CN101258690A - 漏泄信号抵消装置 - Google Patents

漏泄信号抵消装置 Download PDF

Info

Publication number
CN101258690A
CN101258690A CNA2006800326264A CN200680032626A CN101258690A CN 101258690 A CN101258690 A CN 101258690A CN A2006800326264 A CNA2006800326264 A CN A2006800326264A CN 200680032626 A CN200680032626 A CN 200680032626A CN 101258690 A CN101258690 A CN 101258690A
Authority
CN
China
Prior art keywords
signal
mentioned
offseting
leakage
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800326264A
Other languages
English (en)
Inventor
林亮司
高山直久
下泽充弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN101258690A publication Critical patent/CN101258690A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/59Responders; Transponders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/038Feedthrough nulling circuits

Abstract

正交调制器(202)取出发送信号的一部分,生成抵消信号。信号比较单元(300)比较正交调制器(202)生成的抵消信号与接收信号的振幅和相位,对正交调制器(202)输出与比较结果对应的信号。正交调制器(202)根据信号比较单元(300)的输出信号生成抵消信号,而且正交调制器(202)和信号比较单元(300)进行反馈控制,使抵消信号与漏泄信号的振幅相等、相位相同。合成器(205)合成反相抵消信号以抵消漏泄信号,所述反相抵消信号是将从正交调制器(202)输出的抵消信号反相后的信号。

Description

漏泄信号抵消装置
技术领域
本发明涉及在无线识别系统的询问器或雷达装置中使用的漏泄信号抵消装置。
背景技术
以往,例如在无线识别系统的询问器等的漏泄信号抵消电路中,有下述的漏泄信号抵消电路:在耦合器中取出发送信号的一部分,用可变衰减器和移相器调整所取出的信号的振幅和相位,使其与从发送部漏泄到接收部的漏泄信号振幅相等、相位相反,将所生成的抵消信号与接收信号合成以抵消漏泄信号(例如参照专利文献1(特开平10-62518号公报))。
此外,也提出了下述的方法:用正交调制器调整所取出的信号的振幅和相位,生成与漏泄信号振幅相等、相位相反的抵消信号,与接收信号合成以抵消漏泄信号(例如参照非专利文献1(Beasly等著「Solving the problems of a single antenna frequency modulated CWradar」Record of the IEEE 1990 Internation Radar Conference,7-10May 1990,P391~395,Figure 1,Figure 2))。该文献进一步显示了以跟随漏泄信号的变动的方式构成反馈环从而能稳定地抵消漏泄信号的电路(参照图2)。
该电路进行以下那样的动作。即,用正交混频器对生成抵消信号抵消漏泄信号后的接收信号进行正交解调。将取出了发送信号的一部分的信号输入到该正交混频器的LO端子上。调整正交混频器输出的基带I、Q信号的增益,输入到上述正交调制器的I、Q端子上。于是,将在与抵消信号的合成中未被完全抵消的漏泄信号由取出了发送信号的一部分的信号用正交混频器分解为I、Q信号。通过对从取出了发送信号的一部分的相同的信号生成了抵消信号的正交调制器的I、Q信号加上未被完全抵消的漏泄信号的I、Q信号,可进一步抵消漏泄信号。在漏泄信号的振幅或相位变化从而不能充分地抵消漏泄信号时,也利用同样的动作跟随漏泄信号的变动,来进一步抵消漏泄信号。
从发送部漏泄到接收部中的漏泄信号的振幅或相位随天线周围的环境、即天线附近的反射体(金属)、人体的有无而变化。由于在专利文献1中表示的以前的漏泄信号抵消电路由于调整从发送部取出的信号使其与漏泄信号振幅相等、相位相反的机构是半固定的,故存在不能跟随因天线周围环境的变化产生的漏泄信号的振幅或相位的变动、不能进行稳定的抵消的问题。
此外,在非专利文献1中表示的以前的漏泄信号抵消电路利用反馈控制而能跟随漏泄信号的变动。但是,在这样的电路中,为了求出抵消信号,必须经过正交混频器。在此,因为在反馈控制工作直到充分地抵消漏泄信号为止的动作中大的漏泄信号输入到正交混频器中,故在非专利文献1中表示的结构中,存在必须使用能耐受大功率的输入那样的高价的正交混频器的问题。
本发明是为了解决上述那样的课题而进行的,其目的在于得到能可靠地求出抵消信号、能跟随漏泄信号的变动实现稳定的漏泄信号的抵消的漏泄信号抵消装置。
发明内容
与本发明有关的漏泄信号抵消装置具备:正交调制器或矢量调制器,取出上述发送信号的一部分,生成抵消信号;信号比较单元,比较上述正交调制器或矢量调制器生成的抵消信号与上述接收信号的振幅和相位,输出与比较结果对应的信号;以及合成器,把上述接收信号与反相抵消信号进行合成以抵消上述漏泄信号,所述反相抵消信号是将从上述正交调制器或矢量调制器输出的抵消信号反相后的信号,上述正交调制器或矢量调制器基于上述信号比较单元的输出信号生成上述抵消信号,上述正交调制器或矢量调制器和上述信号比较单元进行反馈控制,使上述抵消信号与上述漏泄信号的振幅相等、相位相同。
根据这一点,可得到能可靠地求出抵消信号、能跟随漏泄信号的变动实现稳定的漏泄信号的抵消的漏泄信号抵消装置。
附图说明
图1是表示具备本发明的实施形态1的漏泄信号抵消装置的发送接收机的结构图。
图2是表示具备本发明的实施形态4的漏泄信号抵消装置的发送接收机的结构图。
图3是表示具备本发明的实施形态5的漏泄信号抵消装置的发送接收机的结构图。
图4是表示具备本发明的实施形态6的漏泄信号抵消装置的发送接收机的结构图。
图5是表示具备本发明的实施形态7的漏泄信号抵消装置的发送接收机的结构图。
图6是表示具备本发明的实施形态7的漏泄信号抵消装置的发送接收机的结构图。
图7是表示具备本发明的实施形态8的漏泄信号抵消装置的发送接收机的结构图。
图8是表示具备本发明的实施形态8的漏泄信号抵消装置的发送接收机的结构图。
具体实施方式
以下,为了更详细地说明本发明,按照附图说明用于实施发明的最佳形态。
实施形态1.
图1是表示具备本发明的实施形态1的漏泄信号抵消装置的发送接收机的结构图。
图示的发送接收机具备:发送部101;局部振荡器102;第1混频器103;功率放大器104;循环器105;第2混频器106;高通滤波器(HPF)107;接收部108;耦合器201;正交调制器202;第1分配器203;第2分配器204;合成器205;振幅比较器301;相位比较器302;第1A/D变换器(第1ADC)303;第2A/D变换器(第2ADC)304;第1积分器305;第2积分器306;正交坐标变换部307;第1D/A变换器(第1DAC)308;第2D/A变换器(第2DAC)309;接收信号开关111;以及开关控制单元112。
此外,第1积分器305~正交坐标变换部307是处理数字信号的数字部311,利用包含该数字部311的振幅比较器301~第2D/A变换器309构成了信号比较单元300。而且,利用耦合器201~信号比较单元300的结构,实现了用于抵消漏泄信号的漏泄信号抵消装置。
发送部101是用于输出基带或中频的发送信号的发送部。局部振荡器102是使载波振荡的振荡器。第1混频器103是用于将发送部101输出的基带或中频的发送信号与局部振荡器102输出的局部振荡信号进行乘法运算以对载波进行通断调制的混频器。功率放大器104是对发送信号进行功率放大的放大器。循环器105是用于在对未图示的天线供给功率放大器104输出的发送信号的同时从该天线取出接收信号的循环器。第2混频器106是用于将接收信号与局部振荡器102输出的局部振荡信号进行乘法运算后变换为基带或中频的接收信号的混频器。接收部108是用于处理由第2混频器106进行了频率变换的基带或中频的接收信号的接收部。此外,高通滤波器107是用于从由第2混频器106输出的信号中除去直流分量的滤波器。
耦合器201是取出功率放大器104输出的发送信号的一部分的耦合器,正交调制器202是调整用耦合器201取出的发送信号的振幅和相位以生成抵消信号的正交调制器,构成为根据从信号比较单元300输出的I、Q信号生成抵消信号。
第1分配器203是对正交调制器202输出的抵消信号进行反相分配的分配器,第2分配器204是取出用合成器205与抵消信号合成前的接收信号的一部分的分配器。合成器205是合成第1分配器203的输出信号与接收信号的合成器。振幅比较器301是比较第1分配器203输出的抵消信号与第2分配器204输出的接收信号的振幅的比较器,相位比较器302是比较第1分配器203输出的抵消信号与第2分配器204输出的接收信号的相位的比较器。
第1A/D变换器303和第2A/D变换器304是分别对振幅比较器301、相位比较器302输出的振幅差信号、相位差信号进行A/D变换的A/D变换器,第1积分器305和第2积分器306是分别对第1、第2A/D变换器输出的振幅差信号、相位差信号进行积分的积分器。
正交坐标变换部307是把第1积分器305输出的振幅数据和第2积分器306输出的相位数据作为输入以进行极坐标→正交坐标的变换的信号处理电路。第1D/A变换器308和第2D/A变换器309是对正交坐标变换部307的输出进行D/A变换的D/A变换器。此外,如上所述,利用以上的振幅比较器301~第2D/A变换器309构成了比较正交调制器202生成的抵消信号与接收信号的振幅和相位并输出与比较结果对应的信号的信号比较单元300。进而,接收信号开关111是使合成器205的输出和第2混频器106的输入导通或隔断的开关。开关控制单元112是用于对接收信号开关111进行通断控制的控制部,后面叙述具体的控制。
其次,说明实施形态1的动作。
首先,将用耦合器201取出的发送信号(载波)的一部分输入到正交调制器202的LO端子上。正交调制器202使用第1、第2D/A变换器308、309输出的I、Q信号调整所取出的信号的振幅和相位,输出抵消信号。用第1分配器203对抵消信号进行反相分配,用合成器205将以反相所输出的抵消信号与接收信号合成,抵消在接收信号中包含的漏泄信号。
另一方面,用第2分配器204取出用合成器205与抵消信号合成之前的接收信号的一部分。将第1分配器203输出的抵消信号和第2分配器204输出的接收信号输入到振幅比较器301和相位比较器302中。振幅比较器301和相位比较器302比较第1分配器203分配的抵消信号与第2分配器204分配的接收信号的振幅和相位,输出与振幅差、相位差成比例的信号。第1、第2A/D变换器303、304对振幅比较器301、相位比较器302输出的振幅差信号、相位差信号进行A/D变换。进而,利用第1、第2积分器305、306对第1、第2A/D变换器输出的振幅差信号、相位差信号进行积分,成为振幅数据和相位数据。
正交坐标变换部307把第1积分器305输出的振幅数据和第2积分器306输出的相位数据作为输入以进行极坐标→正交坐标的变换。第1、第2D/A变换器220、221对正交坐标变换部307的输出进行D/A变换。将该信号作为I、Q信号输入到正交调制器202中。
例如,在用第2分配器204取出的接收信号与用第1分配器203分配的抵消信号相比振幅大(小)的情况下,由于振幅比较器301输出与振幅差成比例的正(负)的信号,故第1积分器305输出的振幅数据增加(减少)。于是,对用正交坐标变换部307对振幅数据和相位数据变换为正交坐标的结果进行了D/A变换的I、Q信号的振幅(第1、第2D/A变换器308、309的输出)增加(减少),正交调制器202对I、Q信号进行正交调制生成的抵消信号的振幅也增加(减少)。不断地进行这样的控制,使接收信号与抵消信号的振幅相等。
另一方面,对于相位也同样地在用第2分配器204取出的接收信号与用第1分配器203分配的抵消信号相比相位超前(滞后)的情况下,由于相位比较器302输出与相位差成比例的正(负)的信号,故第2积分器306输出的相位数据增加(减少)。于是,由于对用正交坐标变换部307把相位数据和相位数据变换为正交坐标的结果进行了D/A变换的I、Q信号的相位(第1、第2D/A变换器308、309的输出)超前(滞后),故正交调制器202对I、Q信号进行正交调制生成的抵消信号的相位也超前(滞后)。不断地进行这样的控制,使接收信号与抵消信号的相位相等。
如上所述,控制成在第1分配器203分配的抵消信号和在第2分配器204取出的接收信号的振幅、相位相等。由于用第1分配器203对该抵消信号进行反相分配,用合成器205与接收信号合成,故在接收信号中包含的漏泄信号被抵消。
此外,由于在反馈控制起作用直到充分地抵消漏泄信号为止的动作中大的漏泄信号输入到第2混频器106中,故开关控制单元112使接收信号开关111关闭,隔断合成器205的输出和第2混频器106的输入。即,开关控制单元112如下述那样进行接收信号开关111的控制。
首先,在一定时间内为了对漏泄信号抵消装置进行学习而发送无调制载波,在其间进行上述的控制以抵消漏泄信号。开关控制单元112在开始载波的发送时对接收信号开关111进行关闭控制。然后,利用以下的某种控制使接收信号开关111为导通。
1)预先求出能充分地抵消漏泄信号所需要的一定时间,根据该一定时间的信息,在一定时间后使接收信号开关111为导通。
2)在信号比较单元300中的漏泄信号与抵消信号的振幅和相位的差成为一定的值的情况下,接受这一点,使接收信号开关111为导通。
3)在合成器205的后级一侧设置电平检测器,若合成器205的输出电平成为小于等于一定的值,作为已经充分地抵消了漏泄信号,使接收信号开关111为导通。
由于这样地进行接收信号开关111的通断控制,故不会对第2混频器106输入大的漏泄信号,因而,第2混频器没有必要使用能耐受大功率的输入的器件。其结果,可实现廉价的无线识别系统或雷达装置。
此外,在以上的说明中,作为第2混频器106的输入耐功率不是充分地大的情况表示了使用接收信号开关111和开关控制单元112的例子,但在第2混频器106的输入耐功率大的情况或原来的漏泄信号不大的情况下,可省略接收信号开关111和开关控制单元112。
此外,在以上的说明中,进行了反馈控制使抵消信号与漏泄信号的振幅相等、相位相同,但也可进行反馈控制使反相抵消信号与漏泄信号的振幅相等、相位相反,用正交调制器生成反相抵消信号,对接收信号和反相抵消信号进行同相合成来抵消漏泄信号。
即,作为该情况的结构,正交调制器202生成反相抵消信号,信号比较单元300比较正交调制器202生成的反相抵消信号与接收信号的振幅和相位,输出与比较结果对应的信号。然后,正交调制器202和信号比较单元300进行反馈控制,使反相抵消信号与漏泄信号振幅相等、相位相反。此外,在该情况下,由于合成器205对从正交调制器202输出的反相抵消信号与接收信号进行同相合成,故使用同相分配器作为第1分配器203来代替反相分配器。
如上所述,按照实施形态1的漏泄信号抵消装置,是抵消发送接收机中的发送信号的对于接收信号的漏泄信号的漏泄信号抵消装置,由于具备:取出发送信号的一部分以生成抵消信号的正交调制器;比较正交调制器生成的抵消信号与接收信号的振幅和相位并输出与比较结果对应的信号的信号比较单元;以及对接收信号与使从正交调制器输出的抵消信号成为反相的反相抵消信号进行合成以抵消漏泄信号的合成器,正交调制器根据信号比较单元的输出信号生成抵消信号,正交调制器和信号比较单元进行反馈控制,使抵消信号与漏泄信号的振幅相等、相位相同,故能可靠地求出抵消信号、能跟随漏泄信号的变动实现稳定的漏泄信号的抵消。
此外,按照实施形态1的漏泄信号抵消装置,是抵消发送接收机中的发送信号的对于接收信号的漏泄信号的漏泄信号抵消装置,由于具备:取出发送信号的一部分以生成反相抵消信号的正交调制器;比较正交调制器生成的反相抵消信号与接收信号的振幅和相位并输出与比较结果对应的信号的信号比较单元;以及对接收信号与从正交调制器输出的反相抵消信号进行合成以抵消漏泄信号的合成器,正交调制器根据信号比较单元的输出信号生成反相抵消信号,正交调制器和信号比较单元进行反馈控制,使反相抵消信号与漏泄信号的振幅相等、相位相反,故能可靠地求出抵消信号、能跟随漏泄信号的变动实现稳定的漏泄信号的抵消。
此外,按照实施形态1的漏泄信号抵消装置,由于具备在合成器的后级一侧设置的接收信号开关和对接收信号开关进行通断控制的开关控制单元,故不会对在合成器的后级一侧设置的混频器输入大的漏泄信号,因而,混频器没有必要使用能耐受大功率的输入的器件。其结果,可实现廉价的无线识别系统或雷达装置。
实施形态2.
在上述实施形态1中,将由耦合器201取出的发送信号的一部分的振幅或相位输入到正交调制器202的LO端子上,调整为与接收信号振幅相等、相位相同。正交调制器一般由混频器构成。在固定了对正交调制器输入的I、Q信号电压的条件下,对LO端子输入的信号电平与正交调制器的输出信号电平呈非线性的关系,如果对LO端子输入的信号电平低于混频器的动作中必要的电平,则正交调制器不动作。由于在正交调制器中存在这样的特征,故在询问器发送振幅调制信号或通断调制信号的情况下,在信号振幅小的信号或载波成为关闭的信号中,对LO端子输入的信号电平低于混频器的动作中必要的电平,正交调制器202不动作。于是,不能进行正确的反馈控制,输入了振幅差或相位差的异常的值。如果这样的话,即使在以信号振幅大的信号或载波成为导通的信号形成了反馈环后,在一段期间内抵消信号不能跟随漏泄信号,作为结果,存在不能充分地抵消漏泄信号的问题。
根据这样的情况,在实施形态2中使用矢量调制器来代替正交调制器202。矢量调制器在对RF输入端子输入的I、Q信号电压为恒定的情况下,在对RF端子输入的信号电平与矢量调制器的输出信号电平中有线性的关系(即,如果使LO端子的输入信号电平减少1dB,则正交调制器的输出信号电平减少1dB),即使在对RF输入端子输入的信号电平小时,矢量调制器也不会不动作,而且,利用对矢量调制器的输入的I、Q信号,对包含了输入到RF输入端子的信号电平的变动的信号,可控制振幅增益或移相量。因而,即使在询问器发送振幅调制信号或通断调制信号的情况下,反馈控制也可以正确地动作,抵消信号跟随漏泄信号,可充分地抵消漏泄信号。由于除此以外的结构与实施形态1是同样的,故省略在此的说明。
如上所述,按照实施形态2的漏泄信号抵消装置,由于使用了矢量调制器来代替调整抵消信号的振幅和相位的正交调制器,故即使在询问器发送振幅调制信号或通断调制信号的情况下,反馈控制也可以正确地动作,抵消信号跟随漏泄信号,可充分地抵消漏泄信号。其结果,即使在询问器发送振幅调制信号或通断调制信号那样的无线识别系统或雷达装置中也能使用。
实施形态3.
在上述实施形态1中,将由耦合器201取出了的发送信号的一部分的振幅或相位输入到正交调制器202的LO端子上,调整为与接收信号振幅相等、相位相同。如上所述,正交调制器一般由混频器构成,如果输入到LO端子的信号电平低于混频器的动作中必要的电平,则正交调制器不动作。因此,在询问器发送振幅调制信号或通断调制信号的情况下,存在不能充分地抵消漏泄信号的问题。
根据这样的情况,在实施形态3中,开关控制单元112在无线识别系统中在询问器对应答器使用通断调制信号发送命令的期间内进行控制以使接收信号开关111关闭。由于除此以外的结构与实施形态1或实施形态2是同样的,故省略在此的说明。此外,在上述例中,在发送信号为通断调制信号的情况下使接收信号开关111关闭,但不仅是通断调制,只要是发送信号的信号电平是包含正交调制器202不能正常地动作的小的值那样的振幅调制或相位调制信号,就可同样地适用。
如上所述,按照实施形态3的漏泄信号抵消装置,由于具备在合成器的后级一侧设置了的接收信号开关和在作为发送信号包含信号电平小于等于既定值的状态的调制信号的情况下使接收信号开关关闭的开关控制单元,故即使在不能充分地抵消漏泄信号的情况下,也不会对合成器的后级一侧的混频器输入大的漏泄信号,因而,混频器没有必要使用能耐受大功率的输入的器件。其结果,可实现廉价的无线识别系统或雷达装置。
此外,在上述实施形态3中,在作为发送信号包含信号电平小于等于既定值的状态的通断调制信号的情况下使接收信号开关111关闭,但也可进行如下那样的控制。即,也可在发送这样的通断调制信号之前,事先利用正交调制器202和信号比较单元300的反馈控制进行抵消信号的学习,保持从信号比较单元300向正交调制器202的输入信号。如果这样做,则即使对于通断调制信号也能不断地合成适当的振幅和相位,可有效地抵消漏泄信号。此外,关于这样的保持输入信号的结构,可使用后述的实施形态6中记载的结构等。
实施形态4.
在上述实施形态3中,在通断调制信号的发送中使接收信号开关111关闭以保护电路,但作为实施形态4表示在通断调制信号的发送中也进行控制从而可抵消漏泄信号那样的漏泄信号抵消装置。
图2是表示具备实施形态4的漏泄信号抵消装置的发送接收机的结构图。
在图中,对正交调制器202的LO端子供给局部振荡器102振荡的载波。即,在实施形态1中,将正交调制器202的LO端子连接到耦合器201上,但在实施形态4中连接着局部振荡器102的输出信号。由于除此以外的结构与图1的结构(实施形态1~实施形态3的任一个)是同样的,故对于对应的部分附以同一符号,省略其说明。
在实施形态4中,由于对正交调制器202的LO端子不断地供给局部振荡器102振荡的载波,故LO端子的输入一直存在。因而,在通断调制信号的发送中,漏泄信号抵消装置也能正常地动作。
此外,即使在实施形态4中,与实施形态1中的变形例同样,也可进行反馈控制使反相抵消信号与漏泄信号的振幅相等、相位相反,用正交调制器生成反相抵消信号,对接收信号和反相抵消信号进行同相合成来抵消漏泄信号。关于该情况的结构,除了正交调制器202根据来自局部振荡器102的信号生成反相抵消信号以外,与实施形态1中的变形例是同样的。
如上所述,按照实施形态4的漏泄信号抵消装置,是抵消发送接收机中的发送信号的对于接收信号的漏泄信号的漏泄信号抵消装置,由于具备:正交调制器,根据来自生成发送信号的载波的局部振荡器的信号生成抵消信号;信号比较单元,比较正交调制器生成的抵消信号与接收信号的振幅和相位,输出与比较结果对应的信号;以及合成器,合成接收信号与使从正交调制器输出了的抵消信号成为反相的反相抵消信号以抵消漏泄信号,正交调制器以来自局部振荡器的局部振荡信号不断地动作,根据信号比较单元的输出信号生成抵消信号,正交调制器和信号比较单元进行反馈控制,使抵消信号与漏泄信号的振幅相等、相位相同。因此,例如,即使在发送通断调制信号的情况下,也能输出正常的值的抵消信号,因而,即使在这样的情况下,也不会对合成器的后级一侧的混频器输入大的漏泄信号,因而,混频器没有必要使用能耐受大功率的输入的器件。
此外,按照实施形态4的变形例的漏泄信号抵消装置,是抵消发送接收机中的发送信号的对于接收信号的漏泄信号的漏泄信号抵消装置,由于具备:正交调制器,根据来自生成发送信号的载波的局部振荡器的信号生成反相抵消信号;信号比较单元,比较正交调制器生成的反相抵消信号与接收信号的振幅和相位,输出与比较结果对应的信号;以及合成器,合成接收信号与从正交调制器输出的反相抵消信号以抵消漏泄信号,正交调制器以来自局部振荡器的局部振荡信号不断地动作,根据信号比较单元的输出信号生成反相抵消信号,正交调制器和信号比较单元进行反馈控制,使反相抵消信号与漏泄信号的振幅相等、相位相反。因此,例如,即使在发送通断调制信号的情况下,也能输出正常的值的抵消信号,因而,即使在这样的情况下,也不会对合成器的后级一侧的混频器输入大的漏泄信号,因而,混频器没有必要使用能耐受大功率的输入的器件。
实施形态5.
在上述实施形态2中,通过使用矢量调制器来代替正交调制器,即使在询问器发送振幅调制信号或通断调制信号的情况下,也不断地抵消漏泄信号,但作为实施形态5,表示在不使用矢量调制器的情况下利用正交调制器在振幅调制信号或通断调制信号的发送中也能抵消漏泄信号的漏泄信号抵消装置。
图3是表示具备实施形态5的漏泄信号抵消装置的发送接收机的结构图。
在图中,发送部109是输出I、Q信道的数字信号的发送部,与发送部101在输出数字I、Q信号这一点上不同。第3、第4D/A变换器(第3DAC、第4DAC)121、122是分别将I信道、Q信道的数字信号变换为模拟信号的D/A变换器,第2正交调制器123是利用第3、第4D/A变换器121、122输出的I、Q信道的模拟信号对局部振荡器102输出的局部振荡信号进行正交调制的正交调制器。此外,310是对发送部109输出的数字I、Q信号与正交坐标变换部307的输出进行复乘法运算的复乘法运算器。第1、第2积分器305、306、正交坐标变换部307、复乘法运算器310构成数字部312。由于除此以外的结构与图1的结构是同样的,故对于对应的部分附以同一符号,省略其说明。
其次,说明其动作。如果没有复乘法运算器310,则正交调制器202与第2正交调制器123的输出是相同的调制信号。因而,正交调制器202的输出与功率放大器104的输出也成为信号电平虽不同但是相同的调制信号。即,第1正交调制器202的输出相当于在图1中用耦合器201取出了功率放大器104的输出的一部分的信号。而且,利用与实施形态1同样的动作,调整该调制信号的振幅和相位以生成抵消信号,进行反馈控制,使抵消信号与漏泄信号的振幅相等、相位相同。具体地说,通过用复乘法运算器310将正交坐标变换部307的输出与发送部109输出的数字I、Q信号进行复乘法运算来调整调制信号的振幅和相位。利用这样的结构,即使在询问器发送振幅调制信号或通断调制信号的情况下,反馈控制也可以正确地动作,抵消信号跟随漏泄信号,可充分地抵消漏泄信号。
此外,在以上的说明中,使用正交调制器(正交调制器202)生成抵消信号,但也可对于第1、第2正交调制器202、123使用矢量调制器。
此外,即使在实施形态5中,也与实施形态1中的变形例同样,也可进行反馈控制使反相抵消信号与漏泄信号的振幅相等、相位相反,用正交调制器生成反相抵消信号,对接收信号和反相抵消信号进行同相合成来抵消漏泄信号。
如上所述,按照实施形态5的漏泄信号抵消装置,由于分配发送部输出的I信道、Q信道的数字信号,将一方与载波进行正交调制生成发送信号,将另一方与利用抵消信号与接收信号的比较结果得到了的数据进行复乘法运算,生成调整了振幅和相位的抵消信号,进行反馈控制,使抵消信号与漏泄信号的振幅相等、相位相同,故即使在询问器发送振幅调制信号或通断调制信号的情况下,反馈控制也可以正确地动作,抵消信号跟随漏泄信号,可充分地抵消漏泄信号。其结果,即使在询问器发送振幅调制信号或通断调制信号那样的无线识别系统或雷达装置中也能使用。
此外,按照实施形态5的漏泄信号抵消装置,由于分配发送部输出的I信道、Q信道的数字信号,一方面将载波进行正交调制生成发送信号,另一方面将利用反相抵消信号与接收信号的比较结果所得到的数据进行复乘法运算,生成调整了振幅和相位的反相抵消信号,进行反馈控制,使反相抵消信号与漏泄信号的振幅相等、相位相同,故即使在询问器发送振幅调制信号或通断调制信号的情况下,反馈控制也可以正确地动作,抵消信号跟随漏泄信号,可充分地抵消漏泄信号。其结果,即使在询问器发送振幅调制信号或通断调制信号那样的无线识别系统或雷达装置中也能使用。
实施形态6.
在以上的实施形态中,不断地进行反馈控制以便将抵消信号调整为与接收信号振幅相等、相位相同,通过以反相合成,使合成后的输出为零。如果在接收中进行反馈控制,则接收信号和被合成的抵消信号的振幅或相位因反馈控制而在接收中变动,对接收信号造成了妨碍。因此,在接收信号的电平小时存在不能解调的危险。因此,在实施形态6中,具备抵消漏泄信号的抵消动作模式和跟随变化的漏泄信号生成抵消信号的适应动作模式。在抵消动作模式中保持抵消信号使其成为振幅或相位恒定的信号。即,通常由于漏泄信号不急剧地变化,故在适应动作模式中在进行了抵消信号的适应动作后,即使转移到抵消动作模式,也能进行抵消动作,因此,在来自应答器的信号接收等中,使其成为抵消动作模式。
图4是表示使用了实施形态6的漏泄信号抵消装置的发送接收机的结构图。
在接收中,在从适应动作模式转移到抵消动作模式的情况下,从未图示的控制部对信号比较单元300中的第1积分器305和第2积分器306输入保持信号。由此,第1积分器305和第2积分器306中止积分动作,其输出被保持。于是,第1、第2D/A变换器308、309输出的I、Q信号也以一定的值被保持,用正交调制器202生成的抵消信号为恒定。这样,正交调制器202和信号比较单元300通过从适应动作模式转移到抵消动作模式,可防止对接收信号造成妨碍这样的情况。
例如,在无线识别系统中,首先,询问器发送进行了通断调制的指令。接着,一边发送无调制载波,一边接收来自应答器的应答。在该时刻,未图示的控制部输出对上述的第1积分器305和第2积分器306的保持信号。询问器的接收信号成为在来自应答器的应答中加上了来自发送部101的漏泄信号的信号。漏泄信号是恒定振幅、恒定相位的无调制载波。用第2混频器106将该漏泄信号与来自局部振荡器102的局部振荡信号混合,将其变换为直流电压,用高通滤波器107将其除去。这样,只取出来自应答器的应答信号,用接收部108来接收。
在此,在不保持信号比较单元300的I、Q信号而用反馈控制跟随漏泄信号的情况下、即在依旧以适应动作模式进行动作的情况下,抵消信号的振幅或相位不断地以微小的值(对I、Q信号进行了量子化了的1LSB左右)持续变动。因此,与局部振荡信号混合了的结果不成为恒定的直流电压,其变动部分通过了高通滤波器107,在来自应答器的应答信号是微小的电平的情况下,对该应答信号产生了妨碍。
与此不同,作为抵消动作模式,通过保持信号比较单元300的I、Q信号,从正交调制器202输出的抵消信号成为恒定振幅、恒定相位的无调制载波。即使该抵消信号与漏泄信号不完全是振幅相等、相位相同,抵消信号与漏泄信号的合成信号也成为恒定振幅、恒定相位的无调制载波。因此,如果与局部振荡信号混合,则成为直流电压,可以用高通滤波器107将其除去。此外,在该情况下,由于抵消信号与漏泄信号的合成信号的电平不是破坏第2混频器106那样的大的值,故不进行由开关控制单元112进行的关闭控制。
由于实施形态6中的除此以外的结构和动作与实施形态1或实施形态2是同样的,故对于对应的部分附以同一符号,省略其说明。
此外,在上述的结构中,作为保持信号比较单元300的I、Q信号的手段,表示了对第1、第2积分器305、306输入保持信号的例子,但即使对第1、第2D/A变换器308、309输入保持信号、将输出值保持为恒定,也具有相同的效果。此外,作为抵消动作模式,只要是对合成器205供给的抵消信号成为恒定的信号那样的结构,就可以是任意的结构。进而,也可适用于实施形态2~5的结构。
如上所述,按照实施形态6的漏泄信号抵消装置,由于正交调制器和信号比较单元具备抵消漏泄信号的抵消动作模式和跟随变化的漏泄信号生成抵消信号的适应动作模式,在抵消动作模式中将抵消信号作为固定值,故可排除因反馈控制动作引起的对接收信号的妨碍,因而,即使在接收信号的电平小时,也能用接收部良好地解调。
实施形态7.
上述实施形态6在漏泄信号抵消装置中具备抵消漏泄信号的抵消动作模式和跟随变化的漏泄信号生成抵消信号的适应动作模式,在抵消动作模式中保持抵消信号使其成为振幅或相位恒定的信号。上述实施形态6关于实施形态1在抵消模式中保持抵消信号,而作为实施形态7表示关于非专利文献1中所表示的电路在抵消模式中能保持抵消信号的漏泄信号抵消装置。
图5是表示使用了实施形态7的漏泄信号抵消装置的发送接收机的结构图。说明实施形态7的动作。
首先,对正交调制器202的LO端子输入由耦合器201取出的发送信号(载波)的一部分。正交调制器202使用第1、第2D/A变换器308、309输出的I、Q信号调整所取出的信号的振幅和相位,输出抵消信号。用合成器205将抵消信号与接收信号以反相合成,抵消在接收信号中包含的漏泄信号。
另一方面,用正交解调器113对用合成器205与抵消信号合成后的接收信号进行正交解调。对该正交解调器113的LO端子输入用耦合器201取出了发送信号的一部分的信号。分别分配正交解调器113输出的基带I、Q信号,一方在用第1、第2高通滤波器(第1HPF、第2HPF)114、115除去直流分量之后用接收部116进行接收信号处理。另一方由第1、第2A/D变换器303、304进行A/D变换,成为I、Q误差信号。进而,通过第1、第2积分器305、306把第1、第2A/D变换器303、304输出的I、Q误差信号进行积分,成为I、Q信号。第1、第2D/A变换器308、309分别对第1、第2A/D变换器303、304的输出进行D/A变换。将该信号作为I、Q信号输入到正交调制器202中。
即,利用取出了发送信号的一部分的信号,由正交解调器113将在抵消信号的合成中未被抵消完的漏泄信号分解为I、Q误差信号。作为从取出了发送信号的一部分的相同的信号生成抵消信号的正交调制器202的I、Q信号,通过对未被抵消完的漏泄信号的I、Q误差信号进行积分并施加,可进一步抵消漏泄信号。在漏泄信号的振幅或相位变化而不能充分地抵消漏泄信号时,也利用同样的动作来跟随漏泄信号的变动,可进一步抵消漏泄信号。
例如,用正交解调器113进行了正交解调的I信道的误差信号是正(负)的情况下,第1积分器305输出的振幅数据增加(减少)。于是,对积分结果进行了D/A变换的I信号的振幅(第1D/A变换器308的输出)增加(减少),正交调制器202对I、Q信号进行正交调制生成的抵消信号的I分量的振幅也增加(减少)。通过用合成器205对这样的抵消信号进行反相合成,合成后的漏泄信号的I分量的振幅减少(增加)。不断地进行这样的控制,使接收信号和抵消信号的I、Q分量的振幅相等,I、Q误差信号为零。
如上所述,控制成用耦合器201取出发送信号的一部分进行了合成的抵消信号与接收信号的振幅、相位相等。由于用合成器205将该抵消信号与接收信号进行反相合成,故可抵消接收信号中包含的漏泄信号。
在接收中,在从适应动作模式转移到抵消动作模式的情况下,从未图示的控制部对第1积分器305和第2积分器306输入保持信号。由此,第1积分器305和第2积分器306中止积分动作,其输出被保持。于是,第1、第2D/A变换器308、309输出的I、Q信号也以一定的值被保持,用正交调制器202生成的抵消信号为恒定。这样,正交调制器202、正交解调器113和第1、第2积分器305、306通过从适应动作模式转移到抵消动作模式,可防止对接收信号造成妨碍这样的情况。
此外,在图5中,作为正交解调器113的LO信号,使用了用耦合器201取出的发送信号的一部分,但也可如图6中所示使用局部振荡器102生成的局部振荡信号。此外,关于正交调制器202,与实施形态同样,也可构成为使用矢量调制器。
如上所述,按照实施形态7的漏泄信号抵消装置,是抵消发送接收机中的发送信号的对于接收信号的漏泄信号的漏泄信号抵消装置,由于具备:正交调制器,取出发送信号的一部分,生成抵消信号;合成器,合成接收信号与从正交调制器输出的抵消信号以抵消漏泄信号;正交解调器,对从合成器输出的接收信号进行正交解调,输出I、Q误差信号;以及第1、第2积分器,分别对I、Q误差信号进行积分,正交调制器根据第1、第2积分器的输出信号生成抵消信号,正交调制器、正交解调器和第1、第2积分器进行反馈控制,使抵消信号与漏泄信号的振幅相等、相位相同,同时具备抵消漏泄信号的抵消动作模式和跟随变化的漏泄信号以生成抵消信号的适应动作模式,在抵消动作模式中使抵消信号的振幅和相位为恒定,故可排除因反馈控制动作引起的对接收信号的妨碍,因而,即使在接收信号的电平小时,也能用接收部良好地解调。
实施形态8.
在以上的实施形态中,将生成抵消信号的电路的输出不断地连接到合成接收信号与抵消信号的合成器205上。在这样的结构中,在生成抵消信号的电路中的正交调制器或电平调整用的放大器等中发生了热噪声的情况下,该热噪声经合成器205进入到接收信号中。其结果,例如在空闲信道的检测时,由漏泄信号抵消装置产生的热噪声进入到接收部108中,存在不能检测所接收到的微弱的信号的有无的危险。因此,在实施形态7中,设置对抵消信号进行通断控制的开关,在空闲信道检测那样的作为发送接收机不进行发送动作、只进行接收动作的情况下,使该抵消信号开关关闭。
图7是表示使用了实施形态8的漏泄信号抵消装置的发送接收机的结构图。
在图中,抵消信号开关211是在第1分配器203与合成器205之间设置的、用于使第1分配器203的输出和合成器205的输入导通或隔断的开关。利用未图示的控制部控制该抵消信号开关211以便其在发送接收机中的空闲信道检测时为关闭。
即,在无线识别系统的询问器或雷达装置中,在多个询问器或雷达装置共用多个发送频率信道的情况下,首先,检查自己打算发送信号的信道是否空闲,接收该频率并检查接收电平,确认没有其它的询问器或雷达装置发送的信号。然后,在确认了其它的装置未使用该信道之后发送信号,以防止多个装置以相同的频率信道发送信号而互相造成妨碍。即,在这样的空闲信道检测时询问器不进行发送动作、只进行接收动作。
未图示的控制部在这样的发送接收机中的空闲信道检测时对抵消信号开关211进行关闭控制,关闭对合成器205的输入。由此,由于防止在漏泄信号抵消装置中产生的热噪声进入接收部108中,故即使接收信号是微弱的信号,也能检测其有无。
此外,在图7中表示的上述例中,表示了对实施形态1的结构附加抵消信号开关211的例子,但除此以外,例如如图8中所示,即使应用于非专利文献1中记载的漏泄信号抵消电路或其它的实施形态的结构,也能得到同样的效果。
如上所述,按照实施形态8的漏泄信号抵消装置,由于设置使对合成器的抵消信号的输入进行通断控制的抵消信号开关,在不进行发送动作、只进行接收动作的情况下使抵消信号开关关闭,故例如即使在空闲信道检测时等接收微弱的信号的情况下,也能可靠地检测该信号的有无。
产业上利用的可能性
如上所述,与本发明有关的漏泄信号抵消装置涉及跟随漏泄信号的变动实现稳定的漏泄信号的抵消的结构,适合用于无线识别系统的询问器或雷达装置。

Claims (13)

1.一种抵消发送接收机中的发送信号向接收信号的漏泄信号的漏泄信号抵消装置,其特征在于包括:
正交调制器或矢量调制器,取出上述发送信号的一部分,生成抵消信号;
信号比较单元,比较上述正交调制器或矢量调制器生成的抵消信号与上述接收信号的振幅和相位,输出与比较结果对应的信号;以及
合成器,把上述接收信号与反相抵消信号进行合成以抵消上述漏泄信号,所述反相抵消信号是将从上述正交调制器或矢量调制器输出的抵消信号反相后的信号,
上述正交调制器或矢量调制器基于上述信号比较单元的输出信号生成上述抵消信号,上述正交调制器或矢量调制器和上述信号比较单元进行反馈控制,使上述抵消信号与上述漏泄信号的振幅相等、相位相同。
2.一种抵消发送接收机中的发送信号向接收信号的漏泄信号的漏泄信号抵消装置,其特征在于包括:
正交调制器或矢量调制器,取出上述发送信号的一部分,生成反相抵消信号;
信号比较单元,比较上述正交调制器或矢量调制器生成的反相抵消信号与上述接收信号的振幅和相位,输出与比较结果对应的信号;以及
合成器,合成上述接收信号与从上述正交调制器或矢量调制器输出的反相抵消信号以抵消上述漏泄信号,
上述正交调制器或矢量调制器基于上述信号比较单元的输出信号生成上述反相抵消信号,上述正交调制器或矢量调制器和上述信号比较单元进行反馈控制,使上述反相抵消信号与上述漏泄信号的振幅相等、相位相反。
3.一种抵消发送接收机中的发送信号向接收信号的漏泄信号的漏泄信号抵消装置,其特征在于包括:
正交调制器或矢量调制器,基于来自生成发送信号的载波的局部振荡器的信号,生成抵消信号;
信号比较单元,比较上述正交调制器或矢量调制器生成的抵消信号与上述接收信号的振幅和相位,输出与比较结果对应的信号;以及
合成器,合成上述接收信号与反相抵消信号以抵消上述漏泄信号,所述反相抵消信号是将从上述正交调制器或矢量调制器输出的抵消信号反相后的信号,
上述正交调制器或矢量调制器基于上述信号比较单元的输出信号生成上述抵消信号,上述正交调制器或矢量调制器和上述信号比较单元进行反馈控制,使上述抵消信号与上述漏泄信号的振幅相等、相位相同。
4.一种抵消发送接收机中的发送信号向接收信号的漏泄信号的漏泄信号抵消装置,其特征在于包括:
正交调制器或矢量调制器,基于来自生成发送信号的载波的局部振荡器的信号,生成反相抵消信号;
信号比较单元,比较上述正交调制器或矢量调制器生成的反相抵消信号与上述接收信号的振幅和相位,输出与比较结果对应的信号;以及
合成器,合成上述接收信号与从上述正交调制器或矢量调制器输出的反相抵消信号以抵消上述漏泄信号,
上述正交调制器或矢量调制器基于上述信号比较单元的输出信号生成上述反相抵消信号,上述正交调制器或矢量调制器和上述信号比较单元进行反馈控制,使上述反相抵消信号与上述漏泄信号的振幅相等、相位相反。
5.一种抵消发送接收机中的发送信号向接收信号的漏泄信号的漏泄信号抵消装置,其特征在于包括:
第1正交调制器或矢量调制器,对于发送部输出的I信道、Q信道的信号将调整振幅、相位的信号进行复乘法运算,把所得到的信号进行正交调制以生成抵消信号;
第2正交调制器或矢量调制器,对于上述发送部输出的I信道、Q信道的信号进行正交调制以生成上述发送信号;
信号比较单元,比较上述第1正交调制器或矢量调制器生成的抵消信号与上述接收信号的振幅和相位,输出与比较结果对应的信号;以及
合成器,合成上述接收信号与反相抵消信号以抵消上述漏泄信号,所述反相抵消信号是将从上述第1正交调制器或矢量调制器输出的抵消信号反相的信号,
上述第1正交调制器或矢量调制器基于上述信号比较单元的输出信号和对上述发送部输出的I信道、Q信道的信号进行了复乘法运算的信号,生成上述抵消信号,上述第1正交调制器或矢量调制器和上述信号比较单元进行反馈控制,使上述抵消信号与上述漏泄信号的振幅相等、相位相同。
6.一种抵消发送接收机中的发送信号向接收信号的漏泄信号的漏泄信号抵消装置,其特征在于包括:
第1正交调制器或矢量调制器,对于发送部输出的I信道、Q信道的信号将调整振幅、相位的信号进行复乘法运算,把所得到的信号进行正交调制以生成反相抵消信号;
第2正交调制器或矢量调制器,对于上述发送部输出的I信道、Q信道的信号进行正交调制以生成上述发送信号;
信号比较单元,比较上述第1正交调制器或矢量调制器生成的反相抵消信号与上述接收信号的振幅和相位,输出与比较结果对应的信号;以及
合成器,合成上述接收信号与从上述第1正交调制器或矢量调制器输出的反相抵消信号以抵消上述漏泄信号,
上述正交调制器或矢量调制器基于上述信号比较单元的输出信号和对上述发送部输出的I信道、Q信道的信号进行了复乘法运算的信号,生成上述反相抵消信号,上述正交调制器或矢量调制器和上述信号比较单元进行反馈控制,使上述反相抵消信号与上述漏泄信号的振幅相等、相位相反。
7.如权利要求1中所述的漏泄信号抵消装置,其特征在于包括:
在合成器的后级设置的接收信号开关;以及
对上述接收信号开关进行通断控制的开关控制单元。
8.如权利要求7中所述的漏泄信号抵消装置,其特征在于:
开关控制单元在包含信号电平小于等于既定值的调制信号作为发送信号的情况下,关闭上述接收信号开关。
9.如权利要求1中所述的漏泄信号抵消装置,其特征在于:
在包含信号电平小于等于既定值的调制信号作为发送信号的情况下,在该调制信号的发送中保持从信号比较单元对正交调制器或矢量调制器的输入。
10.如权利要求1中所述的漏泄信号抵消装置,其特征在于:
正交调制器或矢量调制器和信号比较单元具备抵消漏泄信号的抵消动作模式和跟随变化的漏泄信号以生成抵消信号的适应动作模式,在上述抵消动作模式中使抵消信号的振幅和相位为恒定。
11.如权利要求1中所述的漏泄信号抵消装置,其特征在于:
设置使对于合成器的抵消信号的输入进行通断的抵消信号开关,
在不进行发送动作、只进行接收动作的情况下,关闭上述抵消信号开关。
12.一种抵消发送接收机中的发送信号向接收信号的漏泄信号的漏泄信号抵消装置,其特征在于包括:
正交调制器或矢量调制器,取出上述发送信号的一部分,生成抵消信号;
合成器,合成上述接收信号与从上述正交调制器或矢量调制器输出的抵消信号以抵消上述漏泄信号;
正交解调器,对从上述合成器输出的接收信号进行正交解调,输出I、Q误差信号;以及
第1、第2积分器,分别对上述I、Q误差信号进行积分,
上述正交调制器或矢量调制器基于上述第1、第2积分器的输出信号,生成上述抵消信号,上述正交调制器或矢量调制器、上述正交解调器和第1、第2积分器进行反馈控制,使上述抵消信号与上述漏泄信号的振幅相等、相位相同,同时具备抵消漏泄信号的抵消动作模式和跟随变化的漏泄信号以生成抵消信号的适应动作模式,在上述抵消动作模式中使抵消信号的振幅和相位为恒定。
13.一种抵消发送接收机中的发送信号向接收信号的漏泄信号的漏泄信号抵消装置,其特征在于包括:
正交调制器或矢量调制器,取出上述发送信号的一部分,生成抵消信号;
合成器,合成上述接收信号与从上述正交调制器或矢量调制器输出的抵消信号以抵消上述漏泄信号;
抵消信号开关,使对于合成器的抵消信号的输入进行通断;
正交解调器,对从上述合成器射出的接收信号进行正交解调,输出I、Q误差信号;以及
第1、第2积分器,分别对上述I、Q误差信号进行积分,
上述正交调制器或矢量调制器基于上述第1、第2积分器的输出信号,生成上述抵消信号,上述正交调制器或矢量调制器、上述正交解调器和第1、第2积分器进行反馈控制,使上述抵消信号与上述漏泄信号的振幅相等、相位相同,同时在不进行发送动作、只进行接收动作的情况下,关闭上述抵消信号开关。
CNA2006800326264A 2005-09-06 2006-07-28 漏泄信号抵消装置 Pending CN101258690A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005257879 2005-09-06
JP257879/2005 2005-09-06

Publications (1)

Publication Number Publication Date
CN101258690A true CN101258690A (zh) 2008-09-03

Family

ID=37835555

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800326264A Pending CN101258690A (zh) 2005-09-06 2006-07-28 漏泄信号抵消装置

Country Status (5)

Country Link
US (1) US7899142B2 (zh)
JP (1) JP4202406B2 (zh)
KR (1) KR101004198B1 (zh)
CN (1) CN101258690A (zh)
WO (1) WO2007029429A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377450A (zh) * 2010-08-20 2012-03-14 中兴通讯股份有限公司 一种抑制载波泄漏的系统和方法
CN103513243A (zh) * 2012-06-25 2014-01-15 万都株式会社 一种利用多个传输通道的雷达装置
CN105824014A (zh) * 2016-03-23 2016-08-03 电子科技大学 步进频率雷达的信号对消电路及步进频率雷达
CN107728116A (zh) * 2017-09-13 2018-02-23 加特兰微电子科技(上海)有限公司 雷达系统及其泄漏信号抵消电路和方法
CN108141249A (zh) * 2015-09-23 2018-06-08 高通股份有限公司 用于多模感应耦合通信的系统和方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355470B2 (en) * 2006-04-24 2008-04-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning
US7327803B2 (en) 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US7911272B2 (en) 2007-06-19 2011-03-22 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US8013675B2 (en) 2007-06-19 2011-09-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US8135348B2 (en) 2007-03-27 2012-03-13 Qualcomm, Incorporated Rejection of transmit signal leakage in wireless communication device
US20080266103A1 (en) * 2007-04-30 2008-10-30 Industrial Technology Research Institute Radio frequency identification devices
US7792514B2 (en) * 2007-06-08 2010-09-07 Seiko Epson Corporation Envelope detector for AM radio
US8410905B2 (en) * 2007-07-10 2013-04-02 Samsung Electronics Co., Ltd. RFID reader cancelling leakage signal
JP2009081718A (ja) * 2007-09-26 2009-04-16 Denso Corp 送受信装置
US20090080669A1 (en) * 2007-09-26 2009-03-26 Seiko Epson Corporation Noise cancel method, noise cancel type amplifying circuit, and receiving circuit and electronic device including noise cancel type amplifying circuit
JP2009194639A (ja) * 2008-02-14 2009-08-27 Panasonic Corp 通信装置
US8175535B2 (en) * 2008-02-27 2012-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Active cancellation of transmitter leakage in a wireless transceiver
US7969350B2 (en) * 2008-06-06 2011-06-28 Honeywell International Inc. Method and system for reducing a leakage component of a received radar signal
JP5004897B2 (ja) * 2008-08-01 2012-08-22 三菱電機株式会社 漏洩信号相殺回路及び送受信機
JP4752932B2 (ja) * 2009-02-25 2011-08-17 株式会社デンソー 送信装置、受信装置、及び送受信装置
US8907842B1 (en) * 2009-03-25 2014-12-09 Raytheon Company Method and apparatus for attenuating a transmitted feedthrough signal
US8135372B2 (en) * 2009-09-08 2012-03-13 Bae Systems Information And Elecronic Systems Integration Inc. Integrated cancellation circuit for RF converter spurious tones
JP5158052B2 (ja) * 2009-09-24 2013-03-06 株式会社デンソーウェーブ 無線通信装置
JP5569041B2 (ja) * 2010-03-02 2014-08-13 日本電気株式会社 無線基地局装置
US8611401B2 (en) * 2010-04-01 2013-12-17 Adeptence, Llc Cancellation system for millimeter-wave radar
JP5091979B2 (ja) * 2010-04-30 2012-12-05 株式会社エヌ・ティ・ティ・ドコモ 無線通信システムにおけるユーザ装置及び方法
KR101386821B1 (ko) 2010-05-17 2014-04-18 엘에스산전 주식회사 Rfid 시스템의 송신누설신호 제거장치
JP5402831B2 (ja) * 2010-05-26 2014-01-29 アイコム株式会社 キャンセラー及び通信装置
JP5236711B2 (ja) * 2010-09-30 2013-07-17 株式会社エヌ・ティ・ティ・ドコモ 移動通信端末、複数周波数同時通信方法
US8903346B2 (en) * 2011-03-28 2014-12-02 Adc Telecommunications, Inc. External mounted amplifiers with active interference cancelation using diversity antennas
WO2012139126A1 (en) 2011-04-08 2012-10-11 Parkervision, Inc. Systems and methods of rf power transmission, modulation, and amplification
US20140011461A1 (en) * 2012-07-03 2014-01-09 Infineon Technologies Ag System and Method for Attenuating a Signal in a Radio Frequency System
US10374656B2 (en) * 2012-07-30 2019-08-06 Photonic Systems, Inc. Same-aperture any-frequency simultaneous transmit and receive communication system
US9935680B2 (en) * 2012-07-30 2018-04-03 Photonic Systems, Inc. Same-aperture any-frequency simultaneous transmit and receive communication system
US11539392B2 (en) 2012-07-30 2022-12-27 Photonic Systems, Inc. Same-aperture any-frequency simultaneous transmit and receive communication system
US9077440B2 (en) * 2013-01-04 2015-07-07 Telefonaktiebolaget L M Ericsson (Publ) Digital suppression of transmitter intermodulation in receiver
GB2509546B (en) * 2013-01-08 2015-01-07 Broadcom Corp Wireless communication
US9425840B2 (en) 2013-04-26 2016-08-23 Northrop Grumman Systems Corporation Wideband tunable notch cancellation
CA2818401C (en) * 2013-05-29 2020-10-20 Kapsch Trafficcom Ag Adaptive echo cancellation for rfid systems
EP3044870B1 (en) * 2013-09-12 2019-05-15 Vayyar Imaging Ltd. Apparatus and methods for signal generation, reception, and self-calibration
KR20160058855A (ko) 2013-09-17 2016-05-25 파커비전, 인크. 정보를 포함하는 시간의 함수를 렌더링하기 위한 방법, 장치 및 시스템
WO2016031108A1 (ja) * 2014-08-28 2016-03-03 株式会社ソシオネクスト Fmcwレーダー
WO2016164970A1 (en) * 2015-04-13 2016-10-20 Rfid Technologies Pty Ltd Rfid tag and reader
FR3052311B1 (fr) * 2016-06-06 2019-08-02 Airbus Ds Slc Dispositif et procede pour le traitement d'un signal recu par un recepteur perturbe par un emetteur
JP6985612B2 (ja) * 2016-12-27 2021-12-22 株式会社ソシオネクスト レーダー装置
US10686407B2 (en) * 2018-04-30 2020-06-16 Samsung Electronics Co., Ltd. Symbol power tracking amplification system and a wireless communication device including the same
US11372081B2 (en) * 2019-12-27 2022-06-28 Intel Corporation Apparatus, system and method of leakage cancellation for multiple input multiple output (MIMO) radar

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444864A (en) * 1992-12-22 1995-08-22 E-Systems, Inc. Method and apparatus for cancelling in-band energy leakage from transmitter to receiver
US5574978A (en) 1994-05-12 1996-11-12 American Nucleonics Corporation Interference cancellation system and radio system for multiple radios on a small platform
JPH1062518A (ja) 1996-08-13 1998-03-06 Kenwood Corp キャリア位相雑音抑圧回路
US6567649B2 (en) * 2000-08-22 2003-05-20 Novatel Wireless, Inc. Method and apparatus for transmitter noise cancellation in an RF communications system
JP2003273770A (ja) * 2002-03-19 2003-09-26 Matsushita Electric Ind Co Ltd 妨害波抑圧回路、アンテナ共用器、送受信回路、及び通信装置
US7711329B2 (en) * 2003-11-12 2010-05-04 Qualcomm, Incorporated Adaptive filter for transmit leakage signal rejection
US7471204B2 (en) * 2006-07-07 2008-12-30 Broadcom Corporation Receiver architecture for canceling blocking signals

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377450A (zh) * 2010-08-20 2012-03-14 中兴通讯股份有限公司 一种抑制载波泄漏的系统和方法
CN102377450B (zh) * 2010-08-20 2014-03-12 中兴通讯股份有限公司 一种抑制载波泄漏的系统和方法
CN103513243A (zh) * 2012-06-25 2014-01-15 万都株式会社 一种利用多个传输通道的雷达装置
CN108141249A (zh) * 2015-09-23 2018-06-08 高通股份有限公司 用于多模感应耦合通信的系统和方法
CN105824014A (zh) * 2016-03-23 2016-08-03 电子科技大学 步进频率雷达的信号对消电路及步进频率雷达
CN107728116A (zh) * 2017-09-13 2018-02-23 加特兰微电子科技(上海)有限公司 雷达系统及其泄漏信号抵消电路和方法
CN107728116B (zh) * 2017-09-13 2020-10-16 加特兰微电子科技(上海)有限公司 雷达系统及其泄漏信号抵消电路和方法

Also Published As

Publication number Publication date
US20090232260A1 (en) 2009-09-17
US7899142B2 (en) 2011-03-01
JPWO2007029429A1 (ja) 2009-03-12
JP4202406B2 (ja) 2008-12-24
KR101004198B1 (ko) 2010-12-24
WO2007029429A1 (ja) 2007-03-15
KR20080034194A (ko) 2008-04-18

Similar Documents

Publication Publication Date Title
CN101258690A (zh) 漏泄信号抵消装置
CN101453226B (zh) 本振泄漏消除装置及方法
EP0792542B1 (en) Full-duplex radio transmitter/receiver
US6980604B2 (en) Transmission device and transmission method
Langridge et al. A power re-use technique for improved efficiency of outphasing microwave power amplifiers
US6639509B1 (en) System and method for communicating with an RFID transponder with reduced noise and interference
WO2005076489A1 (ja) 無線タグ通信装置
US5463355A (en) Wideband vector modulator which combines outputs of a plurality of QPSK modulators
US11438206B2 (en) Multiple subcarriers modulator, backscatter device and hub device in a backscatter communication system
US5789927A (en) Baseband measurement of RF power amplifier distortion
US7289575B1 (en) Signal processing means
CN109274617A (zh) 一种同时同频全双工测控应答机
WO1998000723A9 (en) Baseband measurement of rf power ampliflier distortion
US7653362B2 (en) Method and apparatus for on-chip measurement of power amplifier AM/AM and AM/PM non-linearity
JP2004072336A (ja) 送信信号補償機能付き無線機
EP1336252A1 (en) A transmitter
GB2236225A (en) Superhetorodyne circuit
WO2005020455A1 (ja) 通信システムの質問器
AU745842B2 (en) Signal processing system
CN219843608U (zh) 一种基于数控无源矢量调制器的载波对消系统
EP0768782A1 (en) Wide-band microwave vector modulator
CN116131876A (zh) 一种基于数控无源矢量调制器的载波对消系统及实现方法
CA2160503C (en) Wideband vector modulator
KR100249676B1 (ko) 국부 발진신호의 누설 신호 소거장치
Song et al. Time Domain Channel Compensation Suitable for Wideband Digital Predistortion.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20080903

C20 Patent right or utility model deemed to be abandoned or is abandoned