CN101251718B - 检验方法和设备、光刻设备、光刻单元和器件制造方法 - Google Patents

检验方法和设备、光刻设备、光刻单元和器件制造方法 Download PDF

Info

Publication number
CN101251718B
CN101251718B CN2008100740725A CN200810074072A CN101251718B CN 101251718 B CN101251718 B CN 101251718B CN 2008100740725 A CN2008100740725 A CN 2008100740725A CN 200810074072 A CN200810074072 A CN 200810074072A CN 101251718 B CN101251718 B CN 101251718B
Authority
CN
China
Prior art keywords
son
bundle
polarization
degree
substrate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100740725A
Other languages
English (en)
Other versions
CN101251718A (zh
Inventor
亚历山大·斯卓艾杰尔
罗纳德·弗朗西斯科斯·赫尔曼·休格斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN101251718A publication Critical patent/CN101251718A/zh
Application granted granted Critical
Publication of CN101251718B publication Critical patent/CN101251718B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0641Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of polarization
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4792Polarisation of scatter light

Abstract

本发明公开了一种检验方法和设备、光刻设备、光刻单元和器件制造方法。具体地,本发明涉及为了确定衬底属性而进行的、对从衬底衍射的四个独立的偏振束的同时测量。圆偏振光源或椭圆偏振光源经由多达三个偏振元件通过。这将光源偏振化为0、45、90和135°。多个偏振分束器替代相位调制器的使用,但是能够进行所有四个束的强度的测量,并因此能够进行经过组合的束的相位调制和幅度的测量,以给出衬底的特征。

Description

检验方法和设备、光刻设备、光刻单元和器件制造方法
技术领域
本发明涉及一种可用于例如在通过光刻技术的器件制造中的检验方法,并涉及一种采用光刻技术的器件制造方法。
背景技术
光刻设备是一种将所需图案应用到衬底上(通常到所述衬底的目标部分上)的机器。例如,可以将光刻设备用在集成电路(IC)的制造中。在这种情况下,可以将可选地称为掩模或掩模版(reticle)的图案形成装置用于生成在所述IC的单层上待形成的电路图案。可以将该图案转移到衬底(例如,硅晶片)上的目标部分(例如,包括一部分管芯、一个或多个管芯的部分)上。典型地,经由成像将所述图案转移到在所述衬底上设置的辐射敏感材料(抗蚀剂)层上。通常,单独的衬底将包含连续形成图案的相邻目标部分的网络。公知的光刻设备包括:所谓步进机,在所述步进机中,通过将全部图案一次曝光到所述目标部分上来辐射每一个目标部分;以及所谓扫描器,在所述扫描器中,通过沿给定方向(“扫描”方向)的辐射束扫描所述图案、同时沿与该方向平行或反向平行的方向扫描所述衬底来辐射每一个目标部分。还可以通过将所述图案压印(imprinting)到所述衬底上,将所述图案从所述图案形成装置转移到所述衬底上。
为了监测光刻工艺,需要测量被图案化的衬底的参数,例如,在衬底中或衬底上形成的连续层之间的重叠误差。存在用于对光刻工艺中形成的微观结构进行测量的多种技术,所述技术包括使用扫描电子显微镜和各种专业工具。一种形式的专业检验工具是散射仪,在所述散射仪中,辐射束被引导到衬底的表面上的目标上,且经过散射或反射的束的属性被测量。通过将所述束在被衬底反射或散射之前和之后的属性进行比较,可以确定所述衬底的属性。这可以例如通过将反射束与存储在与已知的衬底属性相关联的已知测量库中的数据进行比较来完成。两种主要类型的散射仪是公知的。光谱散射仪将宽带辐射束引导到衬底上,并测量被散射入特定的窄的角度范围中的辐射光谱(强度作为波长的函数)。角度分解散射仪采用单色辐射束,并将被散射的辐射的强度作为角度的函数进行测量。
现有技术描述了能够使得正交偏振束的一定参数被测量。图4示出基于现有技术的偏振光椭圆率测量传感器(或偏振光椭圆率测量仪)的示例。来自源P的照射辐射被衬底W的目标部分上的结构30反射,并从衬底回程,所述辐射沿着在传感器中存在的三个分束器的两个本征偏振中的一个被线性偏振(本征偏振是相对于如图4所示的x或y方向的)。第一分束器80将照射的一部分送到成像支路上;第二分束器82将照射的一部分送到聚焦支路,而第三分束器N-PBS是非偏振分束器,所述非偏振分束器N-PBS将一部分束引导到照相机CCD上。已经通过非偏振分束器N-PBS之后,偏振束通过相位调制器90,在所述相位调制器90中,其通常和异常光轴相对于x和y方向成45°角。随后,所述束被采用渥拉斯顿棱镜50分成其各自x和y偏振取向,并照射到照相机CCD上。偏振束的相对强度被用于确定所述束的不同部分的相对偏振取向。根据相对偏振取向,可以确定结构30对于所述束的作用。根据结构30对所述束的作用,可以确定所述结构自身的属性。
US 5,880,838(Marx等),在此以引用的方式整体并入本文,其也描述了采用偏振光椭圆率测量仪对衬底上的结构进行测量,其中所述测量系统被称为偏振正交测量(PQM)。该文献描述将偏振光束(具有TE和TM场)聚焦到结构上。所述TE和TM场受到离开结构的衍射不同的影响。TE场可以被用作用于分析TM场中的相位和幅度的变化的参考。在TE和TM场的相位和幅度之间的关系依赖于所述结构的结构参数(例如孔的深度或光栅条纹的高度或光栅的间距)。因此,通过测量该关系,可以确定结构参数。
通常,偏振光椭圆率测量仪是散射光的偏振状态的测量。偏振光椭圆率测量仪测量两个参数:两个不同的偏振束之间的相位差(Δ)以及两个偏振束的幅度比(tanΨ)。通过这两个参数,可以描述纯偏振束的任何偏振状态。
特定地,如果入射束具有s和p偏振,则反射束将具有反射系数Rp和Rs。每个偏振方向的复幅度可以由Ep和Es表示,并分别根据Rp·p和Rs·s计算(当仅仅考虑反射束时,复幅度的虚部被忽略)。
Δ(德耳塔)是复幅度Ep和Es之间的相位差,如下面式(1)所给出。
考虑到接收束的相对偏振的角度,所述接收束的强度正比于幅度之和。例如,如果Ep和Es的偏振在相同的取向上对准,则接收束的强度为最大值。如果两个幅度处于正交取向,则它们相互抵消,且强度处于最小值。所述两个偏振方向(或取向)之间的角度是Ψ,因此Ψ与Ep和Es之间的关系如以下式(2)所示。
Δ=arg(Ep-Es)  (1)
tanψ=Ep/Es    (2)
其中
Ep=Rp·p       (3)
Es=Rs·s       (4)
图5示出这两个参数之间的关系。特定地,图5示出作为被相位调制器作用的s和p之间的相位差的函数的一个像素上的强度变化。I是所述束的强度,而P是Ep和Es的总偏振。假定两个幅度是相同的(即Ep=Es和Ψ=45°),则因为偏振方向相互抵消,所以总体束的强度处于在点x上的最小值。在点y上,强度处于最大值,表示偏振方向被对准。
如图5所示的总强度被调制,表明幅度(相同的)或多或少地相互抵消,并因此所述两个束的相对相位可以随着相应地变化而被监测(如相位调制器所示)。
例如如图4所示的并入了相位调制器的系统的问题是:相位调制器(或相移器)具有下列所示的具体的缺点。
1.因为在相移中的任何不精确将导致Δ的相同的不精确,所以被施加于光上的相移需要被准确地知道。在强度和相位之间的关系必须清楚,以便精确地确定结构。
2.相位调制器是依赖波长的,这意味着相位调制器必须对于所采用的每种波长进行重新校准。
3.对于相位调制器,至少两个相移被施加到具体波长上的每个光束。考虑显著的时间量,不同相移的束的强度必须对于每个相移重新测量。
发明内容
旨在提供一种在散射仪中的偏振光椭圆率测量功能,以使得被结构衍射的束的相位差和幅度可以被测量,而没有已知的具有相应波长范围的相位调制器的缺点。
根据本发明的实施例,提供一种检验设备、光刻设备或光刻单元,所述检验设备、光刻设备或光刻单元配置用于测量衬底的属性,包括:光源,配置用于提供辐射束;光学元件,配置用于将辐射束聚焦到衬底上;偏振装置,配置用于将辐射束的至少四个部分偏振化成四个不同的偏振取向;以及检测器系统,配置用于同时检测所述辐射束的四个偏振取向的角分解谱。
根据本发明的实施例,提供一种检验设备、光刻设备或光刻单元,所述检验设备、光刻设备或光刻单元配置用于测量衬底的属性,包括:光源,配置用于提供辐射束;光学元件,配置用于将辐射束聚焦到衬底上;分束器,配置用于将之前从衬底表面反射的辐射束分离成第一和第二子束;第一偏振分束器,配置用于将第一子束分解成两个正交偏振的子子束;第二偏振分束器,配置用于将第二子束分解成两个也正交偏振的子子束;以及检测器系统,配置用于同时检测从衬底表面反射的四个子子束的角分解谱。
根据本发明的实施例,提供一种检验设备、光刻设备或光刻单元,所述检验设备、光刻设备或光刻单元配置用于测量衬底的属性,所述检验设备、光刻设备或光刻单元包括:光源,配置用于提供辐射束;光学元件,配置用于将辐射束聚焦到衬底上;分束器,配置用于将之前从衬底表面反射的辐射束分离成正交偏振的第一和第二子束;第一偏振分束器,配置用于将第一子束分解成两个分别具有大约0和大约90度偏振的子子束;第二偏振分束器,相对于第一偏振分束器旋转大约45度,并配置用于将第二子束分解成分别具有大约45和大约135度偏振的两个子子束;以及检测器系统,配置用于同时检测从衬底表面反射的四个子子束的角分解谱。
根据本发明的实施例,提供一种测量衬底属性的方法,所述方法包括:提供具有椭圆偏振的辐射束;将所述辐射束反射离开衬底表面;将反射的辐射束分解成正交偏振的第一和第二子束;将第一子束分解成分别具有大约0和90度偏振的第一和第二子子束;将第二子束分解成分别具有大约45和大约135度偏振的第三和第四子子束;以及同时对所有四个子子束进行检测。
根据本发明的实施例,提供一种检验设备、光刻设备或光刻单元,所述检验设备、光刻设备或光刻单元配置用于测量衬底的属性,所述检验设备、光刻设备或光刻单元包括:光源,配置用于提供辐射束;光学元件,配置用于将辐射束聚焦到衬底上;分束器,配置用于将之前从衬底表面反射的辐射束分离成正交偏振的第一和第二子束;第一偏振分束器,配置用于采用大约0和90度的偏振器取向分别将第一子束分解成两个具有大约0和大约180度相移的子子束;半波片,取向为大约22.5度,配置用于将第二子束的偏振旋转大约45度;第二偏振分束器,配置用于采用具有大约45和大约135度取向的偏振器分别将第二子束分解成两个具有大约0和大约180度相移的子子束;以及检测器系统,配置用于同时检测从衬底表面反射的四个子子束的角分解谱。
根据本发明的实施例,提供一种测量衬底属性的方法,所述方法包括:提供具有圆偏振的辐射束;将所述辐射束反射离开衬底表面;将反射的辐射束分解成正交偏振的第一和第二子束;分别采用具有大约0和90度取向的偏振器将第一子束分解成分别具有大约0和180度相移的第一和第二子子束;将第二子束的偏振旋转大约90度;分别采用具有大约45和135度取向的偏振器将第二子束分解成分别具有大约0和180度相移的第三和第四子子束;以及同时对所有四个子子束进行检测。
根据本发明的实施例,提供一种检验设备、光刻设备或光刻单元,所述检验设备、光刻设备或光刻单元配置用于测量衬底的属性,所述检验设备、光刻设备或光刻单元包括:光源,配置用于提供辐射束;光学元件,配置用于将辐射束聚焦到衬底上;光学分离元件,配置用于将之前从衬底表面反射的辐射束分离成空间分离的第一、第二、第三和第四子束;四个偏振装置,配置用于分别将第一、第二、第三和第四子束以大约0、45、90和135度的偏振取向进行偏振化;以及检测器系统,配置用于同时检测从衬底表面反射的四个子束的角分解谱。
根据本发明的实施例,提供一种测量衬底属性的方法,所述方法包括:提供具有圆偏振的辐射束;将所述辐射束反射离开衬底表面;将反射的辐射束分解成四个子束;将所述四个子束透射通过四个不同取向的偏振装置,以形成分别具有大约0、45、90和135度的偏振取向的四个偏振束;以及同时对所有四个子束进行检测。
根据本发明的实施例,提供一种检验设备、光刻设备或光刻单元,所述检验设备、光刻设备或光刻单元配置用于测量衬底的属性,所述检验设备、光刻设备或光刻单元包括:光源,配置用于提供辐射束;光学元件,配置用于将辐射束聚焦到衬底上;偏振装置矩阵,配置用于将辐射束偏振化为偏振子束的矩阵,所述矩阵包括单元阵列,每个单元分别具有大约0、45、90和135度偏振取向的四个象限;以及检测器系统,配置用于同时检测从衬底表面反射的辐射束的所有偏振取向的角分解谱。
根据本发明的实施例,提供一种测量衬底属性的方法,所述方法包括:提供具有圆偏振的辐射束;将所述辐射束反射离开衬底表面;使辐射束透射通过偏振装置的矩阵,以形成偏振子束的矩阵,所述矩阵包括单元阵列,每个单元分别具有大约0、45、90和135度偏振的四个象限;以及同时对子束的矩阵进行检测。
附图说明
在此仅借助示例,参照所附示意图对本发明的实施例进行描述,在所附示意图中,相同的附图标记表示相同的部分,且其中:
图1a示出根据本发明的实施例的光刻设备;
图1b示出根据本发明的实施例的光刻单元或簇;
图2示出根据本发明的实施例的散射仪;
图3示出根据本发明的实施例的散射仪;
图4示出常规的检验设备;
图5示出从结构反射的束的强度和偏振之间的关系;
图6示出根据本发明的实施例的多个偏振束的强度和偏振之间的关系;
图7示出根据本发明的实施例的偏振光椭圆率测量仪;
图8示出根据本发明的实施例的偏振光椭圆率测量仪;
图9示出根据本发明的实施例的偏振光椭圆率测量仪;以及
图10示出根据本发明的实施例的偏振光椭圆率测量仪。
具体实施方式
图1a示意性地示出光刻设备。所述设备包括:照射系统(照射器)IL,配置用于调节辐射束B(例如,紫外辐射或深紫外辐射);支撑结构(例如掩模台)MT,配置用于支撑图案形成装置(例如掩模)MA并与配置用于根据确定的参数精确地定位图案形成装置的第一定位器PM相连;衬底台(例如晶片台)WT,配置用于保持衬底(例如涂覆有抗蚀剂的晶片)W,并与配置用于根据确定的参数精确地定位衬底的第二定位器PW相连;以及投影系统(例如折射式投影透镜系统)PL,所述投影系统PL配置用于将由图案形成装置MA赋予辐射束B的图案投影到衬底W的目标部分C(例如包括一根或多根管芯)上。
所述照射系统可以包括各种类型的光学部件,例如折射型、反射型、磁性型、电磁型、静电型或其他类型的光学部件、或其任意组合,以引导、成形、或控制辐射。
支撑结构支撑图案形成装置,即承受所述图案形成装置的重量。所述支撑结构以依赖于图案形成装置的取向、光刻设备的设计以及诸如图案形成装置是否保持在真空环境中等其他条件的方式保持图案形成装置。所述支撑结构可以采用机械的、真空的、静电的或其他夹持技术保持图案形成装置。所述支撑结构可以是框架或台,例如,其可以根据需要成为固定的或可移动的。所述支撑结构可以确保图案形成装置位于所需的位置上(例如相对于投影系统)。在这里任何使用的术语“掩模版”或“掩模”都可以认为与更上位的术语“图案形成装置”同义。
这里所使用的术语“图案形成装置”应该被广泛地理解为表示能够用于将图案在辐射束的横截面上赋予辐射束、以便在衬底的目标部分上形成图案的任何装置。应当注意,被赋予辐射束的图案可能不与在衬底目标部分上所需的图案完全相对应(例如如果该图案包括相移特征或所谓辅助特征)。通常,被赋予辐射束的图案将与在目标部分上形成的器件中的特定的功能层相对应,例如集成电路。
图案形成装置可以是透射式的或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程液晶显示(LCD)面板。掩模在光刻中是公知的,并且包括诸如二元掩模类型、交替相移掩模类型、衰减相移掩模类型和各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,可以独立地倾斜每一个小反射镜,以便沿不同方向反射入射的辐射束。所述已倾斜的反射镜将图案赋予由所述反射镜矩阵反射的辐射束。
应该将这里使用的术语“投影系统”广泛地解释为包括任意类型的投影系统,包括折射型、反射型、反射折射型、磁性型、电磁型和静电型光学系统、或其任意组合,如对于所使用的曝光辐射所适合的、或对于诸如使用浸没液或使用真空之类的其他因素所适合的。这里使用的任何术语“投影透镜”可以认为是与更上位的术语“投影系统”同义。
如这里所示的,所述设备是透射型的(例如,采用透射式掩模)。替代地,所述设备可以是反射型的(例如,采用如上所述类型的可编程反射镜阵列,或采用反射式掩模)。
所述光刻设备可以是具有两个(双台)或更多衬底台(和/或两个或更多的掩模台)的类型。在这种“多台”机器中,可以并行地使用附加的台,或可以在将一个或更多个其他台用于曝光的同时,在一个或更多个台上执行预备步骤。
所述光刻设备也可以是其中至少一部分衬底可以被具有高折射率的液体(例如水)覆盖的类型,以便填充投影系统和衬底之间的空隙。浸没液也可以被应用到光刻设备中的其他空隙中(例如在所述图案形成装置(例如掩模)和投影系统之间)。浸没技术用于增加投影系统的数值孔径在本领域是公知的。这里所使用的该术语“浸没”并不意味着结构(例如衬底)必须浸在液体中,而仅仅意味着在曝光过程中,液体位于投影系统和衬底之间。
参照图1a,所述照射器IL接收从辐射源SO发出的辐射束。该源和所述光刻设备可以是分立的实体(例如当该源为准分子激光器时)。在这种情况下,不会将该源考虑成光刻设备的组成部分,并且通过包括例如合适的引导反射镜和/或扩束器的束传递系统BD的帮助,将所述辐射束从所述源SO传到所述照射器IL。在其他情况下,所述源可以是所述光刻设备的组成部分(例如当所述源是汞灯时)。可以将所述源SO和所述照射器IL、以及如果需要时的所述束传递系统BD一起称作辐射系统。
所述照射器IL可以包括用于调整所述辐射束的角强度分布的调整器AD。通常,可以对所述照射器的光瞳平面中的强度分布的至少所述外部和/或内部径向范围(一般分别称为σ-外部和σ-内部)进行调整。此外,所述照射器IL可以包括各种其他部件,例如积分器IN和聚光器CO。可以将所述照射器用于调节所述辐射束,以在其横截面中具有所需的均匀性和强度分布。
所述辐射束B入射到保持在支撑结构(例如,掩模台MT)的所述图案形成装置(例如,掩模MA)上,并且通过所述图案形成装置来形成图案。已经穿过掩模MA之后,所述辐射束B通过投影系统PL,所述PL将辐射束聚焦到所述衬底W的目标部分C上。通过第二定位器PW和位置传感器IF(例如,干涉仪器件、线性编码器、2维编码器或电容传感器)的帮助,可以精确地移动所述衬底台WT,例如以便将不同目标部分C定位于所述辐射束B的辐射路径中。类似地,例如在从掩模库的机械获取之后,或在扫描期间,可以将所述第一定位器PM和另一个位置传感器(图1a中未明确示出)用于将掩模MA相对于所述辐射束B的辐射路径精确地定位。通常,可以通过形成所述第一定位器PM的一部分的长行程模块(粗定位)和短行程模块(精定位)的帮助来实现掩模台MT的移动。类似地,可以采用形成所述第二定位器PW的一部分的长行程模块和短行程模块来实现所述衬底台WT的移动。在步进机的情况下(与扫描器相反),所述掩模台MT可以仅与短行程致动器相连,或可以是固定的。可以使用掩模对齐标记M1、M2和衬底对齐标记P1、P2来对齐掩模MA和衬底W。尽管所示的衬底对齐标记占据了专用目标部分,但是他们可以位于目标部分之间的空隙(这些公知为划线对齐标记)上。类似地,在将多于一个的管芯设置在掩模MA上的情况下,所述掩模对齐标记可以位于所述管芯之间。
可以将所述设备用于以下模式的至少一种:
1.在步进模式中,在将赋予到所述辐射束的整个图案一次投影到目标部分C上的同时,将支撑结构MT和所述衬底台WT保持为基本静止(即,单一的静态曝光)。然后将所述衬底台WT沿X和/或Y方向移动,使得可以对不同目标部分C曝光。在步进模式中,曝光场的最大尺寸限制了在单一的静态曝光中成像的所述目标部分C的尺寸。
2.在扫描模式中,在将赋予所述辐射束的图案投影到目标部分C上的同时,对掩模台MT和衬底台WT同步地进行扫描(即,单一的动态曝光)。衬底台WT相对于掩模台MT的速度和方向可以通过所述投影系统PL的(缩小)放大率和图像反转特征来确定。在扫描模式中,曝光场的最大尺寸限制了单一的动态曝光中的所述目标部分的宽度(沿非扫描方向),而所述扫描运动的长度确定了所述目标部分的高度(沿所述扫描方向)。
3.在另一个模式中,将用于保持可编程图案形成装置的掩模台MT保持为基本静止状态,并且在将赋予所述辐射束的图案投影到目标部分C上的同时,对所述衬底台WT进行移动或扫描。在这种模式中,通常采用脉冲辐射源,并且在所述衬底台WT的每一次移动之后、或在扫描期间的连续辐射脉冲之间,根据需要更新所述可编程图案形成装置。这种操作模式可易于应用于利用可编程图案形成装置(例如,如上所述类型的可编程反射镜阵列)的无掩模光刻中。
也可以采用上述使用模式的组合和/或变体,或完全不同的使用模式。
如图1b所示,光刻设备LA形成光刻单元LC(有时也称作簇)的一部分,所述光刻单元也包括用于在衬底上进行曝光前和曝光后工艺的设备。通常,这些包括用于淀积抗蚀剂层的旋涂器SC、用于对曝光过的抗蚀剂进行显影的显影器DE、激冷板CH以及烘烤板BK。衬底输送装置或机械手RO从输入/输出口I/O1、I/O2拾取衬底,将其在不同的工艺设备之间移动,并将其传递给光刻设备的进料台LB。经常统称为轨道的这些装置处在轨道控制单元TCU的控制之下,所述轨道控制单元TCU自身由管理控制系统SCS控制,所述管理控制系统SCS也经由光刻控制单元LACU控制光刻设备。因此,不同的设备可以被操作用于将生产量和处理效率最大化。
为了由光刻设备曝光的衬底被正确地和一致地曝光,需要检验经过曝光的衬底以测量属性,例如两个连续层之间的重叠误差、线厚度、临界尺寸(CD)等。如果检测到误差,可以对连续衬底的曝光进行调整(尤其是如果检验能够即刻完成或足够迅速到使同一批次的其他衬底仍处于待曝光状态时)。已经曝光过的衬底也可以被剥离并被重新加工(以提高产率),或被遗弃,由此避免在已知存在缺陷的衬底上进行曝光。在仅仅衬底的一些目标部分存在缺陷的情况下,可以仅对完好的那些目标部分进行进一步曝光。
检验设备被用于确定衬底的属性,且尤其,用于确定不同的衬底或同一衬底的不同层的属性如何从层到层变化。检验设备可以被集成到光刻设备LA或光刻单元LC中,或可以是独立的装置。为了能进行最迅速地测量,需要检验设备在曝光后立即测量在经过曝光的抗蚀剂层上的属性。然而,抗蚀剂中的潜影具有很低的对比度(在经过辐射曝光的抗蚀剂部分和没有经过辐射曝光的抗蚀剂部分之间仅有很小的折射率差),且并非所有的检验设备都对潜影的有效测量具有足够的灵敏度。因此,测量可以在曝光后的烘烤步骤(PEB)之后进行,所述曝光后的烘烤步骤通常是在经过曝光的衬底上进行的第一步骤,且增加了抗蚀剂的经过曝光和未经曝光的部分之间的对比度。在该阶段,抗蚀剂中的图像可以被称为半潜在的。也能够在抗蚀剂的曝光部分或者非曝光部分已经被去除的点上,或者在诸如刻蚀等图案转移步骤之后,对经过显影的抗蚀剂图像进行测量。后一种可能性限制了有缺陷的衬底进行重新加工的可能,但是仍旧可以提供有用的信息。
图2示出可用于本发明的实施例中的散射仪。其包括将辐射投影到衬底6上的宽带(白光)辐射投影器2。所反射的辐射束被传到光谱仪检测器4上,所述光谱仪检测器4测量被镜面反射的辐射的光谱10(即将强度作为波长的函数)。从该数据中,产生所检测光谱的结构或分布可以通过处理单元PU被重建,例如通过严格耦合波分析和非线性回归或通过与如图2底部所示的仿真光谱库进行对比。通常,对于所述重建,获知所述结构的通常形式,且通过根据所述结构的制作工艺的知识假定一些参数,仅留有一些结构参数根据散射仪的数据确定。这种散射仪可以被配置为正入射散射仪或斜入射散射仪。
可以用于本发明的实施例中的另一个散射仪如图3所示。在该装置中,由辐射源2发出的辐射采用透镜系统12通过干涉滤光片13和偏振器17被聚焦,由部分反射表面16反射并经由具有高数值孔径(NA)(优选至少0.9或更优选至少0.95)的显微镜物镜15聚焦到衬底W上。浸没式散射仪甚至可以具有超过1的数值孔径的透镜。然后,所反射的辐射通过部分反射表面16透射入检测器18,以便检测散射光谱。检测器可以位于在透镜系统15的焦距处的后投影光瞳平面11上,然而,光瞳平面可以替代地以辅助的光学元件(未示出)在检测器上重新成像。所述光瞳平面是在其上辐射的径向位置限定入射角而角位置限定辐射的方位角的平面。所述检测器优选为二维检测器,以使得可以测量衬底目标的两维角散射谱。检测器18可以是例如电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)传感器的阵列,且可以采用例如每帧40毫秒的积分时间。
参考束经常被用于例如测量入射辐射的强度。为此,当辐射束入射到分束器16上时,辐射束的一部分通过所述分束器作为参考束朝向参考反射镜14透射。然后,所述参考束被投影到同一检测器18的不同部分上。
一组干涉滤光片13可用于在如405-790nm或甚至更低例如200-300nm的范围中选择感兴趣的波长。干涉滤光片可以是可调谐的,而不是包括一组不同的滤光片。光栅可能被用于替代干涉滤光片。
检测器18可以测量单一波长(或窄波长范围)的被散射光的强度,所述强度在多个波长上是独立的,或者所述强度集中在一个波长范围上。进而,检测器可以分立地测量横向磁场(TM)和横向电场(TE)偏振光的强度和/或在横向磁场和横向电场偏振光之间的相位差。
能够采用给出大集光率的宽带光源(即具有宽的光频率范围或波长以及由此而生的色彩)。在宽带上的多个波长优选每个具有δλ的带宽和至少2δλ(即波长的两倍)的间距。多个辐射“源”可以是已经用光纤束被分割的扩展辐射源的不同部分。以这样的方式,角度分解散射谱可以并行地在多个波长上被测量。可以测量包含比二维谱更多的信息的三维谱(波长和两个不同角度)。这允许更多的信息被测量,这增加度量工艺的鲁棒性。这在EP1,628,164A中进行了更详细的描述,该文档以引用的方式整体并入本文中。
衬底W上的目标可以是被印刷的光栅,以使得在显影之后,所述条纹为实抗蚀剂线的形式。所述条纹可以替代地被蚀刻到所述衬底中。该图案对于光刻投影设备(尤其是投影系统PL)中的色差和照射对称度敏感,且这种像差的存在将表明自身在所印刷的光栅中的变化。相应地,所印刷的光栅的散射仪数据被用于重建光栅。光栅的参数(例如线宽和线形)可以被输入到重建过程中,所述重建过程由处理单元PU根据印刷步骤和/或其他的散射仪工艺的知识实现。
如上所述,偏振光椭圆率测量仪可以被用于确定衬底上的结构的形状或其他属性。完成的方式是入射束从衬底W反射,如图4所示,该入射束反射离开结构30。反射束通过显微镜物镜24,通过非偏振分束器N-PBS,并通过聚焦透镜(或其他的光学元件)到达照相机CCD上。
在上述的现有技术中,所述束被另一个分束器50分裂,并被引导到照相机CCD上。在该点上,所述束或者是TM(横向磁场)偏振束,或者是TE(横向电场)偏振束。沿着TM(或p)方向的偏振平行与所述束的入射平面,而磁(M)场垂直于入射平面。TE(或s)束垂直于入射平面,而电(E)场平行于所述束的入射平面。在光瞳平面PP上的偏振方向如图4所示。
图4也示出位于非偏振分束器N-PBS和分束器50之间的相位调制器90,所述分束器50在将这些偏振束透射到照相机CCD之前将所述偏振束分离。eo坐标系统也在图4中示出为圆,并示出异常光轴和寻常光轴与系统的y和x轴的相对位置,所述eo坐标系统的取向沿着相位调制器90的异常光轴和寻常光轴。Eo和Ee分别是沿着e和o方向的散射场的未知复幅度。在该常规的系统中,这些幅度,与如相位调制器所预先限定的被改变的相位相比,能够使系统确定结构30的参数。
为了去除所述相位调制器,设想多个实施例。实施例所具有的共同特征是:从单个入射束获得四个不同的偏振反射子束,以便根据每个子束的测量到的强度测量四个已知的偏振的幅度和相位差。
图7示出根据本发明的实施例的偏振光椭圆率测量仪。采用诸如图2或图3所示的散射仪的基本构造。显微镜物镜24接收从存在于衬底W上的结构30反射的束。入射束可能已经在反射离开结构30之前通过显微镜物镜,或者可能已经采用其他手段被聚焦。反射束将对于在入射角范围(通常0至80°,但是可以设想任何可能的入射角)上从结构30的反射被测量。入射束也将对于所有方位角(0至360°)被反射和测量。为了能够测量所有方位角以及入射角的反射束,所述入射束是圆偏振的,而不是线偏振的,能够实现偏振的所有方向和降低一些束在反射过程中损失的风险。
对于每个测量的入射光是具有固定的波长的,并具有已知的偏振状态。相同的波长和偏振状态将如上所述以多个入射角(大约0-80°)和以所有方位角(0-360°)进行研究。回程或被反射的光束由具有不同的偏振状态的无限数量的射线构成。
偏振光椭圆率测量仪将p偏振分量与s偏振分量的反射进行对比。当采用0°和90°方位上的线偏振光时,来自一种偏振状态的信息将是可测量的,但是来自其他的偏振状态的信息将丢失。因此,对于线偏振光,偏振光椭圆率测量仪在方位45°和135°附近工作最佳。如上所述,去除这种异常的一种方法是采用圆光或椭圆光。
图7示出椭圆偏振的组合光束,并进入非偏振分束器N-PBS,在所述N-PBS中,大约50%的光将被透射而50%的光将被偏转(尽管分束器可以实现入射辐射的各种百分比的透射和偏转)。透射束的偏振光椭圆率测量数据在偏振分束器32(例如渥拉斯顿棱镜)和棱镜36的帮助下,通过分离x和y偏振分量I1和I2的能量而被测量。这产生现有技术中的正交偏振子束。然而,偏振的相位需要被改变,以便被比较以给出从所述结构反射的束的状态的全图。为了避免使用相位调制器,已经被非偏振分束器N-PBS分开的束的另一半通过在另一个分束器34中被分离成子子束I3和I4而以类似的方式被分析。为了获得这些进一步的需要具有与I1和I2不同的偏振的子子束,第二分束器34相对于第一分束器32沿着其各自的纵轴旋转45°。然后,束I1、I2、I3和I4被聚焦到CCD照相机上。偏振光椭圆率测量数据、Δ和tanΨ可以通过简单的角度测定术获得,这依赖于初始的入射束的偏振状态。
椭圆偏振束可以由如图6所示的一组四个测量到的强度重建。如果总强度I由下式给定:
I=1+acos(2A)+bsin(2A)    (5)
其中傅里叶系数是
a = ( I 1 - I 2 I 1 + I 2 ) - - - ( 6 )
b = ( I 3 - I 4 I 3 + I 4 ) - - - ( 7 )
则椭圆偏振束为I1、I2、I3和I4的已知值所重建。采用椭圆偏振束的强度与各个分量的幅度的关系(如图5所示)给出可以被输入上式(1)和(2)中的幅度。由此,所重建的束给出相位差(Δ)和相对幅度对准(tanΨ),因此得到结构30的参数。
四个光瞳被在专用的CCD照相机上测量。这些强度同时被测量,以使得没有测量时间损失。这带来了采用脉冲光源(例如激光)的可能性。由于不存在相位调制器,所以图7的散射仪基本不依赖于所采用的波长。由偏振分束器造成的任何误差是易于被校准的,这是因为所述误差不依赖于入射角和方位角。采用渥拉斯顿棱镜(或其它方解石棱镜(例如格兰-汤普森(Glan-Thompson)棱镜))的益处是高偏振消光比能够横跨大波长带获得。
图8-10的设备可以以照射束的路径中包含四分之一波片的方式建立,所述四分之一波片的主光轴成45度取向。这导致照射束的圆(椭圆)偏振。替代地,该四分之一波片可以被省略。这导致线偏振照射,所述线偏振照射也可以具有不同的取向,但是这产生多种测量的需要以确保没有取向被丢失。
图8-10的设备生成如以上图7的设备的一些四个图像,并因此,强度I1、I2、I3和I4被用于以与图7的设备中相同的方式重建原始束的幅度和相位。然后,这些值以相同的方式被使用,以确定偏振光椭圆率测量参数Ψ和Δ。在所有这些实施例中,辐射的成像位于光瞳平面中:CCD或照相机平面是显微镜物镜光瞳平面的共轭平面。因此,所述照相机对物镜的光瞳平面成像。在所有的实施例中,所有的偏振器优选为线偏振器。
图8示出另一个实施例,其中以源P开始的照射支路将辐射束透射通过线偏振器40和四分之一波片42(即,相对于线偏振器40旋转大约45°),于是,形成圆偏振光。然后,光入射到衬底W上的待检验的结构30上,并然后被反射到检测支路(与图8中的照射支路相符合)。
检测支路将光传播到分束器BS,所述分束器BS将所述束的一半(近似)作为子束透射,并将所述束的另一半作为第二子束反射。来自分束器的透射光通过半波片49(相对于线偏振器旋转大约22.5°,其将入射偏振旋转大约45度),并照射到偏振分束器PBS2上。替代地,半波片可以被省略,且偏振分束器可以被围绕其光轴旋转大约45度。当采用不同的波长时,这能够具有好处,这是因为波片主要针对一定的波长带而被优化。
在偏振分束器PBS2上,子束被分解成两个分离的、但光学上相同的分别具有大约90°和大约270°偏振的子子束。偏振器分别具有大约45°和135°的物理取向,由于偏振器引起两倍于其偏振角的相移,所以这引起子子束的上述相移。换句话说,旋转一个子束的方法是通过采用半波片,而不是像实施例一那样旋转分束器。
在分束器BS中被反射的所述束的另一半不通过半波片,但是其立即到达另一个偏振分束器PBS1,该束的一半透射通过偏振分束器PBS1,并被偏振化为大约0°角,另一半反射离开偏振分束器PBS1,并由此被偏振化为大约90°(由于偏振器的正交取向),如图8所示。
具有不同的相移的子子束被投影到四个分离的照相机表面上。于是,每个束的强度相对于其偏振和入射角被测量,并由此可以被用于确定多个子子束之间的相位差。与每个独立的强度相比的总强度引起如在实施例一中所述的幅度和相位变化。
图9示出根据本发明的实施例的偏振光椭圆率测量仪。在散射仪照射支路中,采用线偏振器40和位于大约45°的四分之一波片42,以与图8中所示相同的方式形成圆偏振光。于是,来自源P的偏振光经由反射镜和透镜以及显微镜物镜(图9中的24)朝向衬底W上的结构30传播。来自衬底W的反射光再次通过显微镜物镜24朝向上述散射仪的检测支路传播。然后,所述束采用(例如衍射)光学分离元件32在物理上被分解成四个分离的但是在光学上相同的子束B。这些束中的每个通过取向不同的偏振器传播,并最终被投影到照相机表面CD上。所述四个偏振器被用作相位象限测量技术。换句话说,象限44相对于象限45转动大约135°,所述象限45处于大约0°。象限46被相对于象限45旋转大约45°,且象限47相对于象限45旋转大约90°。每个象限的强度被独立地测量,并如以上的实施例一所述被组合。
该实施例的益处是仅仅使用一个照相机CCD,减少硬件并因此潜在地降低成本以及维持/校准要求。
图10示出根据本发明的实施例的偏振光椭圆率测量仪。除去所述束没有被分离以使得照相机CCD上的每个场的光功率不被减小之外,图10的实施例与图9的实施例相同。因此对于生产量或照相机的积分时间没有负面影响。
实现的方式是偏振器48的矩阵形成单元阵列,每个单元具有四个象限,每个象限具有如图9的实施例所述的不同偏振器取向。换句话说,矩阵中的每个单元包括具有大约0°偏振的第一象限45、具有大约45°偏振的第二象限46、具有大约90°偏振的第三象限47以及具有大约135°偏振的第四象限44,所述角度均相对于第一象限45。如上所述,所述偏振器的偏振取向引起两倍于取向角的辐射束的相移。
矩阵中的每个单元被照相机检测(软件可以被用于在检测后分离不同的单元),且不同象限的相对强度给出之前所述的相对的幅度和相位差的表示。因此,反射束的偏振状态被确定,且所述结构对于所述束的作用通过逆向工程引起结构的属性。
尽管在本文中可以做出具体的参考,将所述光刻设备用于制造IC,但应当理解这里所述的光刻设备可以有其他的应用,例如,集成光学系统、磁畴存储器的引导和检测图案、平板显示器、液晶显示器、薄膜磁头的制造等。对于普通的技术人员,应该理解的是,在这种替代应用的情况中,可以将其中使用的任意术语“晶片”或“管芯”分别认为是与更上位的术语“衬底”或“目标部分”同义。这里所指的衬底可以在曝光之前或之后进行处理,例如在轨道(一种典型地将抗蚀剂层涂到衬底上,并且对已曝光的抗蚀剂进行显影的工具)、度量工具和/或检验工具中。在可应用的情况下,可以将所述公开内容应用于这种和其他衬底处理工具中。另外,所述衬底可以处理一次以上,例如为产生多层IC,使得这里使用的所述术语“衬底”也可以表示已经包含多个已处理层的衬底。
尽管以上已经做出了具体的参考,在光学光刻的上下文中使用本发明的实施例,但应该理解的是,本发明可以用于其他应用中,例如压印光刻,并且只要情况允许,不局限于光学光刻。在压印光刻中,图案形成装置中的拓扑限定了在衬底上产生的图案。可以将所述图案形成装置的拓扑印刷到提供给所述衬底的抗蚀剂层中,在其上通过施加电磁辐射、热、压力或其组合来使所述抗蚀剂固化。在所述抗蚀剂固化之后,所述图案形成装置从所述抗蚀剂上移走,并在抗蚀剂中留下图案。
这里使用的术语“辐射”和“束”包含全部类型的电磁辐射,包括:紫外辐射(例如具有约365、355、248、193、157或126nm的波长)和极紫外辐射(例如具有5-20nm范围内的波长),以及粒子束,例如离子束或电子束。
在上下文允许的情况下,所述术语“透镜”可以表示各种类型的光学部件中的任何一种或它们的组合,包括折射式、反射式、磁性式、电磁式和静电式的光学部件。
尽管以上已经描述了本发明的特定的实施例,但是应该理解的是本发明可以与上述不同的形式实现。例如,本发明可以采取包含用于描述上述公开的方法的一个或更多机器可读指令序列的计算机程序的形式,或者采取具有在其中存储的这种计算机程序的数据存储介质的形式(例如,半导体存储器、磁盘或光盘)。
以上的描述是说明性的,而不是限制性的。因此,本领域的技术人员应当理解,在不背离所附的权利要求的保护范围的条件下,可以对本发明进行修改。

Claims (24)

1.一种被配置用于测量衬底的属性的检验设备,所述检验设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底上;
偏振装置,所述偏振装置被配置用于将被衬底表面反射的辐射束的至少四个部分偏振化成四个不同的偏振取向;以及
检测器系统,所述检测器系统被配置用于同时检测所述被衬底表面反射的辐射束的四个偏振取向的角分解谱。
2.一种被配置用于测量衬底的属性的检验设备,所述检验设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
分束器,所述分束器被配置用于将之前从衬底表面反射的辐射束分离成第一和第二子束;
第一偏振分束器,所述第一偏振分束器被配置用于将第一子束分解成两个正交偏振的子子束;
第二偏振分束器,所述第二偏振分束器被配置用于将第二子束分解成两个也正交偏振的子子束;以及
四个子子束为四个不同的偏振反射子束;
检测器系统,所述检测器系统被配置用于同时检测从衬底表面反射的所有四个子子束的角分解谱。
3.一种被配置用于测量衬底的属性的检验设备,所述检验设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
分束器,所述分束器被配置用于将之前从衬底表面反射的辐射束分离成第一和第二子束;
第一偏振分束器,所述第一偏振分束器被配置用于将第一子束分解成两个分别具有大约0和大约90度偏振的子子束;
第二偏振分束器,所述第二偏振分束器相对于第一偏振分束器旋转大约45度,并被配置用于将第二子束分解成分别具有大约45和大约135度偏振的两个子子束;以及
检测器系统,所述检测器系统被配置用于同时检测从衬底表面反射的所有四个子子束的角分解谱。
4.根据权利要求3所述的检验设备,其中,从衬底反射的所述辐射束是椭圆偏振的。
5.根据权利要求3所述的检验设备,还包括光楔,所述光楔被配置用于将子子束偏转到检测器系统上。
6.根据权利要求3所述的检验设备,还包括偏转器,所述偏转器被配置用于将子子束偏转到检测器系统上。
7.根据权利要求3所述的检验设备,其中,所述分束器和第一、第二偏振分束器都包括偏振棱镜。
8.根据权利要求3所述的检验设备,其中,所述分束器和第一、第二偏振分束器都包括渥拉斯顿棱镜。
9.根据权利要求3所述的检验设备,其中,所述子束包括TE束和TM束。
10.一种测量衬底属性的方法,所述方法包括步骤:
提供具有椭圆偏振的辐射束;
将所述辐射束反射离开衬底表面;
将反射的辐射束分解成第一和第二子束;
将第一子束分解成分别具有大约0度和90度的偏振取向的第一和第二子子束;
将第二子束分解成分别具有大约45和135度的偏振取向的第三和第四子子束;以及
同时对所有四个子子束进行检测。
11.根据权利要求10所述的方法,其中,所述第二子束的分解采用相对于被配置用于分解第一子束的分束器旋转大约45度的分束器实现。
12.一种测量衬底属性的方法,所述方法包括步骤:
提供具有圆偏振的辐射束;
将所述辐射束反射离开衬底表面;
将反射的辐射束分解成第一和第二子束;
将第一子束分解成分别具有大约0度和90度偏振的第一和第二子子束;
将第二子束的偏振旋转大约45度;
将第二子束分解成分别具有大约45度和135度偏振取向的第三和第四子子束;以及
同时对所有四个子子束进行检测。
13.根据权利要求12所述的方法,其中,所述第二子束的旋转采用半波片进行。
14.一种被配置用于测量衬底的属性的检验设备,所述检验设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
光学分离元件,所述光学分离元件被配置用于将之前从衬底表面反射
的辐射束分离成空间分离的第一、第二、第三和第四子束;
四个偏振装置,所述四个偏振装置被配置用于分别将第一、第二、第三和第四子束以大约0、45、90和135度的偏振取向进行偏振化;以及
检测器系统,所述检测器系统被配置用于同时检测从衬底表面反射的所有四个子束的角分解谱。
15.一种测量衬底属性的方法,所述方法包括步骤:
提供具有圆偏振的辐射束;
将所述辐射束反射离开衬底表面;
将反射的辐射束分解成四个子束;
将所述四个子束透射通过四个不同取向的偏振装置,以形成分别具有大约0度、45度、90度和135度偏振取向的四个偏振束;以及
同时对所有四个子束进行检测。
16.一种被配置用于测量衬底的属性的检验设备,所述检验设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
偏振装置矩阵,所述偏振装置矩阵被配置用于将被衬底表面反射的辐射束偏振化为偏振子束的矩阵,所述矩阵包括单元阵列,每个单元分别具有大约0度、45度、90度和135度偏振取向的四个象限;以及
检测器系统,所述检测器系统被配置用于同时检测从衬底表面反射的辐射束的所有偏振取向的角分解谱。
17.一种测量衬底属性的方法,所述方法包括步骤:
提供具有圆偏振的辐射束;
将所述辐射束反射离开衬底表面;
使辐射束透射通过偏振装置的矩阵,以形成偏振子束的矩阵,所述矩阵包括单元阵列,每个单元分别具有大约0度、45度、90度和135度偏振取向的四个象限;以及
同时对子束的矩阵进行检测。
18.根据权利要求17所述的方法,还包括采用软件分离具有每个偏振取向的辐射的强度。
19.一种被配置用于测量衬底的属性的光刻设备,所述光刻设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
偏振装置,所述偏振装置被配置用于将被衬底表面反射的辐射束的至少四个部分偏振化成四个不同的偏振取向;以及
检测器系统,所述检测器系统被配置用于同时检测被衬底表面反射的所述辐射束的四个偏振取向的角分解谱。
20.一种被配置用于测量衬底的属性的光刻设备,所述光刻设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
分束器,所述分束器被配置用于将之前从衬底表面反射的辐射束分离成第一和第二子束;
第一偏振分束器,所述第一偏振分束器被配置用于将第一子束分解成两个正交偏振的子子束;
第二偏振分束器,所述第二偏振分束器被配置用于将第二子束分解成两个也正交偏振的子子束;以及
四个子子束为四个不同的偏振子束;
检测器系统,所述检测器系统被配置用于同时检测从衬底表面反射的所有四个子子束的角分解谱。
21.一种被配置用于测量衬底的属性的光刻设备,所述光刻设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
分束器,所述分束器被配置用于将之前从衬底表面反射的辐射束分离成第一和第二子束;
第一偏振分束器,所述第一偏振分束器被配置用于将第一子束分解成两个分别具有大约0度和90度偏振取向的子子束;
第二偏振分束器,所述第二偏振分束器相对于第一偏振分束器旋转大约45度,并被配置用于将第二子束分解成分别具有大约45度和135度偏振取向的两个子子束;以及
检测器系统,所述检测器系统被配置用于同时检测从衬底表面反射的所有四个子子束的角分解谱。
22.一种被配置用于测量衬底的属性的光刻设备,所述光刻设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
分束器,所述分束器被配置用于将之前从衬底表面反射的辐射束分离成第一和第二子束;
第一偏振分束器,所述第一偏振分束器被配置用于采用大约0度和90度偏振的偏振器取向,将第一子束分解成两个子子束;
半波片,所述半波片被配置用于将第二子束的偏振旋转大约45度;
第二偏振分束器,所述第二偏振分束器被配置用于分别采用大约45和135度偏振的偏振器取向,将第二子束分解成两个子子束;以及
检测器系统,所述检测器系统被配置用于同时检测从衬底表面反射的所有四个子子束的角分解谱。
23.一种被配置用于测量衬底的属性的光刻设备,所述光刻设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
光学分离元件,所述光学分离元件被配置用于将之前从衬底表面反射的辐射束分离成空间分离的第一、第二、第三和第四子束;
四个偏振装置,所述四个偏振装置被配置用于分别将第一、第二、第三和第四子束以大约0度、45度、90度和135度的偏振取向进行偏振化;以及
检测器系统,所述检测器系统被配置用于同时检测从衬底表面反射的所有四个子束的角分解谱。
24.一种被配置用于测量衬底的属性的光刻设备,所述光刻设备包括:
光源,所述光源被配置用于提供辐射束;
光学元件,所述光学元件被配置用于将辐射束聚焦到衬底表面上;
偏振装置的重复矩阵,其被配置用于将被衬底表面反射的辐射束偏振化为偏振子束的矩阵,所述矩阵包括单元阵列,每个单元分别具有大约0度、45度、90度和135度偏振器取向的四个象限;以及
检测器系统,所述检测器系统被配置用于同时检测从衬底表面反射的偏振辐射束的角分解谱。
CN2008100740725A 2007-02-21 2008-02-21 检验方法和设备、光刻设备、光刻单元和器件制造方法 Expired - Fee Related CN101251718B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/708,678 US7701577B2 (en) 2007-02-21 2007-02-21 Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US11/708,678 2007-02-21

Publications (2)

Publication Number Publication Date
CN101251718A CN101251718A (zh) 2008-08-27
CN101251718B true CN101251718B (zh) 2010-09-01

Family

ID=39706368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100740725A Expired - Fee Related CN101251718B (zh) 2007-02-21 2008-02-21 检验方法和设备、光刻设备、光刻单元和器件制造方法

Country Status (6)

Country Link
US (2) US7701577B2 (zh)
JP (1) JP2008244448A (zh)
KR (1) KR100930941B1 (zh)
CN (1) CN101251718B (zh)
IL (1) IL189372A (zh)
TW (1) TWI360653B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636963A (zh) * 2011-02-11 2012-08-15 Asml荷兰有限公司 检查设备和方法、光刻设备和处理单元、器件制造方法

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692792B2 (en) * 2006-06-22 2010-04-06 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7701577B2 (en) * 2007-02-21 2010-04-20 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
SG152187A1 (en) * 2007-10-25 2009-05-29 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
NL1036597A1 (nl) 2008-02-29 2009-09-01 Asml Netherlands Bv Metrology method and apparatus, lithographic apparatus, and device manufacturing method.
NL1036684A1 (nl) * 2008-03-20 2009-09-22 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method.
NL1036685A1 (nl) * 2008-03-24 2009-09-25 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method.
WO2010130673A1 (en) * 2009-05-15 2010-11-18 Asml Netherlands B.V. Inspection method for lithography
WO2011023765A1 (en) * 2009-08-26 2011-03-03 Carl Zeiss Laser Optics Gmbh Metrology module for laser system
SG177786A1 (en) * 2010-07-13 2012-02-28 Semiconductor Tech & Instr Inc System and method for capturing illumination reflected in multiple directions
NL2007127A (en) * 2010-08-06 2012-02-07 Asml Netherlands Bv Inspection apparatus and method, lithographic apparatus and lithographic processing cell.
KR101146922B1 (ko) * 2010-08-18 2012-05-23 주식회사 에프에스티 웨이퍼 검사용 광학 검출모듈
NL2007177A (en) 2010-09-13 2012-03-14 Asml Netherlands Bv Alignment measurement system, lithographic apparatus, and a method to determine alignment of in a lithographic apparatus.
NL2007361A (en) 2010-09-29 2012-04-02 Asml Netherlands Bv Inspection apparatus and method, lithographic apparatus and lithographic processing cell.
US20120154518A1 (en) * 2010-12-17 2012-06-21 Microsoft Corporation System for capturing panoramic stereoscopic video
US8548269B2 (en) 2010-12-17 2013-10-01 Microsoft Corporation Seamless left/right views for 360-degree stereoscopic video
US20120154519A1 (en) * 2010-12-17 2012-06-21 Microsoft Corporation Chassis assembly for 360-degree stereoscopic video capture
JP5960826B2 (ja) * 2011-08-26 2016-08-02 カール ツァイス エスエムエス リミテッド フォトリソグラフィのための光学要素を局所的に変形させる方法及び装置
GB201115807D0 (en) 2011-09-13 2011-10-26 Univ St Andrews Controlling light transmission through a medium
US9605947B2 (en) 2012-04-12 2017-03-28 Asml Holding N.V. Position measurement with illumination profile having regions confined to peripheral portion of pupil
NL2010717A (en) * 2012-05-21 2013-11-25 Asml Netherlands Bv Determining a structural parameter and correcting an asymmetry property.
NL2011181A (en) 2012-08-16 2014-02-18 Asml Netherlands Bv Method and apparatus for measuring asymmetry of a microstructure, position measuring method, position measuring apparatus, lithographic apparatus and device manufacturing method.
JP6095786B2 (ja) * 2012-10-02 2017-03-15 エーエスエムエル ネザーランズ ビー.ブイ. 位置測定装置、位置測定方法、リソグラフィ装置及びデバイス製造方法
CN103017908A (zh) * 2012-11-30 2013-04-03 中国科学院上海技术物理研究所 基于四路分光模块的偏振光特性实时测量装置及方法
JP6275834B2 (ja) * 2013-07-03 2018-02-07 エーエスエムエル ネザーランズ ビー.ブイ. 検査装置及び方法、リソグラフィ装置、リソグラフィ処理セル並びにデバイス製造方法
TWI456163B (zh) * 2013-08-16 2014-10-11 Metal Ind Res & Dev Ct 光學影像擷取模組、對位方法及觀測方法
KR101827880B1 (ko) * 2013-10-09 2018-02-09 에이에스엠엘 네델란즈 비.브이. 편광 독립적 간섭계
CN104142131B (zh) * 2014-07-23 2017-05-10 北京空间机电研究所 一种相位成像系统
US9658150B2 (en) * 2015-01-12 2017-05-23 Kla-Tencor Corporation System and method for semiconductor wafer inspection and metrology
KR102659810B1 (ko) 2015-09-11 2024-04-23 삼성디스플레이 주식회사 결정화도 측정 장치 및 그 측정 방법
JP6387952B2 (ja) 2015-12-21 2018-09-12 横河電機株式会社 偏光検査装置
JP6744437B2 (ja) * 2016-06-30 2020-08-19 エーエスエムエル ホールディング エヌ.ブイ. オーバーレイおよびクリティカルディメンションセンサにおける瞳照明のための方法およびデバイス
US10048132B2 (en) * 2016-07-28 2018-08-14 Kla-Tencor Corporation Simultaneous capturing of overlay signals from multiple targets
KR102340174B1 (ko) 2017-06-20 2021-12-16 에이에스엠엘 네델란즈 비.브이. 엣지 러프니스 파라미터 결정
CN110945436B (zh) 2017-07-25 2022-08-05 Asml荷兰有限公司 用于参数确定的方法及其设备
WO2019042809A1 (en) 2017-09-01 2019-03-07 Asml Netherlands B.V. OPTICAL SYSTEMS, METROLOGY APPARATUS AND ASSOCIATED METHODS
EP3454124A1 (en) * 2017-09-07 2019-03-13 ASML Netherlands B.V. Method to determine a patterning process parameter
IL273145B2 (en) 2017-09-11 2024-03-01 Asml Netherlands Bv Lithographic processes in meteorology
EP3457211A1 (en) 2017-09-13 2019-03-20 ASML Netherlands B.V. A method of aligning a pair of complementary diffraction patterns and associated metrology method and apparatus
US11662198B2 (en) 2017-09-28 2023-05-30 Asml Holding N.V. Optical arrangement for an inspection apparatus
EP3474074A1 (en) 2017-10-17 2019-04-24 ASML Netherlands B.V. Scatterometer and method of scatterometry using acoustic radiation
EP3480659A1 (en) 2017-11-01 2019-05-08 ASML Netherlands B.V. Estimation of data in metrology
WO2019091678A1 (en) 2017-11-07 2019-05-16 Asml Netherlands B.V. Metrology apparatus and a method of determining a characteristic of interest
CN111542783A (zh) 2017-12-28 2020-08-14 Asml荷兰有限公司 用于确定衬底上的结构的感兴趣的特性的量测设备与方法
EP3570109A1 (en) 2018-05-14 2019-11-20 ASML Netherlands B.V. Illumination source for an inspection apparatus, inspection apparatus and inspection method
IL279368B1 (en) 2018-06-13 2024-02-01 Asml Netherlands Bv Metrological device
EP3582009A1 (en) 2018-06-15 2019-12-18 ASML Netherlands B.V. Reflector and method of manufacturing a reflector
CN115165758A (zh) * 2018-07-06 2022-10-11 深圳中科飞测科技股份有限公司 一种检测设备及方法
EP3611569A1 (en) 2018-08-16 2020-02-19 ASML Netherlands B.V. Metrology apparatus and photonic crystal fiber
KR20210040134A (ko) 2018-09-04 2021-04-12 에이에스엠엘 네델란즈 비.브이. 계측 장치
EP3627226A1 (en) 2018-09-20 2020-03-25 ASML Netherlands B.V. Optical system, metrology apparatus and associated method
EP3629086A1 (en) * 2018-09-25 2020-04-01 ASML Netherlands B.V. Method and apparatus for determining a radiation beam intensity profile
US11087065B2 (en) 2018-09-26 2021-08-10 Asml Netherlands B.V. Method of manufacturing devices
EP3650941A1 (en) 2018-11-12 2020-05-13 ASML Netherlands B.V. Method of determining the contribution of a processing apparatus to a substrate parameter
WO2020114684A1 (en) 2018-12-03 2020-06-11 Asml Netherlands B.V. Method of manufacturing devices
EP3696606A1 (en) 2019-02-15 2020-08-19 ASML Netherlands B.V. A metrology apparatus with radiation source having multiple broadband outputs
NL2024850A (en) 2019-02-21 2020-08-31 Asml Holding Nv Wafer alignment using form birefringence of targets or product
EP3702840A1 (en) 2019-03-01 2020-09-02 ASML Netherlands B.V. Alignment method and associated metrology device
EP3705942A1 (en) 2019-03-04 2020-09-09 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
IL286548B1 (en) 2019-03-25 2024-02-01 Asml Netherlands Bv A device for expanding frequency and method
WO2020200637A1 (en) 2019-04-03 2020-10-08 Asml Netherlands B.V. Optical fiber
EP3739389A1 (en) 2019-05-17 2020-11-18 ASML Netherlands B.V. Metrology tools comprising aplanatic objective singlet
EP3754389A1 (en) 2019-06-21 2020-12-23 ASML Netherlands B.V. Mounted hollow-core fibre arrangement
EP3758168A1 (en) 2019-06-25 2020-12-30 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
WO2021013611A1 (en) 2019-07-24 2021-01-28 Asml Netherlands B.V. Radiation source
EP3783439A1 (en) 2019-08-22 2021-02-24 ASML Netherlands B.V. Metrology device and detection apparatus therefor
WO2021043593A1 (en) 2019-09-02 2021-03-11 Asml Netherlands B.V. Mode control of photonic crystal fiber based broadband light sources
WO2021043516A1 (en) 2019-09-03 2021-03-11 Asml Netherlands B.V. Assembly for collimating broadband radiation
WO2021052801A1 (en) 2019-09-18 2021-03-25 Asml Netherlands B.V. Improved broadband radiation generation in hollow-core fibres
US10969697B1 (en) * 2019-10-18 2021-04-06 Taiwan Semiconductor Manufacturing Company, Ltd. Overlay metrology tool and methods of performing overlay measurements
KR20220063265A (ko) 2019-10-24 2022-05-17 에이에스엠엘 네델란즈 비.브이. 광대역 방사선 발생을 위한 중공 코어 광결정 섬유 기반 광학 요소
EP3819267B1 (en) 2019-11-07 2022-06-29 ASML Netherlands B.V. Method of manufacture of a capillary for a hollow-core photonic crystal fiber
WO2021144093A1 (en) 2020-01-15 2021-07-22 Asml Netherlands B.V. Method, assembly, and apparatus for improved control of broadband radiation generation
CN113448188B (zh) * 2020-03-26 2023-02-10 上海微电子装备(集团)股份有限公司 一种套刻测量方法及系统
EP3889681A1 (en) 2020-03-31 2021-10-06 ASML Netherlands B.V. An assembly including a non-linear element and a method of use thereof
EP3913429A1 (en) 2020-05-19 2021-11-24 ASML Netherlands B.V. A supercontinuum radiation source and associated metrology devices
JP2023540186A (ja) 2020-09-03 2023-09-22 エーエスエムエル ネザーランズ ビー.ブイ. 中空コアフォトニック結晶ファイバベースの広帯域放射ジェネレータ
KR20230112653A (ko) 2020-12-10 2023-07-27 에이에스엠엘 네델란즈 비.브이. 중공 코어 광결정 광섬유 기반 광대역 방사선 발생기

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723315A (en) * 1986-06-24 1988-02-02 Itek Corporation Polarization matching mixer
DE4033013C2 (de) * 1990-10-18 1994-11-17 Heidenhain Gmbh Dr Johannes Polarisationsoptische Anordnung
JPH06147987A (ja) * 1992-11-05 1994-05-27 Canon Inc 偏光解析装置及び位置ずれ補正方法
US5412473A (en) * 1993-07-16 1995-05-02 Therma-Wave, Inc. Multiple angle spectroscopic analyzer utilizing interferometric and ellipsometric devices
JPH0791924A (ja) * 1993-09-21 1995-04-07 Nkk Corp エリプソパラメータ測定方法及びエリプソメータ
US5703692A (en) 1995-08-03 1997-12-30 Bio-Rad Laboratories, Inc. Lens scatterometer system employing source light beam scanning means
US5880838A (en) 1996-06-05 1999-03-09 California Institute Of California System and method for optically measuring a structure
US5963329A (en) 1997-10-31 1999-10-05 International Business Machines Corporation Method and apparatus for measuring the profile of small repeating lines
JP3866849B2 (ja) * 1998-01-27 2007-01-10 大塚電子株式会社 偏光解析装置
US6429943B1 (en) 2000-03-29 2002-08-06 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
US6689519B2 (en) 2000-05-04 2004-02-10 Kla-Tencor Technologies Corp. Methods and systems for lithography process control
US6753961B1 (en) 2000-09-18 2004-06-22 Therma-Wave, Inc. Spectroscopic ellipsometer without rotating components
IL138552A (en) 2000-09-19 2006-08-01 Nova Measuring Instr Ltd Measurement of transverse displacement by optical method
US6750968B2 (en) * 2000-10-03 2004-06-15 Accent Optical Technologies, Inc. Differential numerical aperture methods and device
US6768983B1 (en) 2000-11-28 2004-07-27 Timbre Technologies, Inc. System and method for real-time library generation of grating profiles
US6515744B2 (en) 2001-02-08 2003-02-04 Therma-Wave, Inc. Small spot ellipsometer
US6819426B2 (en) 2001-02-12 2004-11-16 Therma-Wave, Inc. Overlay alignment metrology using diffraction gratings
US6699624B2 (en) 2001-02-27 2004-03-02 Timbre Technologies, Inc. Grating test patterns and methods for overlay metrology
CN1261736C (zh) 2001-03-02 2006-06-28 安格盛光电科技公司 利用散射测量的线路轮廓不对称测量法
US6704661B1 (en) 2001-07-16 2004-03-09 Therma-Wave, Inc. Real time analysis of periodic structures on semiconductors
US6785638B2 (en) 2001-08-06 2004-08-31 Timbre Technologies, Inc. Method and system of dynamic learning through a regression-based library generation process
US7061615B1 (en) 2001-09-20 2006-06-13 Nanometrics Incorporated Spectroscopically measured overlay target
US6608690B2 (en) 2001-12-04 2003-08-19 Timbre Technologies, Inc. Optical profilometry of additional-material deviations in a periodic grating
US6772084B2 (en) 2002-01-31 2004-08-03 Timbre Technologies, Inc. Overlay measurements using periodic gratings
US6813034B2 (en) 2002-02-05 2004-11-02 Therma-Wave, Inc. Analysis of isolated and aperiodic structures with simultaneous multiple angle of incidence measurements
US7061627B2 (en) 2002-03-13 2006-06-13 Therma-Wave, Inc. Optical scatterometry of asymmetric lines and structures
US6721691B2 (en) 2002-03-26 2004-04-13 Timbre Technologies, Inc. Metrology hardware specification using a hardware simulator
US6928628B2 (en) 2002-06-05 2005-08-09 Kla-Tencor Technologies Corporation Use of overlay diagnostics for enhanced automatic process control
US7046376B2 (en) 2002-07-05 2006-05-16 Therma-Wave, Inc. Overlay targets with isolated, critical-dimension features and apparatus to measure overlay
US6919964B2 (en) 2002-07-09 2005-07-19 Therma-Wave, Inc. CD metrology analysis using a finite difference method
SG120958A1 (en) 2002-11-01 2006-04-26 Asml Netherlands Bv Inspection method and device manufacturing method
US7369233B2 (en) * 2002-11-26 2008-05-06 Kla-Tencor Technologies Corporation Optical system for measuring samples using short wavelength radiation
US7006224B2 (en) * 2002-12-30 2006-02-28 Applied Materials, Israel, Ltd. Method and system for optical inspection of an object
US7068363B2 (en) 2003-06-06 2006-06-27 Kla-Tencor Technologies Corp. Systems for inspection of patterned or unpatterned wafers and other specimen
JP2005009941A (ja) * 2003-06-17 2005-01-13 Canon Inc ライブラリ作成方法
US7061623B2 (en) 2003-08-25 2006-06-13 Spectel Research Corporation Interferometric back focal plane scatterometry with Koehler illumination
JP2005308612A (ja) * 2004-04-23 2005-11-04 Photonic Lattice Inc エリプソメータおよび分光エリプソメータ
US7388668B2 (en) * 2004-06-09 2008-06-17 President & Fellows Of Harvard College Phase sensitive heterodyne coherent anti-Stokes Raman scattering micro-spectroscopy and microscopy
US20060012788A1 (en) * 2004-07-19 2006-01-19 Asml Netherlands B.V. Ellipsometer, measurement device and method, and lithographic apparatus and method
US7791727B2 (en) * 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
JP2006147627A (ja) * 2004-11-16 2006-06-08 Tokyo Electron Ltd 露光装置の同期精度検出方法および収差検出方法
US20060109463A1 (en) 2004-11-22 2006-05-25 Asml Netherlands B.V. Latent overlay metrology
US7453577B2 (en) 2004-12-14 2008-11-18 Asml Netherlands B.V. Apparatus and method for inspecting a patterned part of a sample
US7692792B2 (en) * 2006-06-22 2010-04-06 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7701577B2 (en) * 2007-02-21 2010-04-20 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636963A (zh) * 2011-02-11 2012-08-15 Asml荷兰有限公司 检查设备和方法、光刻设备和处理单元、器件制造方法
US9223227B2 (en) 2011-02-11 2015-12-29 Asml Netherlands B.V. Inspection apparatus and method, lithographic apparatus, lithographic processing cell and device manufacturing method

Also Published As

Publication number Publication date
US7839506B2 (en) 2010-11-23
TWI360653B (en) 2012-03-21
US20080198380A1 (en) 2008-08-21
KR20080077929A (ko) 2008-08-26
IL189372A (en) 2012-10-31
TW200846654A (en) 2008-12-01
IL189372A0 (en) 2009-02-11
US7701577B2 (en) 2010-04-20
JP2008244448A (ja) 2008-10-09
KR100930941B1 (ko) 2009-12-10
CN101251718A (zh) 2008-08-27
US20100157299A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
CN101251718B (zh) 检验方法和设备、光刻设备、光刻单元和器件制造方法
US8792096B2 (en) Inspection apparatus for lithography
US8681312B2 (en) Inspection apparatus for lithography
CN105612460B (zh) 独立于偏振的干涉仪
JP4871943B2 (ja) 検査方法および装置、リソグラフィ装置、リソグラフィ処理セルおよびデバイス製造方法
CN1916603B (zh) 用于角分解光谱光刻表征的方法与设备
JP4953932B2 (ja) 角度分解分光器リソグラフィの特徴付けの方法および装置
JP4979958B2 (ja) リソグラフィ装置、偏光特性を決定する方法
CN102804073A (zh) 光刻的检验
CN102027416B (zh) 用于光刻术的检查设备
JP2009200466A (ja) 検査方法及び装置、リソグラフィ装置、リソグラフィ処理セル、並びに、デバイス製造方法
US10908514B2 (en) Metrology apparatus, lithographic system, and method of measuring a structure
CN113939770A (zh) 自参考干涉仪和双重自参考干涉仪装置
US20110007316A1 (en) Inspection Method and Apparatus, Lithographic Apparatus, Lithographic Processing Cell and Device Manufacturing Method
JP4116637B2 (ja) 楕円偏光計、測定デバイス及び方法並びにリソグラフィ装置及び方法
US10942461B2 (en) Alignment measurement system
US20110051129A1 (en) Inspection Apparatus, Lithographic Apparatus and Method of Measuring a Property of a Substrate
NL2004688A (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100901

Termination date: 20150221

EXPY Termination of patent right or utility model