CN101271969B - 碳纳米管复合电极材料、其制备方法及电极 - Google Patents

碳纳米管复合电极材料、其制备方法及电极 Download PDF

Info

Publication number
CN101271969B
CN101271969B CN2007100736462A CN200710073646A CN101271969B CN 101271969 B CN101271969 B CN 101271969B CN 2007100736462 A CN2007100736462 A CN 2007100736462A CN 200710073646 A CN200710073646 A CN 200710073646A CN 101271969 B CN101271969 B CN 101271969B
Authority
CN
China
Prior art keywords
carbon nano
tube
electrode material
combination electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007100736462A
Other languages
English (en)
Other versions
CN101271969A (zh
Inventor
宋鹏程
王鼎
刘长洪
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2007100736462A priority Critical patent/CN101271969B/zh
Priority to US11/951,167 priority patent/US20080241695A1/en
Publication of CN101271969A publication Critical patent/CN101271969A/zh
Application granted granted Critical
Publication of CN101271969B publication Critical patent/CN101271969B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种碳纳米管复合电极材料,该碳纳米管复合电极材料的制备方法及包括该碳纳米管复合电极材料的电极。所述碳纳米管复合电极材料包括大量碳纤维及碳纳米管,大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在碳纤维上。由于碳纤维的直径远大于碳纳米管的直径,因此所述碳纳米管复合电极材料中的孔隙大于单纯由碳纳米管形成的电极材料中的孔隙,电解液或者反应物很容易进入碳纳米管复合电极材料的孔隙中而与碳纳米管表面充分接触,从而可以提高电池的容量。

Description

碳纳米管复合电极材料、其制备方法及电极
技术领域
本发明涉及一种碳纳米管复合电极材料,该碳纳米管复合电极材料的制备方法及包括该碳纳米管复合电极材料的电极。
背景技术
近年来,笔记型电脑、移动电话、个人数码助理等便携式电子产品飞速发展,其中所用的中央处理器的频率越来越高,其运算能力越来越强,但与此同时其消耗的功率也越来越高,因此对给其提供电力的二次电池提出了更高的需求。
二次电池中以锂离子二次电池与锂离子聚合物二次电池最具有代表性,其负极通常由石墨等碳材料制成,但目前石墨已逐渐不能满足需求,碳纳米管由于具有大的比表面积,因此被用来取代石墨用于锂离子电池负极中。然而由于单纯的碳纳米管其直径大小在分子尺度上,碳纳米管间的孔隙也较小,因此电解液或者反应物很难进入孔隙而与碳纳米管表面充分接触,也就很难发挥出碳纳米管大比表面积的特性。
发明内容
有鉴于此,有必要提供一种可充分发挥碳纳米管大比表面积的碳纳米管复合电极材料、其制备方法及包括该碳纳米管复合电极材料的电极。
一种碳纳米管复合电极材料,其包括大量碳纤维及碳纳米管,所述碳纤维的直径为2微米到50微米,所述碳纳米管直径为20纳米到100纳米,且所述大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在碳纤维上。
一种电极,其包括金属基体及设置于所述金属基体表面的碳纳米管复合电极材料,所述碳纳米管复合电极材料包括大量碳纤维及碳纳米管,所述碳纤维的直径为2微米到50微米,所述碳纳米管直径为20纳米到100纳米,且所述大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在所述碳纤维上。
一种所述碳纳米管复合电极材料的制备方法,其包括以下步骤:使用高速机械搅拌法将碳纤维分散于分散剂中得到溶液A;将碳纳米管置入相同的分散剂中进行超声波分散处理得到溶液B;将溶液A和B混合得到混合溶液后继续进行超声波分散处理;将处理后的混合溶液中的分散剂去除得到最终的碳纳米管复合电极材料。
所述的电极中,由于碳纤维的直径远大于碳纳米管,因此与单纯由碳纳米管形成的碳纳米管复合电极材料相比,所述碳纳米管复合电极材料中,碳纤维之间的孔隙大幅增加,因此电解液或者反应物很容易进入碳纳米管复合电极材料的孔隙中而与碳纳米管表面充分接触,充分发挥出碳纳米管比表面积大的优良特性,从而可以提高电池的容量。
附图说明
图1是本技术方案的碳纳米管复合电极材料的结构示意图。
图2是本技术方案的碳纳米管复合电极材料的制备方法流程图。
图3是本技术方案包括碳纳米管复合电极材料的电极的结构示意图。
具体实施方式
参阅图1,本技术方案提供一种碳纳米管复合电极材料10,其包括大量碳纤维12及碳纳米管14,碳纤维12搭接形成网络状结构,碳纳米管14缠绕或附着在碳纤维12上。
碳纳米管复合电极材料10可为厚度在0.1毫米到10毫米之间的薄膜。碳纤维12的直径可为2微米到50微米,碳纤维12的长度可为0.5至5毫米。碳纳米管14可为单壁碳纳米管或者多壁碳纳米管,其直径可为20纳米到100纳米,长度为10微米以上。
由于碳纤维12的直径为碳纳米管14直径的100倍左右,因此碳纤维12之间的孔隙也远大于单纯由碳纳米管形成的电极材料中碳纳米管之间的孔隙,因此电解液或者反应物很容易进入碳纳米管复合电极材料10的孔隙中而与碳纳米管14表面充分接触,因此碳纳米管14的利用率得以提高,充分发挥出碳纳米管14比表面积大的优良特性,从而可以提高电池的容量。
参阅图2,本技术方案的碳纳米管复合电极材料10可由以下方法制备:
步骤21:将碳纤维12分散于分散剂中得到溶液A。
碳纤维12的直径可为2微米到100微米,长度可为0.5至5毫米,其可以通过剪裁得到长度符合的产品。分散剂可为水、酒精、丙酮、二甲基甲酰胺等。分散剂的用量无特殊限制,碳纤维12能均匀分散在其中即可。分散的方法可以采用高速机械搅拌法。搅拌的时间一般为5-10分钟,直到碳纤维12之间的连接被打破,碳纤维分散于溶液A中,部分碳纤维12之间相互搭接。
步骤22:将碳纳米管14置入相同的分散剂中进行超声波分散处理得到溶液B。
分散剂的用量同样不受特殊限制,碳纳米管14可均匀的分散在其中即可。所用的超声波分散装置的功率可为800W到1200W之间,本实施例当中,采用的功率为1000W,超声波分散的时间可为10到60分钟,当然随超声波分散装置功率的增高,分散时间可减短,直到碳纳米管14分散在分散剂中形成一絮状溶液即可。
步骤23:将溶液A和B混合后继续进行超声波分散处理,以使碳纤维12和碳纳米管14在溶液中混合均匀。
优选的,控制溶液A与溶液B的混合比例,使碳纤维12与碳纳米管14的重量比为1∶1到10∶1之间。
由于碳纤维的直径为碳纳米管的100倍左右,经过一段时间以后,碳纳纳米管会大量的缠绕或附着在碳纤维上,形成了如图1所示的结构。根据采用的超声波分散装置的功率不同,分散时间亦不同,功率越高,分散时间越短。本实施中的超声波分散装置功率为1000W,分散时间为10到30分钟。
步骤24:将混合溶液中的分散剂去除得到最终的碳纳米管复合电极材料10。
去除混合液中分散剂的方法可用烘干或者抽滤。可将混合溶液置于容器中,形成一定厚度的液层,烘干后即可得到一定厚度的电极材料薄膜。优选的,碳纳米管复合电极材料10的厚度可为0.1毫米到10毫米。
当然,上述步骤21与步骤22的顺序可以调换或者同时进行。
参阅图3,本技术方案提供一种电极30,电极30包括基体32及设置于基体32上的碳纳米管复合电极材料34。本实施例中,碳纳米管复合电极材料34包覆于基体32的一端,但是碳纳米管复合电极材料34同样可以包覆整个基体32。基体32可由金属材料铜、铝、镍等制成,或者由导电的非金属材料如石墨制成。
本技术方案电极30可通过将碳纳米管复合电极材料34用导电胶粘附在金属材料基体32上制得。或者,参见前述第一实施例的碳纳米管复合电极材料的制备方法,在步骤23后,将混合液采用喷涂或者涂布的方式施加到基体32的表面,然后烘干即可得到完整的电极30。一次喷涂或涂布如果不能得到足够厚度的电极材料34,则可进行多次喷涂。
本技术方案的电极30中包括基体32,但是因为碳纳米管复合电极材料34具有一定导电性,基体32并不是必须的,可以直接将碳纳米管复合电极材料34制作预定形状的电极。
另外,本领域技术人员还可在本发明精神内做其它变化。当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (17)

1.一种碳纳米管复合电极材料,其包括大量碳纤维及碳纳米管,其特征在于,所述碳纤维的直径为2微米到50微米,所述碳纳米管直径为20纳米到100纳米,且所述大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在碳纤维上。
2.如权利要求1所述的碳纳米管复合电极材料,其特征在于,所述碳纤维的长度为0.5到5毫米。
3.如权利要求1所述的碳纳米管复合电极材料,其特征在于,所述碳纳米管复合电极材料的厚度为0.1毫米到10毫米。
4.如权利要求2所述的碳纳米管复合电极材料,其特征在于,所述碳纳米管长度为10微米以上。
5.如权利要求1所述的碳纳米管复合电极材料,其特征在于,所述碳纳米管复合电极材料中碳纤维与碳纳米管的重量比在1∶1到10∶1之间。
6.一种电极,其包括基体及设置于所述基体表面的碳纳米管复合电极材料,其特征在于,所述碳纳米管复合电极材料包括大量碳纤维及碳纳米管,所述碳纤维的直径为2微米到50微米,所述碳纳米管直径为20纳米到100纳米,且所述大量碳纤维搭接形成网络状结构,所述碳纳米管缠绕或附着在所述碳纤维上。
7.如权利要求6所述的电极,其特征在于,碳纤维的长度为0.5到5毫米。
8.如权利要求6所述的电极,其特征在于,所述碳纳米管复合电极材料的厚度为0.1毫米到10毫米。
9.如权利要求6所述的电极,其特征在于,所述碳纳米管长度为10微米以上。
10.如权利要求6所述的电极,其特征在于,所述碳纳米管复合电极材料中碳纤维与碳纳米管的重量比在1∶1到10∶1之间。
11.一种如权利要求1所述的碳纳米管复合电极材料的制备方法,其包括以下步骤:
使用高速机械搅拌法将碳纤维分散于分散剂中得到溶液A;
将碳纳米管置入相同的分散剂中进行超声波分散处理得到溶液B;
将溶液A和B混合得到混合溶液后继续进行超声波分散处理;
将处理后的混合溶液中的分散剂去除得到最终的碳纳米管复合电极材料。
12.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,分散碳纤维的时间为5到10分钟。
13.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,所述分散剂为水、酒精、丙酮或二甲基甲酰胺。
14.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,超声波分散处理碳纳米管的时间为10到60分钟。
15.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,超声波分散处理混合溶液的时间为10到30分钟。
16.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,去除分散剂的方法为烘干或抽滤。
17.如权利要求11所述的碳纳米管复合电极材料的制备方法,其特征在于,所述混合溶液中碳纤维与碳纳米管的重量比为1∶1到10∶1之间。
CN2007100736462A 2007-03-23 2007-03-23 碳纳米管复合电极材料、其制备方法及电极 Active CN101271969B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007100736462A CN101271969B (zh) 2007-03-23 2007-03-23 碳纳米管复合电极材料、其制备方法及电极
US11/951,167 US20080241695A1 (en) 2007-03-23 2007-12-05 Carbon nanotube composite electrode material, method for manufacturing the same and electrode adopting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100736462A CN101271969B (zh) 2007-03-23 2007-03-23 碳纳米管复合电极材料、其制备方法及电极

Publications (2)

Publication Number Publication Date
CN101271969A CN101271969A (zh) 2008-09-24
CN101271969B true CN101271969B (zh) 2010-08-25

Family

ID=39795005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100736462A Active CN101271969B (zh) 2007-03-23 2007-03-23 碳纳米管复合电极材料、其制备方法及电极

Country Status (2)

Country Link
US (1) US20080241695A1 (zh)
CN (1) CN101271969B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710872A (zh) * 2008-11-18 2020-09-25 Cps科技控股有限公司 电能量存储设备
KR101094453B1 (ko) * 2009-06-11 2011-12-15 고려대학교 산학협력단 전자 방출원의 제조방법 및 이를 적용한 전자소자의 제조방법
EP2270909A1 (en) * 2009-06-15 2011-01-05 BAE Systems PLC Electrical Engergy Storage Device and Methods of Manufacturing Same
CN101837949A (zh) * 2010-05-07 2010-09-22 南昌大学 原位碳纳米管/纳米石墨片复合粉体及制备方法
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
GB201013939D0 (en) 2010-08-20 2010-10-06 Airbus Operations Ltd Bonding lead
CN102354612B (zh) * 2011-09-06 2013-03-20 天津大学 阵列碳纳米管/碳纤维基柔性复合电极材料及其制备方法
CN103094525B (zh) * 2011-10-28 2016-08-03 清华大学 锂离子电池负极及其制备方法
CN103094526B (zh) * 2011-10-28 2015-07-29 清华大学 锂离子电池正极的制备方法
JP5908291B2 (ja) * 2012-01-27 2016-04-26 国立大学法人横浜国立大学 カーボンナノチューブ含有体
AU2013222135A1 (en) * 2012-02-22 2014-09-18 Seldon Technologies, Inc. Electrodes and applications
CN103310869B (zh) * 2012-03-08 2016-06-08 清华大学 碳纳米管浆料,其制备方法以及采用该碳纳米管浆料制备阴极发射体的方法
JP5497109B2 (ja) * 2012-07-03 2014-05-21 昭和電工株式会社 複合炭素繊維
US10700341B2 (en) * 2012-12-19 2020-06-30 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP6063562B2 (ja) 2013-04-24 2017-01-18 ニッタ株式会社 複合素材、成形品および複合素材の製造方法
CN104810524B (zh) * 2014-01-23 2018-04-03 清华大学 锂离子电池
CN105140461A (zh) * 2014-06-04 2015-12-09 清华大学 锂硫电池正极材料及其制备方法
JP6489519B2 (ja) * 2014-10-23 2019-03-27 ニッタ株式会社 強化繊維の製造方法
US10727498B2 (en) 2014-12-26 2020-07-28 Showa Denko K.K. Redox flow battery electrode, and redox flow battery
CN108735344A (zh) * 2018-05-23 2018-11-02 江苏时瑞电子科技有限公司 一种碳纤维/碳纳米管复合导电浆料及其制备方法
CN112289990A (zh) * 2020-04-20 2021-01-29 董荣芳 一种复合纳米材料作为电池负极材料的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704447A (zh) * 2004-05-26 2005-12-07 中国科学院金属研究所 一种具有正温度系数效应的导电复合材料及其制备方法
CN1854241A (zh) * 2005-04-28 2006-11-01 鸿富锦精密工业(深圳)有限公司 热介面材料及其制备方法
CN1857915A (zh) * 2005-04-30 2006-11-08 北京大学 碳纤维复合单根碳纳米管及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE496573T1 (de) * 2000-12-20 2011-02-15 Showa Denko Kk Verzweigte, auf dampf gewachsene kohlenstofffaser,elektrisch leitende transparente zusammensetzung und ihre verwendung
JP4252847B2 (ja) * 2003-06-09 2009-04-08 パナソニック株式会社 リチウムイオン二次電池
US9045607B2 (en) * 2005-06-28 2015-06-02 Samsung Sdi Co., Ltd. Polymer membrane and membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR100717790B1 (ko) * 2005-07-29 2007-05-11 삼성에스디아이 주식회사 연료 전지용 막-전극 어셈블리 및 이를 포함하는 연료 전지시스템.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704447A (zh) * 2004-05-26 2005-12-07 中国科学院金属研究所 一种具有正温度系数效应的导电复合材料及其制备方法
CN1854241A (zh) * 2005-04-28 2006-11-01 鸿富锦精密工业(深圳)有限公司 热介面材料及其制备方法
CN1857915A (zh) * 2005-04-30 2006-11-08 北京大学 碳纤维复合单根碳纳米管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2005-285519A 2005.10.13

Also Published As

Publication number Publication date
US20080241695A1 (en) 2008-10-02
CN101271969A (zh) 2008-09-24

Similar Documents

Publication Publication Date Title
CN101271969B (zh) 碳纳米管复合电极材料、其制备方法及电极
Cui et al. Growth of NiCo2O4@ MnMoO4 nanocolumn arrays with superior pseudocapacitor properties
Wang et al. Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding
CN1770515B (zh) 一种锂离子二次电池正极、负极材料导电剂及其制备方法
Wu et al. Ultrahigh-capacity and scalable architected battery electrodes via tortuosity modulation
Hu et al. Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies
CN102683644B (zh) 一种锂离子电池正极浆料的制备方法
Song et al. Strategy for boosting Li-ion current in silicon nanoparticles
Xuyen et al. Enhancement of conductivity by diameter control of polyimide-based electrospun carbon nanofibers
CN105489392B (zh) 一种石墨烯极片及其制备方法
CN102593464A (zh) 一种集流体及其制备方法
CN106229514B (zh) 石墨烯改性导电聚合物凝胶包覆金属纳米颗粒的制备方法与应用
CN111883371B (zh) 一种超级电容器柔性自支撑电极及其制备方法和应用
Chen et al. High capacity, stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly
CN105226254A (zh) 一种纳米硅颗粒-石墨纳米片-碳纤维复合材料及其制备方法与应用
CN107104227A (zh) 锂离子电池正极材料及其制备方法
Song et al. Flexible binder-free metal fibril mat-supported silicon anode for high-performance lithium-ion batteries
CN105206839B (zh) 一种改性碳纳米管及其制备方法、锂离子电池正极及其制备方法和锂离子电池
Deng et al. Constructing gradient porous structure in thick Li4Ti5O12 electrode for high-energy and stable lithium-ion batteries
Kim et al. Hierarchically structured conductive polymer binders with silver nanowires for high-performance silicon anodes in lithium-ion batteries
CN104194033A (zh) 一种多孔聚酰亚胺薄膜的制备方法
CN109390586A (zh) 一种锂离子电池的负极膨胀抑制结构和负极及其制备方法
CN107627678A (zh) 高吸收低反射的电磁屏蔽材料及其制备方法
Wang et al. Hierarchically Micro/Nanostructured Current Collectors Induced by Ultrafast Femtosecond Laser Strategy for High‐Performance Lithium‐ion Batteries
Shah et al. Freestanding electrode pairs with high areal density fabricated under high pressure and high temperature for flexible lithium ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant