被证明是可靠的。接着,在几次旋转周期之后,形成后续多个峰值幅度的和。如果20个峰值是可测的,则这个和可以假设为包括8-20个峰值的幅值。然后,计算这两个和值的比值,该比值作为确定检验部分被测物体质量的指示值。这种处理方法的特殊优点是,因为只需进行几次求和与一
次求比值的计算,所以所占用的计算时间很少。因此,检验的速度不是由计算处理所占用的时间决定,而是由超声波在待测区域传播所必需的时间决定。通过利用该比值来评价缺陷,可以消除来自发射换能器或接收换能器的耦合波动,因为这种耦合波动要影响总的被测幅度,但不改变峰值序列的包络线形状。经过求和,特别是经过对多次循环的幅度求和,受已提及的边缘效应(在被测物体端部出现的反射和干涉)影响的峰值序列的结构将变得很均衡,接收信号的随机噪声也将大大地降低。
所述的质量指示值在计算机中与一个极限值进行比较,若超过极限值,则可以向缺陷标志发出一个信号。通过前两个峰值和与一个预定临界值的比较,接着再控制换能器提升。
Claims (3)
1、一种检测具有轴线的圆柱形物体上的缺陷的方法,其中发射和接收换能器沿着该被检测物体在轴向方向所经过的路径布置,其特征在于该方法包括下述步骤:
(1)产生若干次检测循环,利用发射换能器在每个检测循环中发射一个特定的脉冲声波,该脉冲声波分两路沿着围绕该圆柱形物体的轴线的圆周向两个方向传播,
(2)利用接收换能器接收沿着圆周路线传播的该分开传播的脉冲波,从而使接收换能器在该检测循环中产生若干个脉冲,该分开传播的脉冲的幅度是逐渐衰减的,
(3)提供一个序列短促脉冲信号,在每个限定期间内作为定时和选通的参考信号,这些短促脉冲信号根据发射和接收换能器所预期的传播时间按每个该圆周路线重复,
(4)按每个圆周路线,与这些参考信号同步地在限定的时间内对接收到的两路信号进行峰值检波,
(5)对这些检过波的峰值信号数字化并处理这些数字化的峰值信号,由此计算出在一个检测循环中两组峰值信号的比值,
(6)根据该比值对被检测物体的缺陷进行评价。
2、根据权利要求1的方法,其特征在于还包括下述步骤:先将较早出现的若干个数字化峰值相加作为第一个和,再对较晚出现的若干个数字化后的峰值求和作为第二个和,然后计算这两个和的比值。
3、实现权利要求1或2的方法的装置,其特征在于沿被测物体经过的路径固定放置的发射换能器(4)(例如电动式换能器)与供给计算机(1)触出脉冲的一个脉冲信号串发生器(14)相连,接收换能器(6)与脉冲信号串输出端通过一个峰值检波器(12)相连,峰值检波器又与计算机相连。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP3522500.2 | 1986-07-03 | ||
DEP3622500.2 | 1986-07-03 | ||
DE19863622500 DE3622500A1 (de) | 1986-07-03 | 1986-07-03 | Verfahren und vorrichtung zur erfassung von ungaenzen an zylindrischen rohren und stangen |
Publications (2)
Publication Number | Publication Date |
---|---|
CN87104550A CN87104550A (zh) | 1988-02-10 |
CN1012848B true CN1012848B (zh) | 1991-06-12 |
Family
ID=6304397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN87104550A Expired CN1012848B (zh) | 1986-07-03 | 1987-07-01 | 检测圆管和棒上缺陷的方法及装置 |
Country Status (10)
Country | Link |
---|---|
US (1) | US4817431A (zh) |
JP (1) | JP2622970B2 (zh) |
KR (1) | KR880002014A (zh) |
CN (1) | CN1012848B (zh) |
AR (1) | AR241824A1 (zh) |
DE (1) | DE3622500A1 (zh) |
FR (1) | FR2601140B1 (zh) |
GB (1) | GB2192283B (zh) |
IT (1) | IT1204513B (zh) |
MX (1) | MX168706B (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3943226C2 (de) * | 1989-01-13 | 1995-01-05 | Mannesmann Ag | Verfahren und Vorrichtung zur Erfassung von Ungänzen an langgestreckten Werkstücken |
ES2088409T3 (es) * | 1989-01-13 | 1996-08-16 | Mannesmann Ag | Procedimiento para la deteccion de deficiencias en piezas de trabajo oblongas. |
DE4008300A1 (de) * | 1990-03-15 | 1991-09-26 | Benteler Werke Ag | Verfahren und vorrichtung zur kontinuierlichen zerstoerungsfreien untersuchung von stangenfoermigen prueflingen |
DE4328712A1 (de) * | 1993-08-26 | 1995-03-02 | Foerster Inst Dr Friedrich | Verfahren und Einrichtung zum Prüfen von langgestreckten Gegenständen ggf. mit von der Kreisform abweichendem Querschnitt |
JPH07114558A (ja) * | 1993-10-19 | 1995-05-02 | Fujitsu Ltd | 漢字変換訂正処理方式 |
US6014899A (en) * | 1997-09-16 | 2000-01-18 | Chrysler Corporation | Method and apparatus for measuring vibration damping of brake parts |
US6314813B1 (en) | 2000-03-06 | 2001-11-13 | Daimlerchrysler Corporation | Method and apparatus for measuring vibration damping |
US6257063B1 (en) | 2000-05-24 | 2001-07-10 | Daimlerchrysler Corporation | Method for measuring vibration damping |
DE10220946A1 (de) | 2002-04-29 | 2003-12-04 | Mannesmann Roehren Werke Ag | Verfahren zur Erfassung von Ungänzen an langgestreckten Werkstücken mittels Ultraschall |
JP4903032B2 (ja) * | 2006-11-24 | 2012-03-21 | ジャパンプローブ株式会社 | 空中超音波探傷システム |
CN102323336A (zh) * | 2011-06-08 | 2012-01-18 | 沈阳飞机工业(集团)有限公司 | 棒材超声波检测时缺陷反射回波的识别方法 |
RU2662849C2 (ru) * | 2015-07-14 | 2018-07-31 | Игорь Витальевич Семыкин | Способ обнаружения дефектов в объектах |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3930404A (en) * | 1973-06-21 | 1976-01-06 | Exxon Nuclear Company Inc. | Inside diameter, outside diameter and wall tube gage |
DE2512505B2 (de) * | 1975-03-21 | 1978-06-22 | Krautkraemer, Gmbh, 5000 Koeln | Verfahren zur Funktionsüberwachung bei der Ultraschallprüfung von Rohren und Stangen |
DE2605405A1 (de) * | 1976-02-09 | 1977-08-11 | Mannesmann Ag | Verfahren zur us-pruefung von rohren |
JPS5698650A (en) * | 1980-01-11 | 1981-08-08 | Hitachi Ltd | Ultrasonic-signal processing device |
JPS5745681A (en) * | 1980-08-31 | 1982-03-15 | Pentel Kk | Manuscript recognition method |
JPS5841347A (ja) * | 1981-09-04 | 1983-03-10 | Hitachi Ltd | 溶接部検出装置 |
US4651568A (en) * | 1984-08-30 | 1987-03-24 | Kirin Beer Kabushiki Kaisha | Glass bottle inspection |
-
1986
- 1986-07-03 DE DE19863622500 patent/DE3622500A1/de active Granted
-
1987
- 1987-04-10 IT IT20067/87A patent/IT1204513B/it active
- 1987-04-17 FR FR878705531A patent/FR2601140B1/fr not_active Expired - Lifetime
- 1987-06-29 MX MX007116A patent/MX168706B/es unknown
- 1987-06-30 GB GB8715325A patent/GB2192283B/en not_active Expired - Fee Related
- 1987-06-30 AR AR87308005A patent/AR241824A1/es active
- 1987-06-30 JP JP62163873A patent/JP2622970B2/ja not_active Expired - Lifetime
- 1987-06-30 KR KR1019870006668A patent/KR880002014A/ko not_active Application Discontinuation
- 1987-07-01 US US07/069,417 patent/US4817431A/en not_active Expired - Lifetime
- 1987-07-01 CN CN87104550A patent/CN1012848B/zh not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB2192283B (en) | 1990-02-14 |
CN87104550A (zh) | 1988-02-10 |
DE3622500A1 (de) | 1988-01-07 |
KR880002014A (ko) | 1988-04-28 |
GB8715325D0 (en) | 1987-08-05 |
IT1204513B (it) | 1989-03-03 |
FR2601140A1 (fr) | 1988-01-08 |
JPS6327749A (ja) | 1988-02-05 |
FR2601140B1 (fr) | 1990-07-27 |
IT8720067A0 (it) | 1987-04-10 |
GB2192283A (en) | 1988-01-06 |
AR241824A1 (es) | 1992-12-30 |
DE3622500C2 (zh) | 1991-03-21 |
MX168706B (es) | 1993-06-04 |
US4817431A (en) | 1989-04-04 |
JP2622970B2 (ja) | 1997-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0415415B2 (zh) | ||
CA1303722C (en) | Method and apparatus for the detection of corrosion or the like | |
US3944963A (en) | Method and apparatus for ultrasonically measuring deviation from straightness, or wall curvature or axial curvature, of an elongated member | |
CN1012848B (zh) | 检测圆管和棒上缺陷的方法及装置 | |
US7240554B2 (en) | Method and device for sizing a crack in a workpiece using the ultrasonic pulse-echo technique | |
CA2295330A1 (en) | Probe mapping diagnostic methods | |
US4796238A (en) | System for measurement of the acoustic coefficient of reflection of submerged reflectors | |
AU597636B2 (en) | Measurement of residual stresses in material | |
US5113697A (en) | Process and apparatus for detecting discontinuities on long workpieces | |
US6843131B2 (en) | Method of detecting discontinuities on elongated workpieces | |
US5591912A (en) | Method and apparatus for inspecting conduits | |
ZA200604066B (en) | Method and apparatus for ultrasonic testing of an object | |
EP0716301B1 (en) | High resolution measurement of a thickness using ultrasound | |
CA1075805A (en) | Ultrasonic testing of seams | |
CN106896157B (zh) | 基于距离自适应的3d拼接可视化超声钢轨探伤方法及装置 | |
CN102084246A (zh) | 改善的具有耦合检查的超声波无损检测 | |
GB2167185A (en) | Acoustically detecting and/or identifying a liquid | |
US5679898A (en) | Process and device for detecting flaws on stretched workpieces, especially tubes and bars | |
US20020100326A1 (en) | Method and apparatus for measuring ultrasonic properties of an object | |
US3281674A (en) | Echo ranging of faulty coil sections in coil-loaded cables utilizing damped oscillations | |
RU2010227C1 (ru) | Способ определения местоположения источников акустической эмиссии в трубопроводах | |
GB2075678A (en) | A method of determining a fault expectancy zone for ultrasonic testing | |
SU1320742A1 (ru) | Способ ультразвукового теневого контрол изделий и устройство дл его осуществлени | |
SU1758541A1 (ru) | Способ ультразвукового контрол изделий | |
JP3002065U (ja) | 多重反射波連続自動消滅装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C13 | Decision | ||
GR02 | Examined patent application | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C15 | Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993) | ||
OR01 | Other related matters | ||
C17 | Cessation of patent right | ||
CX01 | Expiry of patent term |