CN101226724A - 液晶显示器及其驱动方法 - Google Patents

液晶显示器及其驱动方法 Download PDF

Info

Publication number
CN101226724A
CN101226724A CNA2007103063214A CN200710306321A CN101226724A CN 101226724 A CN101226724 A CN 101226724A CN A2007103063214 A CNA2007103063214 A CN A2007103063214A CN 200710306321 A CN200710306321 A CN 200710306321A CN 101226724 A CN101226724 A CN 101226724A
Authority
CN
China
Prior art keywords
grid
data
liquid crystal
frame period
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007103063214A
Other languages
English (en)
Other versions
CN101226724B (zh
Inventor
宋鸿声
闵雄基
崔秉辰
金东一
张修赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Philips LCD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020070019587A external-priority patent/KR100870511B1/ko
Priority claimed from KR1020070028228A external-priority patent/KR100870491B1/ko
Priority claimed from KR1020070035126A external-priority patent/KR100870510B1/ko
Priority claimed from KR1020070037936A external-priority patent/KR100870513B1/ko
Application filed by LG Philips LCD Co Ltd filed Critical LG Philips LCD Co Ltd
Publication of CN101226724A publication Critical patent/CN101226724A/zh
Application granted granted Critical
Publication of CN101226724B publication Critical patent/CN101226724B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/1733Controllable logic circuits
    • H03K19/1737Controllable logic circuits using multiplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • H03K19/21EXCLUSIVE-OR circuits, i.e. giving output if input signal exists at only one input; COINCIDENCE circuits, i.e. giving output only if all input signals are identical
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0257Reduction of after-image effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Abstract

本发明公开了一种液晶显示器件,其包括液晶显示面板,该面板包括供给有数据电压的多条数据线、供给有栅脉冲的多条栅线和多个液晶单元;数据驱动电路,其响应于极性控制信号将数据电压的极性反转,并响应于源输出使能信号向数据线输出数据电压;栅驱动电路,其向栅线供给栅脉冲;和POL/SOE逻辑电路,其对于除第N(其中N是正整数)倍帧周期之外的其他每一帧周期反转极性控制信号,其中POL/SOE逻辑电路在每一第N倍帧周期处控制极性控制信号以使数据电压的极性与前一帧周期的相同,并将在每一第N倍帧周期处的源输出使能信号的脉冲宽度控制为比其他帧周期的长。

Description

液晶显示器及其驱动方法
本申请要求2007年1月15日提交的韩国专利申请No.10-2007-0004255、2007年2月27日提交的10-2007-0019587、2007年3月22日提交的10-2007-0028228、2007年4月10日提交的10-2007-0035126以及2007年4月18日提交的10-2007-0037936的优先权,其在这里结合作为参考。
技术领域
本发明涉及一种液晶显示器件,尤其涉及一种适于通过阻止闪烁和DC图像残留来提高显示质量的液晶显示器件及其驱动方法。
背景技术
液晶显示器件根据视频信号控制液晶单元的光透射率,由此显示图像。有源矩阵型液晶显示器件通过转换供给到形成于每个液晶单元Clc处的薄膜晶体管TFT的数据电压来有源地控制显示图像,如图1中所示,因而提高了运动图像的显示质量。如图1中所示,参考标记“Cst”表示用于保持充在液晶单元Clc中的数据电压的存储电容器。“DL”表示供给有数据电压的数据线,“GL”表示供给有扫描电压以激活薄膜晶体管TFT的栅线。
为了减小液晶的退化并降低DC偏移分量,液晶显示器件由反转方法驱动,其中极性在相邻液晶单元之间和连续帧周期之间反转。如果数据电压的两个极性之间的任意一个极性占统治地位供给较长时间,会产生残留图像。因为在液晶单元中反复充有相同极性的电压,所以产生被称作“DC图像残留”的这种残留图像。
产生DC图像残留时刻的一个例子是当给液晶显示器件供给隔行扫描的数据电压时。隔行扫描方法在奇数帧周期期间给奇数水平线上的液晶单元供给奇数线数据电压,在偶数帧周期期间给偶数水平线上的液晶单元供给偶数线数据电压。
图2图解了表示使用隔行扫描方法施加到液晶单元Clc的数据电压的一个例子的波形图。图2的数据电压表示施加到设置在奇数水平线上的任意一个液晶单元的数据电压。
如图2中所示,使用隔行扫描方法,仅在奇数帧周期器件给设置在奇数水平线上的液晶单元Clc(没有示出)供给高数据电压(即图像数据)。此外,因为数据电压的极性每个帧周期都改变,所以液晶单元Clc仅在奇数帧周期期间供给有正的高电压,而在偶数帧周期期间供给有低电压(即没有图像数据)。由此,像图2的框中所示的波形一样,例如在四个帧周期期间正数据电压变得比负数据电压更加显著,由此产生了DC图像残留现象。
图3显示了由于隔行扫描数据而产生的DC残留现象的实验结果的示例性图。例如,如果使用隔行扫描方法在液晶显示面板上以固定的时间周期显示原始图像(例如图3的左图),则当在原始图像之后向液晶显示面板的所有液晶单元Clc供给中间灰度级(例如127的灰度级)的数据电压时会模糊地出现原始图像的DC图像残留图案(例如图3的右图)。
产生DC图像残留时刻的另一个例子是当图像以固定速度移动或卷动时,这是因为根据卷动(或移动)的图像的卷动速度(或移动速度)和尺寸,在液晶单元Clc中反复积聚相同极性的图像数据电压。图4显示了当以固定速度移动斜线或特征图案时产生的DC残留现象的实验结果的示例性图。
在液晶显示器件中,移动图像的显示质量下降不仅是因为DC图像残留,而且还因为由亮度的视觉差导致的闪烁现象。因此,为了提高液晶显示器件的显示质量,必须阻止或最小化DC图像残留现象和闪烁现象。
发明内容
因此,本发明涉及一种基本上克服了由于现有技术的限制和缺点而导致的一个或多个问题的液晶显示器件及其驱动方法。
本发明的一个目的是提供一种通过阻止DC图像残留和闪烁而提高显示质量的液晶显示器件及其驱动方法。
在下面的描述中将列出本发明其它的特征和优点,一部分从该描述而变得显而易见,或者通过本发明的实践领会到。通过所写说明书及其权利要求以及附图中特别指出的结构可实现和获得本发明的目的和其它优点。
为了实现这些目的和其它优点并根据本发明的目的,如这里具体化和广泛描述的,一种液晶显示器件,包括:液晶显示面板,该面板包括供给有数据电压的多条数据线、供给有栅脉冲的多条栅线和多个液晶单元;数据驱动电路,其响应于极性控制信号将数据电压的极性反转,并响应于源输出使能信号向数据线输出数据电压;栅驱动电路,其向栅线供给栅脉冲;和POL/SOE逻辑电路,其对于除第N(其中N是正整数)倍帧周期之外的其他每一帧周期反转极性控制信号,其中POL/SOE逻辑电路在每一第N倍帧周期处控制极性控制信号以使数据电压的极性与前一帧周期的相同,并将在每一第N倍帧周期处的源输出使能信号的脉冲宽度控制为比其他帧周期的长。
在另一方面,一种液晶显示器件,包括:液晶显示面板,其包括供给有数据电压的多条数据线、供给有栅脉冲的多条栅线和多个液晶单元;图像分析电路,其检测在输入图像中的隔行扫描数据和卷动数据中的任意一种;数据驱动电路,其响应于极性控制信号将数据电压的极性反转,并响应于源输出使能信号向数据线输出数据电压;栅驱动电路,其向栅线供给栅脉冲;和POL/SOE逻辑电路,其对于除第N(其中N是正整数)倍帧周期之外的其他每一帧周期反转极性控制信号,其中当图像分析电路检测到输入图像数据是隔行扫描数据和卷动数据中的任意一种时,该POL/SOE逻辑电路在每一第N倍帧周期处控制极性控制信号以使数据电压的极性与前一帧周期的相同,并将在每一第N倍帧周期处的源输出使能信号的脉冲宽度控制为比其他帧周期的长。
在另一方面中,一种液晶显示器件,包括:液晶显示面板,其包括供给有数据电压的多条数据线、供给有栅脉冲的多条栅线和多个液晶单元;数据驱动电路,其响应于极性控制信号将数据电压的极性反转,并响应于源输出使能信号向数据线输出数据电压;栅驱动电路,其向栅线供给扫描脉冲;和图像分析电路,其检测在输入图像中的隔行扫描数据和卷动数据中的任意一种;第一控制器,其在老化周期期间增加液晶单元的数据电荷量,该老化周期从产生驱动电路的电力一直到之后的预定时间,并当在老化周期之后的正常驱动周期期间通过图像分析电路检测到隔行扫描数据和卷动数据中的任意一种时,第一控制器使用源输出使能信号在每一第N(其中N是正整数)倍帧周期处降低液晶单元的数据电荷量;第二控制器,当在正常驱动周期期间通过图像分析电路检测到隔行扫描数据和卷动数据中的任意一种时,其将在每一第N倍帧周期处供给到液晶单元的数据极性控制为与前一帧周期相同,并使用极性控制信号在所有其他帧周期处反转供给到液晶单元的数据极性。
应当理解,本发明前面的一般性描述和下面的详细描述都是典型性的和解释性的,意在提供所要求保护的本发明进一步的解释。
附图说明
给本发明提供进一步理解并组成说明书一部分的附图图解了本发明的实施方案并与说明书一起用于解释本发明的原理。在附图中:
图1是显示液晶显示器件的液晶单元的电路图;
图2是显示隔行扫描数据的一个例子的波形图;
图3是显示由隔行扫描数据导致的DC图像残留的实验结果屏幕;
图4是显示由卷动数据导致的DC图像残留的实验结果屏幕;
图5是图解依照本发明第一实施方式的液晶显示器件的典型驱动方法的视图;
图6是图解图5中所示的源输出使能信号的波形图;
图7是图解在卷动数据中没有产生DC图像残留的视图;
图8是图解在第N倍帧周期中增加光的实验结果的波形图;
图9是图解在第N倍帧周期中降低光的实验结果的波形图;
图10是图解在隔行扫描数据中没有产生DC图像残留的视图;
图11是图解依照本发明第一实施方式的典型液晶显示器件的方块图;
图12是图解图11中所示的典型数据驱动电路的方块图;
图13是图解图12中所示的典型数字/模拟转换器的电路图;
图14是图解图11中所示的典型POL/SOE逻辑电路的方块图;
图15是图解图14中所示的典型逻辑部分的方块图;
图16是图解图15中所示的典型POL反转信号以及第一和第二极性控制信号的波形图;
图17图解依照本发明第二实施方式的液晶显示器件的典型驱动方法的流程图;
图18是图解依照本发明第二实施方式的典型液晶显示器件的方块图;
图19是图解依照本发明第三实施方式的液晶显示器件的典型驱动方法的流程图;
图20是图解依照本发明第三实施方式的液晶显示器件的典型驱动方法的典型帧构造图;
图21是图解在老化周期(aging period)期间液晶单元的典型光波形的波形图;
图22是图解依照本发明第四实施方式的液晶显示器件的典型驱动方法的流程图;
图23是图解图14中所示的POL/SOE逻辑电路的另一典型实施方式的方块图;
图24是图23中所示的典型电源电压和栅开始脉冲的波形;
图25是图解依照本发明第五实施方式的液晶显示器件的典型驱动方法的流程图;
图26A是图解依照本发明第六实施方式的液晶显示器件的典型驱动方法的流程图;
图26B是显示依照本发明第六实施方式的典型液晶显示器件的方块图;
图27是图解依照本发明第六实施方式的栅驱动电路的典型移位寄存器的方块图;
图28和29是显示在第N倍帧周期中产生的时序信号和扫描脉冲的典型波形图;
图30是显示在除第N倍帧周期之外的其他帧周期产生的栅时序信号和扫描脉冲的典型波形图;
图31是图解依照本发明第七实施方式的液晶显示器件的典型驱动方法的流程图;
图32是显示依照本发明第七实施方式的典型液晶显示器件的方块图;
图33是图解依照本发明第八实施方式的液晶显示器件的典型驱动方法的流程图;
图34是在除第N倍帧周期之外的其他帧周期产生的数据电压和扫描脉冲的典型波形图;
图35是显示在依照本发明第八实施方式的液晶显示器的典型驱动方法中,在第N倍帧周期期间的数据电压和扫描脉冲的典型波形图;
图36是图解图26和图32中所示的典型第二逻辑电路的方块图;
图37是显示在依照本发明第八实施方式的液晶显示器的典型驱动方法中,在第N倍帧周期期间的数据时序控制信号和栅时序控制信号的典型波形图;
图38是图解依照本发明第九实施方式的液晶显示器件的典型驱动方法的流程图;
图39A是图解依照本发明第十实施方式的液晶显示器件的典型驱动方法的流程图;
图39B是图解依照本发明第十实施方式的典型液晶显示器件的方块图;
图40是图解依照本发明第十实施方式的典型逻辑电路的方块图;
图41A是图解依照本发明第十一实施方式的液晶显示器件的典型驱动方法的流程图;
图41B是图解依照本发明第十一实施方式的典型液晶显示器件的方块图;
图42是图解依照本发明第十一实施方式的典型逻辑电路的方块图;
图43是图解图42中所示的典型逻辑部分的方块图;
图44是图解依照本发明第十二实施方式的典型液晶显示器件的方块图;
图45是图解依照本发明第十二实施方式调制栅时序控制信号的典型方法的波形图;
图46是图解依照本发明第十三实施方式的液晶显示器件的典型驱动方法的流程图;以及
图47是图解依照本发明第十三实施方式的典型液晶显示器件的方块图。
具体实施方式
现在将详细描述本发明的实施方式,附图中图解了其实施例。
如图5中所示,依照本发明第一实施方式的液晶显示器件的典型驱动方法在每个帧周期都将供给到液晶单元Clc的数据电压的极性反转,并在每个第N倍帧周期处保持与前一帧周期相同的极性。
‘N’优选为不小于8的整数,因为实验发现当N为不小于8的整数时在隔行扫描数据或卷动数据中似乎都不出现DC图像残留。然而,在不脱离本发明范围的情况下,也可使用其他值的’N’。
此外,如图6中所示,依照本发明第一实施方式的典型驱动方法在第一到第(N-1)帧周期期间产生具有第一脉冲宽度W1的第一源输出使能信号SOE,并且在第N帧周期处产生具有比第一脉冲宽度W1宽的第二脉冲宽度W2的第二源输出使能信号FGDSOE。第一和第二源输出使能信号SOE、FGDSOE是表示数据驱动电路输出的时序控制信号。随后,依照本发明第一实施方式的典型驱动方法在第(N+1)到第(2N-1)帧周期期间产生具有第一脉冲宽度W1的第一源输出使能信号SOE,而在第2N帧周期期间产生具有第二脉冲宽度W2的第二源输出使能信号FGDSOE,等等。换句话说,在每一第N倍帧周期处产生具有第二脉冲宽度W2的第二源输出使能信号FGDSOE,同时在所有其他帧周期处产生具有第一脉冲宽度W1的第一源输出使能信号SOE。
在第一和第二源输出使能信号SOE、FGDSOE的高逻辑部分期间,数据驱动电路产生公共电压Vcom或电荷共享电压。公共电压Vcom是在正数据电压和负数据电压之间的中间电压。电荷共享电压是通过相邻数据线之间的短路而产生的正数据电压和负数据电压的平均值的电压,所述相邻数据线中的一条在源输出使能信号SOE的高逻辑部分期间供给有正电压,而另一条设置为靠近上述一条并供给有负数据电压。在第一和第二源输出使能信号SOE、FGDSOE的低逻辑周期期间,数据驱动电路产生正数据电压+Vdata或负数据电压-Vdata。
在第一到第(N-1)帧周期和第(N+1)到第(2N-1)帧周期期间,第一源输出使能信号SOE的高逻辑部分和栅脉冲GP没有产生交迭,或者交迭非常短的时间。因此,在第一到第(N-1)帧周期和第(N+1)到第(2N-1)帧周期期间,当与液晶单元Clc连接的TFT通过栅脉冲GP导通时,液晶单元Clc充有正数据电压+Vdata或负数据电压-Vdata。随后,在TFT截止之后通过存储电容器Cst保持数据电压+Vdata或-Vdata。由虚线VCLc(SOE)表示由第一源输出使能信号SOE充入的电压量。
然而,对于第N倍帧周期的每一个(例如第N和第2N帧周期)来说,第二源输出使能信号FGDSOE的高逻辑部分和栅脉冲GP产生相对长时间的交迭。因此,在每个第N倍帧周期(例如第N和第2N帧周期)处,在TFT由栅脉冲GP导通时被充入公共电压Vcom或电荷共享电压之后,液晶单元Clc被充入数据电压+Vdata或-Vdata。随后,在TFT截止之后通过存储电容器Cst将液晶单元Clc保持在数据电压+Vdata和-Vdata。由虚线VClc(FGDSOE)表示由第二源输出使能信号FGDSOE充入的电压量。
因此,当在每一帧周期处给液晶单元Clc供给相同灰度级的数据电压+Vdata和-Vdata时,在每个第N倍帧周期(例如第N和第2N帧周期)处液晶单元Clc的电荷量小于在第一到第(N-1)帧周期和第(N+1)到第(2N-1)帧周期期间的电荷量,这是因为在每个第N倍帧周期处,由于第二源输出使能信号FGDSOE和栅脉冲GP的交迭,液晶单元Clc在充入公共电压Vcom或电荷共享电压之后被充入数据电压+V数据和-V数据。
为了举例目的,如果第一源输出使能信号SOE的第一脉冲宽度W1设为’1’,则第二源输出使能信号FGDSOE的第二脉冲宽度W2就应设为1.35-1.71。尽管通过实验发现这些值是最佳的第二脉冲宽度值,在实验中在隔行扫描方法和卷动过程中既没有产生DC图像残留也没有产生闪烁,但在不脱离本发明范围的情况下,可使用第一脉冲宽度W1和第二脉冲宽度W2之间的其他比例。
实验包括将2.24μs作为第一源输出使能信号SOE的第一脉冲宽度W1,对于N个帧周期来说通过控制数据电压使其具有与前一帧相同的极性来驱动液晶显示面板,调整第二源输出使能信号FGDSOE的第二脉冲宽度W2,并检查在隔行扫描方法和卷动期间是否存在DC图像残留和闪烁。使用该实验,在隔行扫描方法和卷动期间既没有产生DC图像残留也没有产生闪烁的第二源输出使能信号的第二脉冲宽度W2被确定为大约3.04μs-3.8μs。发现如果第二源输出使能信号FGDSOE的第二脉冲宽度W2比3.04μs窄,则在第N帧周期和第2N帧周期时液晶单元Clc的电荷量降低不充分。因而,在屏幕上视觉感觉到闪烁。另一方面,如果第二源输出使能信号FGDSOE的第二脉冲宽度W2比3.84μs宽,则在第N帧周期和第2N帧周期时液晶单元Clc的电荷量下降过大。因而,在屏幕上视觉感觉到闪烁和亮度减小。
如上所述,依照本发明第一实施方式的液晶显示器件的典型驱动方法的原理是,在除了每一第N倍帧周期之外的每个帧周期期间通过反转数据电压的极性并在每一第N倍帧周期处增加源输出使能信号SOE的脉冲宽度,由此降低液晶单元Clc的电荷量,从而阻止DC图像残留和闪烁。
图7到9是解释当向任意液晶单元Clc供给卷动数据时DC图像残留和闪烁阻止效果的视图。如图7中所示,如果符号和字符例如以每帧8像素的速度移动,且使用极性控制信号POL以8个帧周期为单位(即每一第8倍帧周期)将数据电压控制为与前面帧相同的极性,则在图7中所示的阴影帧周期中,任意的液晶单元Clc就被充入符号和字符的数据电压。注意极性图案,数据电压以“+”到“-”到“++”到“--”等的顺序变化。因此,本发明阻止了因为在符号和字符以固定速度移动的卷动数据中液晶单元Clc中充入的电压极性的周期性反转而产生的DC图像残留。
从图8中所示的光波形可以看出,设置在液晶显示面板顶部上的光电二极管的输出波形显示出,当在每个第8帧周期处相同极性的数据电压重复两个帧周期时,在液晶单元中积聚了相同极性的数据电压,由此增加了积聚电压。由于相同极性的积聚电压,液晶单元Clc的亮度在极性保持相同的两个帧周期之间快速增加。如图7中所示,每一第8帧周期都发生该现象,由此产生了闪烁效果。为了阻止这种闪烁现象,依照本发明实施方式的液晶显示器件的驱动方法在极性保持相同的每一第N倍帧周期处使用第二源输出使能信号FGDSOE来减小液晶单元Clc的电荷量,由此阻止亮度的快速变化。图9显示了下述光波形,其显示出阻止了亮度的激烈变化。
图10是图解当给任意液晶单元Clc供给隔行扫描数据时DC图像残留和闪烁现象效果的视图。如图10中所示,如果给任意的液晶单元Clc供给隔行扫描数据,仅在第(N-1)帧周期和第(N+1)帧周期(即奇数帧周期)中给液晶单元Clc供给高数据电压,在第N帧周期和第(N+2)帧周期(即偶数帧周期)中给其供给相对低的黑电压或平均电压。结果,第(N-1)帧周期中供给的正数据电压和第(N+1)帧周期中供给的负数据电压彼此抵消,从而在液晶单元Clc中没有积聚偏置极性的电压电荷。因此,依照本发明的液晶显示器件没有产生DC图像残留和闪烁,即使当给其供给隔行扫描数据时。
图11到15图解了依照本发明第一实施方式的典型液晶显示器件。如图11中所示,依照本发明第一实施方式的液晶显示器件包括液晶显示面板100、时序控制器101、POL/SOE逻辑电路102、数据驱动电路103和栅驱动电路104。
在液晶显示面板100中,在两个玻璃基板之间注入有液晶分子。液晶显示面板100包括m×n个液晶单元Clc,其中m条数据线D1到Dm和n条栅线G1到Gn以彼此交叉的矩阵图案设置。在液晶显示面板100的一个玻璃基板上形成有数据线D1到Dm、栅线G1到Gn、TFT、与TFT连接的液晶单元Clc的像素电极1、存储电容器Cst以及其他组件。在液晶显示面板100的另一个玻璃基板上形成有黑矩阵、滤色片、公共电极2以及其他组件。
在一个选择例中,在垂直电场驱动结构中,如TN(扭曲向列)模式和VA(垂直对准)模式中,公共电极2形成在与像素电极1相对的玻璃基板上。在另一选择例中,在水平电场驱动结构中,如IPS(共平面开关)模式和FFS(边缘场切换)模式中,公共电极2与像素电极1一起形成在相同的玻璃基板上。公共电极2供给有正数据电压和负数据电压之间的公共电压Vcom。在液晶显示面板100的上玻璃基板和下玻璃基板上形成有光轴彼此垂直交叉的偏振器,在面对液晶的内表面上形成有用于设定液晶预倾角的定向膜。
时序控制器101接收时序信号,如垂直/水平同步信号Vsync、Hsync,数据使能信号,时钟信号和其他控制信号,从而控制POL/SOE逻辑电路102、栅驱动电路104和数据驱动电路102的操作时序。控制信号包括栅开始脉冲GSP、栅移位时钟信号GSC、栅输出使能GOE、源开始脉冲SSP、源采样时钟SSC、源输出使能信号SOE和第一极性控制信号POL。栅开始脉冲GSP表示当屏幕将要显示时在第一垂直周期中扫描开始的开始水平线。作为用于连续移动栅开始脉冲GSP的定序控制信号,栅移位时钟信号GSC输入到栅驱动电路内的移位寄存器并具有对应于TFT的导通周期的脉冲。栅输出信号GOE表示栅驱动电路104的输出。源开始脉冲SSP是数据控制信号DDC并表示在将要显示数据的第一水平线中的开始像素。源采样时钟SSC表示基于上升或下降沿在数据驱动电路103内的数据的锁存操作。源输出使能信号SOE表示数据驱动电路103的输出。第一极性控制信号POL表示供给到液晶显示面板100的液晶单元Clc的数据电压的极性。第一极性控制信号POL可产生为其中对每个水平周期都反转逻辑的1点反转极性控制信号和其中对每两个水平周期反转逻辑的2点反转极性控制信号中的任意一种。
时序控制器101以120Hz或60Hz的帧频产生时序控制信号,从而基于120Hz或60Hz控制POL/SOE逻辑电路102、数据驱动电路103和栅驱动电路104的操作。帧频是对应于垂直同步信号Vsync的频率,其表示每秒的屏幕数。120Hz帧频每秒产生在液晶显示面板100上显示的120个屏幕,60Hz帧频每秒产生在液晶显示面板100上显示的60个屏幕。与60Hz帧频相比,当液晶显示器件以120Hz帧频驱动时不怎么注意到闪烁。
POL/SOE逻辑电路102接收栅开始脉冲GSP和第一极性控制信号POL,为了阻止如上所述的残留图像和闪烁,其在N的倍数的帧周期中(即在第N,第2N帧周期等中)产生第二极性控制信号FGDPOL,从而给数据驱动电路103选择性地供给第一极性控制信号POL或第二极性控制信号FGDPOL。第一极性控制信号POL具有对于每个水平周期(即1点)或对于每两个水平周期(即2点)反转的逻辑,且为了对于每个帧周期都反转数据电压的极性,该逻辑还可对于每个帧周期反转,如图16中所示。在每个第N倍帧周期处,第二极性控制信号FGDPOL以与前一帧周期相同的相位产生并具有对于每个水平周期或对于每两个水平周期反转的逻辑,从而以与前一帧周期相同的极性图案控制数据电压的极性,如图16中所示。
POL/SOE逻辑电路102还接收第一源输出使能信号SOE和第三时钟信号CLK3,从而POL/SOE逻辑电路102产生被调整为在每一第N倍帧周期处具有较宽脉冲信号的第二源输出使能信号FGDSOE。POL/SOE逻辑电路102选择性地给数据驱动电路103输出第一源输出使能信号SOE或第二源输出使能信号FGDSOE。第一源输出使能信号SOE产生为具有第一脉冲宽度W1。第二源输出使能信号FGDSOE产生为具有比第一脉冲宽度W1宽的第二脉冲宽度W2。在每一第N倍帧周期处第二源输出使能信号FGDSOE供给到数据驱动电路103,在其他所有帧周期处供给第一源输出使能信号SOE。
依照本发明第一实施方式的典型液晶显示器件还包括连接在时序控制器101与POL/SOE逻辑电路102之间的供给第三时钟信号CLK3的多路复用器。多路复用器根据供给到其自身的控制端子的控制信号SEL,选择从时序控制器的内部振荡器供给的第一时钟信号CLK1或从外部振荡器供给的第二时钟信号CLK2。根据控制信号SEL,多路复用器给POL/SOE逻辑电路102供给选择的时钟信号CLK1或CLK2作为第三时钟信号CLK3。多路复用器的控制端子与任意引脚相连。该任意引脚与多路复用器的控制端子连接并可由制造商选择性地连接到地电压源GND或电源电压Vcc。例如,如果任意引脚与地电压源GND连接,则多路复用器具有供给有“0”的选择控制信号SEL的控制端子,从而输出第一时钟信号CLK1作为第三时钟信号CLK3,如果任意引脚与电源电压Vcc连接,则多路复用器具有供给有“1”的选择控制信号SEL的控制端子,从而输出第二时钟信号CLK2作为第三时钟信号CLK3。
数据驱动电路103在时序控制器101的控制下锁存数字视频数据RGB。数据驱动电路103根据极性控制信号POL/FGDPOL将数字视频数据转换为模拟正/负伽玛补偿电压,从而产生正/负模拟数据电压,由此给数据线D1到Dm供给数据电压。
栅驱动电路104由多个栅驱动集成电路(之后称作“IC”)组成,每个栅集成电路都包括移位寄存器、用于将移位寄存器的输出信号的摆动宽度转换为适于驱动液晶单元的TFT的摆动宽度的电平移位器和连接在电平移位器与栅线G1到Gn之间的输出缓冲器。栅驱动电路104顺序输出具有大约一个水平周期的脉冲宽度的栅脉冲。POL/SOE逻辑电路102可以嵌在时序控制器101内。
依照本发明第一实施方式的典型液晶显示器件还包括用于给时序控制器101供给数字视频数据RGB和时序信号Vsync、Hsync、DE、CLK的视频信号源105。视频信号源105包括广播信号、外部器件接口电路、图形处理电路、线存储器106等。视频信号源105从外部器件或广播信号提取视频数据并将视频数据转换为数字数据,从而供给到时序控制器101。由视频信号源105接收的隔行扫描广播信号在被输出之前存储在线存储器106中。如上所述,隔行扫描广播信号的视频数据在奇数帧周期中仅存在于奇数线中,在偶数帧周期中仅存在于偶数线中。因此,如果接收到隔行扫描广播信号,则视频信号源105产生存储在线存储器106中的黑色数据值或有效数据的平均值,作为奇数帧周期中的偶数线数据和偶数帧周期中的奇数线数据。
视频信号源105将时序信号Vsync、Hsync、DE、CLK与数字视频数据一起供给到时序控制器101。此外,视频信号源105给电路,例如时序控制器101、POL/SOE逻辑电路102、数据驱动电路103、栅驱动电路104、用于产生液晶显示面板的驱动电压的DC-DC转换器、用于点亮背光单元的光源的反相器等供给电力。
图12和13是详细显示典型数据驱动电路103的电路图。参照图12和13,数据驱动电路103包括多个源IC,每一个源IC都驱动k(k是小于m的整数)条数据线D1到Dk。源IC包括移位寄存器111、数据寄存器112、第一锁存器113、第二锁存器114、数字/模拟转换器(之后将其称作“DAC”)115、电荷共享电路116和输出电路117。
移位寄存器111根据源采样时钟SSC移动来自时序控制器101的源开始脉冲SSP,从而产生采样信号。此外,移位寄存器111移位源开始脉冲SSP,从而将进位信号CAR传送到下一级的移位寄存器111。数据寄存器112临时存储由时序控制器101划分的奇数像素的数字视频数据RGBodd和偶数像素的数字视频数据RGBeven,并将存储的数字视频数据RGBodd、RGBeven供给到第一锁存器113。第一锁存器113响应于从移位寄存器111顺序输入的采样信号而采样来自数据寄存器112的数字视频数据RGBodd和RGBeven,锁存数字视频数据RGBodd和RGBeven并将它们输出。第二锁存器114锁存从第一锁存器113输入的锁存数据,并在源输出使能信号SOE、FGDSOE的低逻辑周期期间与其他IC的其他第二锁存器114同时输出数字视频数据。
如图13中所示,图12的DAC 115包括供给有正伽马基准电压GH的P-解码器PDEC 121、供给有负伽马基准电压GL的N-解码器NDEC 122和响应于极性控制信号FGDPOL、POL而选择P-解码器121的输出或N-解码器122的输出的多路复用器123。P-解码器121解码从第二锁存器114输入的数字视频数据并输出对应于该数据的灰度级值的正伽马补偿电压。N-解码器122解码从第二锁存器114输入的数字视频数据并输出对应于该数据的灰度级值的负伽马补偿电压。多路复用器123响应于极性控制信号FGDPOL、POL在正伽马补偿电压和负伽马补偿电压之间进行选择,并输出作为模拟数据电压的选择的正/负伽马补偿电压。
电荷共享电路116在源输出使能信号SOE、FGDSOE的高逻辑周期期间将相邻的数据输出通道短路,从而输出相邻数据输出通道中数据电压的平均值以作为电荷共享电压。可选择地,电荷共享电路116在源输出使能信号SOE、FGDSOE的高逻辑周期期间给数据输出通道供给公共电压Vcom。如上所述,电荷共享电路116产生电荷共享电压或公共电压,从而减小正数据电压和负数据电压的快速变化。输出电路117包括用于将供给到数据线D1到Dk的模拟数据电压的信号衰减最小化的缓冲器。
图14和15是详细显示典型POL/SOE逻辑电路102的电路图。如图14中所示,POL/SOE逻辑电路102包括逻辑部分131、第一多路复用器132和第二多路复用器133。逻辑部分131从时序控制器101接收栅开始脉冲GSP、第一极性控制信号POL、第一源输出使能信号SOE和时钟信号CLK3,并在每一第N倍帧周期处产生第二极性控制信号FGDPOL和第二源输出使能信号FGDSOE。
第一多路复用器132根据施加到其控制端子的控制信号(下面将要描述的SEL2或SEL3)的逻辑值在第一极性控制信号POL和第二极性控制信号FGDPOL之间进行选择。第二多路复用器133根据施加到其自身控制端子的控制信号的逻辑值在第一源输出使能信号SOE和第二源输出使能信号FGDSOE之间进行选择。
第一和第二多路复用器132、133的控制端子与任意引脚连接。该任意引脚与第一和第二多路复用器132、133的控制端子连接,并可由制造商选择性地连接到地电压源GND或电源电压Vcc。例如,如果任意引脚与地电压源GND连接,则第一多路复用器132具有供给有“0”的选择控制信号SEL2的控制端子,从而输出第二极性控制信号FGDPOL,第二多路复用器133具有供给有“0”的选择控制信号SEL2的控制端子,从而输出第二源输出使能信号FGDSOE。如果任意引脚与电源电压Vcc连接,则第一多路复用器132具有供给有“1”的选择控制信号SEL2的控制端子,从而输出第一极性控制信号POL,第二多路复用器133具有供给有“1”的选择控制信号SEL2的控制端子,从而输出第一源输出使能信号SOE。
如图15和16中所示,逻辑部分131包括帧计数器141、POL反相器142、异或门(之后称作“XOR”)143、SOE时序分析器144、SOE调节器145和第三多路复用器146。
帧计数器141响应于在一个帧周期期间产生一次并在与该帧周期的开始同时产生的栅开始脉冲GSP而输出帧计数信息Fcnt,其表示将要在液晶显示面板100上显示的图像的帧数。此外,帧计数器141产生值“N”,其表示产生第二极性控制信号FGDPOL和第二源输出使能信号FGDSOE的第N个帧周期的倍数。
POL反相器142接收来自帧计数器141的帧计数信息Fcnt并对帧计数信息Fcnt用N进行取模(modulus division),由此当操作结果的余数为“0”时产生反转的输出信号。输出信号是POL反转信号POLinv。因此,如图16中所示,输出信号POLinv的逻辑(即高或低逻辑)保持(N-1)个帧周期,并且当帧周期是N的倍数时输出信号POLinv的逻辑反转。因此,从POL反相器142输出的POL反转信号POLinv表示每个第N倍帧周期的开始时间。XOR143对第一极性控制信号POL和POL反转信号POLinv进行异或操作,从而产生第二极性控制信号FGDPOL,以在第N帧中将极性图案保持为与前一帧周期(例如第(N-1)帧周期)中的极性图案相同。
SOE时序分析器144以时钟信号CLK3为单位分析第一源输出使能信号SOE并检测第一源输出使能信号SOE的上升沿、脉冲宽度和下降沿。SOE调节器145使用来自SOE时序分析器144的SOE信息Check_SOE,在每一第N倍帧周期处产生具有第二脉冲宽度W2的第二源输出使能信号FGDSOE。根据来自帧计数器141的N帧信息,第三多路复用器146在每一第N倍帧周期处选择SOE调节器145的输出,并对于其他所有帧周期,第三多路复用器146选择第一源输出使能信号SOE,由此产生第二源输出使能信号FGDSOE。
图17是图解依照本发明第二实施方式的液晶显示器件的典型驱动方法的流程图。如图17中所示,依照本发明第二实施方式的液晶显示器件的典型驱动方法包括分析输入数据,从而判断输入数据是否是可能产生DC图像残留的数据(例如输入数据是隔行扫描数据或卷动数据)(S1,S2)。如果确定输入数据不可能导致DC图像残留,则液晶显示器件就构造成使用极性信号POL和源输出信号SOE进行正常操作(S5)。
然而,如果确定当前的输入数据可能导致DC图像残留(S2),则判断当前帧是否是N的倍数(S3)。如果当前帧是第N倍帧周期,则使用第二极性控制信号FGDPOL和第二源输出使能信号FGDSOE控制将要在液晶显示面板上显示的数据电压的极性(S4)。
图18图解了依照本发明第二实施方式的典型液晶显示器件。如图18中所示,依照本发明第二实施方式的液晶显示器件包括视频信号源105、液晶显示面板100、图像分析电路161、时序控制器101、POL/SOE逻辑电路162、数据驱动电路103和栅驱动电路104。在该实施方式中,视频信号源105、液晶显示面板100、时序控制器101、数据驱动电路103和栅驱动电路104与前述第一个实施方式的相同。因而,对相同组件给出相同的附图标记,并将省略其详细描述。
图像分析电路161判断当前输入图像的数字视频数据是否是可能产生DC图像残留的数据。例如,图像分析电路161比较在一帧图像中相邻线之间的数据并确定当前输入数据是否是隔行扫描数据。如果线之间的数据不小于预定的阈值,则确定当前输入的数据是隔行扫描数据。此外,图像分析电路161将一帧中每个像素的数据与另一帧进行比较,从而检测显示图像中的移动图像和移动图像的速度。如果移动图像以预定速度移动,则确定具有移动图像的帧数据为卷动数据。根据图像分析的结果,图像分析电路161产生选择信号SEL3,其表示当前输入的数据是隔行扫描数据或卷动数据。然后使用选择信号SEL3控制POL/SOE逻辑电路162。
当检测到可能导致DC图像残留的输入数据时,POL/SOE逻辑电路162响应于由图像分析电路161产生的选择信号SEL3的第一逻辑值,在第N倍帧周期中产生第二极性控制信号FGDPOL和第二源输出使能信号FGDSOE。否则,POL/SOE逻辑电路162响应于来自图像分析电路161的选择信号SEL3的第二逻辑值,产生第一极性控制信号POL和第一源输出使能信号SOE。时序控制器101、图像分析电路161和POL/SOE逻辑电路162可集成为一个芯片。
图19和20显示了依照本发明第三实施方式的液晶显示器件的典型驱动方法。如图19和20中所示,除了控制第二源输出使能信号FGDSOE和第二极性控制信号FGDPOL的产生之外,依照本发明第三实施方式的液晶显示器件的典型驱动方法在老化周期期间通过控制源输出使能信号的脉冲宽度增加液晶单元的电荷量并对每个帧周期来说将液晶单元中充入的数据电压的极性反转。“老化周期”是当液晶单元的响应特性没有达到满意级别时的周期,其被确定为当给液晶显示器件供给电力时与液晶单元达到全面响应特性之间的周期。老化周期可以是从供电时开始大约3到5分钟。然而,在不脱离本发明范围的情况下,老化周期可根据液晶面板的液晶特性而变化。
具体地说,依照本发明第三实施方式的液晶显示器件的典型驱动方法包括对于老化周期来说通过控制供给到数据驱动电路的源输出使能信号SOE的脉冲宽度来增加液晶单元的电荷量(S191和S192)。如上所述,通过源输出使能信号SOE控制液晶单元中充入的数据电压量。因此,通过产生具有较窄脉冲宽度的源输出使能信号SOE,可增加液晶单元中充入的数据电压量。此外,与图16中所示的第一极性控制信号POL一样,本发明产生对于老化周期来说供给到数据驱动电路的极性控制信号,由此对于每个帧周期来说反转数据电压的极性(S193)。
通过实验发现,如果在老化周期期间使用如上所述的第二源输出使能信号FGDSOE和第二极性控制信号FGDPOL驱动液晶显示器件,则液晶单元的光波形包括负脉冲信号(undershoot),并且在老化周期期间亮度显著减小,如图21中所示。产生该现象是因为在老化周期(即供电之后的暖机周期)期间液晶的响应特性较慢。因此,依照本发明第三实施方式的液晶显示器件的典型驱动方法通过使源输出使能信号SOE的脉冲宽度相对较窄并在老化周期期间在每一帧周期处反转数据电压的极性而增加液晶单元的数据电荷量,由此在老化周期期间提高液晶单元的亮度和响应速度。
在老化周期过去之后(即在正常驱动周期期间),依照本发明第三实施方式的液晶显示器件的典型驱动方法使用如上所述的第二极性控制信号FGDPOL和第二源输出使能信号FGDSOE控制液晶单元中充入的数据电压的极性和液晶单元中充入的数据电压量。例如,依照本发明第三实施方式的液晶显示器件的典型驱动方法以上述方式使用第二源输出使能信号FGDSOE在正常驱动周期过程中在每一第N倍帧周期处降低液晶单元中充入的数据电压的电荷量。也就是说,本发明通过使用具有相对较窄脉冲宽度的源输出使能信号SOE在正常驱动周期(即在老化周期过去之后)过程中在除第N倍帧周期之外的其他每一帧周期处增加液晶单元的数据电压量。在每一第N倍帧周期处,第一源输出使能信号SOE转换为具有相对较宽脉冲宽度的第二源输出使能信号FGDSOE,由此减小液晶单元的数据电荷量(S194)。此外,依照本发明第三实施方式的液晶显示器件的典型驱动方法还在正常驱动周期(即老化周期之后)期间将极性控制信号POL转换为第二极性控制信号FGDPOL,如图16中所示,从而将在每一第N倍帧周期处液晶单元中充入的数据电压的极性控制为与前一帧周期相同,并对于其余帧周期来说在每个帧周期处反转液晶单元中充入的数据电压的极性(S195)。
图22是图解依照本发明第四实施方式的液晶显示器件的驱动方法的典型控制顺序的流程图。如图20和22中所示,依照本发明第四实施方式的液晶显示器件的典型驱动方法在老化周期期间增加液晶单元的电荷量,将在第N倍帧周期处液晶单元中充入的数据电压的极性控制为与前面的帧周期相同,并对于其余帧周期来说在每个帧周期处反转液晶单元中充入的数据电压的极性。
具体地说,本发明通过将老化周期期间供给到数据驱动电路的源输出使能信号SOE的脉冲宽度控制为较窄来增加液晶单元的数据电压量(S221和S222)。此外,本发明在老化周期期间使用第二极性控制信号FGDPOL控制从数据驱动电路输出的数据电压的极性,从而将在每个第N倍帧周期处液晶单元中充入的数据电压的极性控制为与前面的帧周期相同,并对于其余帧周期来说在每个帧周期处反转液晶单元中充入的数据电压的极性(S223)。
在老化周期过去之后(即在正常驱动周期期间),依照本发明第四实施方式的液晶显示器件的驱动方法遵循对于上面第三实施方式的正常驱动周期所述的相同步骤。也就是说,在老化周期过去之后,本发明在每一第N倍帧周期处使用具有比第一源输出使能信号SOE宽的脉冲宽度的第二源输出使能信号FGDSOE降低液晶单元的数据电荷量(S224)。此外,在老化周期之后,通过使用第二极性控制信号FGDPOL将在每一第N倍帧周期处充入在液晶单元中的数据电压的极性保持为与前面的帧周期相同,并对于其余帧周期来说在每个帧周期处反转液晶单元中充入的数据电压的极性(S225)。
可根据图11中所示的液晶显示器件加上图23中所示的老化稳定电路234来执行依照本发明第三和第四实施方式的液晶显示器件的典型驱动方法。如图23中所示,POL/SOE逻辑电路(例如图11中的102,图18中的162)在老化周期期间或之后接收栅开始脉冲GSP和第一极性控制信号POL并输出第二极性控制信号FGDPOL(例如如图16中所示)。此外,在老化周期之后,POL/SOE逻辑电路(102,162)接收第一源输出使能信号SOE和第三时钟信号CLK3,并在每一第N倍帧周期处输出脉冲宽度被调整为比第一源输出使能信号SOE宽的第二源输出使能信号FGDSOE,并在所有其他帧周期处输出具有较窄脉冲宽度的第一源输出使能信号SOE,从而阻止产生残留图像和闪烁。POL/SOE逻辑电路(102,162)根据由制造商确定的选择信号SEL2可选择性地向数据驱动电路103供给第一和第二极性控制信号POL、FGDPOL以及第一和第二源输出使能信号SOE、FGDSOE中的任意一个。
依照本发明第四实施方式,POL/SOE逻辑电路(102,162)包括逻辑部分231,第一和第二多路复用器232、233和老化稳定电路234。逻辑部分231根据时钟信号CLK3、栅开始脉冲GSP和第一源输出使能信号SOE产生第二源输出使能信号FGDSOE,还输出第二极性控制信号FGDPOL。逻辑部分231可通过图5中所示的电路实现。
第一多路复用器232根据来自老化稳定电路234的控制信号在第一极性控制信号POL和第二极性控制信号FGDPOL之间进行选择。第二多路复用器233根据来自老化稳定电路234的控制信号在第一源输出使能信号SOE和第二源输出使能信号FGDSOE之间进行选择。
当用户打开液晶显示器件或视频信号源105的电源时,如图24中所示产生复位信号Reset和电源电压Vcc。老化稳定电路234通过用栅开始脉冲GSP计算电源电压Vcc的供给周期而确定老化周期,如图24中所示,并控制第二多路复用器233,从而在老化周期期间输出第一源输出使能信号SOE。老化稳定电路234控制第一多路复用器232,从而在老化周期期间输出第一极性控制信号POL或第二极性控制信号FGDPOL。
图25是图解依照本发明第五实施方式的液晶显示器件的典型驱动方法的流程图。如图25中所示,依照本发明第五实施方式的液晶显示器件的典型驱动方法是如上所述第一到第四实施方式的组合。也就是说,依照本发明第五实施方式的液晶显示器件的典型驱动方法在老化周期期间使用第一源输出使能信号SOE控制数据驱动电路,由此增加液晶单元的数据电荷量。此外,本发明在老化周期期间使用第一极性控制信号POL对于每个帧周期都反转供给到液晶单元的数据电压的极性,或者使用第二极性控制信号FGDPOL将第N倍帧周期处充入在液晶单元中的数据电压的极性控制为与前面的帧周期相同,并对于其余帧周期来说在每一帧周期处都反转充入在液晶单元中的数据电压的极性(S251,S252)。
一旦液晶显示器件在正常驱动周期期间(即在老化周期过去之后)操作,本发明就分析之后的输入数据并判断该输入数据是否是可能导致DC图像残留的数据,如隔行扫描数据或卷动数据(S253,S254)。在步骤S254中,如果当前输入的数据是可能导致DC图像残留的数据,则判断当前帧周期是否是第N倍帧周期。如果当前帧周期是第N倍帧周期,就使用第二极性控制信号FGDPOL控制将要在液晶显示面板中显示的数据电压的极性,并使用第二源输出使能信号FGDSOE控制液晶单元的数据电荷量,从而使其减小(S255,S256)。如果当前输入的数据不是可能导致DC图像残留的数据,则使用第一极性控制信号POL控制将要在液晶显示面板中显示的数据电压的极性,并使用第一源输出使能信号SOE控制液晶单元的数据电荷量,从而使其增加(S257)。
结合图18中所示的液晶显示器件的POL/SOE逻辑电路,可依照图18中所示的液晶显示器件加上图23中所示的老化稳定电路234执行依照本发明第五实施方式的液晶显示器件的典型驱动方法。如图18到25中所示,POL/SOE逻辑电路162通过计算电源电压Vcc的供给周期而确定老化周期,在老化周期期间产生第一或第二极性控制信号POL、FGDPOL,并在老化周期期间输出第一源输出使能信号SOE。当输入可能产生DC图像残留的数据时,在老化周期之后,POL/SOE逻辑电路162响应于来自图像分析电路161的选择信号SEL3的第一逻辑值而输出第二极性控制信号FGDPOL和第二源输出使能信号FGDSOE。另一方面,如果输入的数据不可能导致DC图像残留,则在老化周期之后,POL/SOE逻辑电路162响应于来自图像分析电路161的选择信号SEL3的第二逻辑值而输出第一极性控制信号POL和第一源输出使能信号SOE。
图26A图解依照本发明第六实施方式的液晶显示器件的典型驱动方法。如图26A中所示,依照本发明第六实施方式的液晶显示器件的典型驱动方法计算随数字视频数据输入的时序信号,从而计算帧周期(S261)。接着,依照本发明第六实施方式的液晶显示器件的典型驱动方法在每个帧周期处反转帧极性,从而在每个帧周期处反转液晶单元Clc中充入的数据电压的极性(S262和S263),并将第N倍帧周期的帧极性保持为与前一帧周期的帧极性相同(S262和S264)。
帧极性是指由每个帧周期内由极性控制信号POL确定的液晶单元中数据电压的极性。极性控制信号POL从时序控制器产生。本发明产生第二极性控制信号FGDPOL,从而将在第N倍帧周期处供给到液晶单元的数据电压的极性控制为与在前一帧周期中供给到液晶单元的数据电压相同。本发明在所有其他帧周期处反转供给到液晶单元的数据电压的极性。第二极性控制信号FGDPOL产生为在第N倍帧周期中具有与前一帧周期相同的相位,并在所有其他帧周期处反转。此外,第二极性控制信号FGDPOL的逻辑在第一帧周期内每个水平周期(例如1点)或每两个水平周期(例如2点)处反转。因此,在第N倍帧周期之前的帧周期处液晶单元中充入的数据电压的极性对于每个帧周期都反转(S262和S263),并且在第N倍帧周期和前一帧周期处液晶单元中充入的数据电压的极性被控制为相同(S262和S264)。除了在第N倍帧周期期间之外,依照本发明第六实施方式的液晶显示器件的典型驱动方法没有减小液晶单元中充入的电压量(S265)。
为了通过向两个帧周期施加具有相同极性的数据电压来补偿第N倍帧周期期间液晶单元的过度充电,依照本发明第六实施方式的液晶显示器件的典型驱动方法临时向液晶单元供给具有不同极性的电压,从而降低在第N倍帧周期期间液晶单元中充入的电压量(S266)。为了降低在第N倍帧周期期间液晶单元中充入的电压量,本发明在第N倍帧周期期间施加用于控制栅驱动电路操作时的时序的不同栅时细控制信号,从而为每条栅线连续产生两个扫描脉冲,以使供给到相邻栅线的扫描脉冲的一部分交迭。
图26B显示了依照本发明第六实施方式的典型液晶显示器件。如图26B中所示,依照本发明第六实施方式的典型液晶显示器件包括液晶显示面板100、时序控制器261、第一逻辑电路262、数据驱动电路263、栅驱动电路264、和第二逻辑电路267。图26B的液晶显示面板可以根据上面参照第一实施方式所述的液晶显示面板100来实现。因此这里不再重复液晶显示面板100的详细描述。
时序控制器261接收时序信号,如垂直/水平同步信号Vsync和Hsync、数据使能信号、时钟信号和其他控制信号,从而产生控制数据驱动电路263、栅驱动电路264以及第一和第二逻辑电路262和267的操作时序的控制信号。控制信号包括具有栅开始脉冲GSP、栅移位时钟信号GSC和栅输出使能GOE的栅时序控制信号等。控制信号还包括具有源开始脉冲SSP、源采样时钟SSC、源输出使能信号SOE和第一极性控制信号POL的数据时序控制信号。栅开始脉冲GSP是表示当屏幕显示时在第一垂直周期中扫描开始的开始水平线的时序控制信号。也就是说,栅开始脉冲GSP是供给到第一栅线的第一扫描脉冲。栅移位时钟信号GSC输入到栅驱动电路内的移位寄存器,从而顺序移位栅开始脉冲GSP。源开始脉冲SSP表示在将要显示图像数据的第一水平线中的开始像素。源采样时钟SSC表示基于上升沿或下降沿在数据驱动电路263内的数据的锁存操作。源输出使能信号SOE表示数据驱动电路263的输出。
第一极性控制信号POL表示供给到液晶显示面板100的液晶单元Clc的数据电压的极性。第一极性控制信号POL可产生为其中对每个水平周期都反转逻辑的1点反转极性控制信号和其中对每两个水平周期反转逻辑的2点反转极性控制信号中的任意一种。时序控制器261以120Hz或60Hz的帧频产生时序控制信号,从而基于120Hz或60Hz控制第一逻辑电路262、数据驱动电路263和栅驱动电路264的操作。
帧频是对应于垂直同步信号Vsync的频率,其表示每秒的屏幕数。120Hz帧频每秒产生在液晶显示面板100上显示的120个屏幕,60Hz帧频每秒产生在液晶显示面板100上显示的60个屏幕。与60Hz帧频相比,当液晶显示器件以120Hz帧频驱动时不怎么注意到闪烁。因此,为了降低闪烁效果,时序控制器261基于120Hz帧频产生控制信号。然而,在不脱离本发明范围的情况下可使用其他帧频。时序控制器261将输入的数字视频数据RGB分为奇数像素的数字视频数据RGBodd和偶数像素的数字视频数据RGBeven,从而将传输到数据驱动电路263的数据的传输频率减小一半。
为了阻止残留图像(例如DC图像残留)和闪烁,第一逻辑电路262接收栅开始脉冲GSP和第一极性控制信号POL,以产生第二极性控制信号FGDPOL,从而数据电压的极性在除第N倍帧周期之外的每一帧周期处反转,在第N倍帧周期处数据电压的极性保持为与前一帧周期的极性相同。这里,第一逻辑电路262可向数据驱动电路263选择性地供给第一极性控制信号POL或第二极性控制信号FGDPOL。如图16中所示,第一极性控制信号POL对于每个水平周期或对于每两个水平周期都具有反转的逻辑,且为了对于每个帧周期都反转数据电压的极性,对于每个帧周期还反转逻辑。
第二逻辑电路267在每一第N倍帧周期处对于每条水平线都供给有两个扫描脉冲,并调制栅时序信号,从而使两个扫描脉冲的第一扫描脉冲与供给到前一栅线的第二扫描脉冲交迭。一般具有两种调制栅时序信号的方法。第一个是下述方法,即在第N倍帧周期中首先产生的栅移位时钟GSC之前产生预SP时钟PreGSC,并在第N倍帧周期中首先产生的栅输出使能信号GOE之前产生预GOE时钟PreGOE。第二个是下述方法,即在第N倍帧周期中加宽栅开始脉冲GSP的脉冲宽度。在调制栅时序控制信号的后一种方法中,时序控制器261必须延迟供给到数据驱动电路263的数字视频数据RGB,从而将供给到第一栅线G1的第一和第二扫描脉冲的第二扫描脉冲与第一数据同步。第一和第二逻辑电路262和267可安装在时序控制器261内。
数据驱动电路263在时序控制器261的控制下锁存数字视频数据RGBodd和RGBeven。然后,数据驱动电路263根据第二极性控制信号FGDPOL将数字视频数据RGBodd和RGBeven转换为模拟正/负伽马补偿电压,从而产生正/负模拟数据电压并向数据线D1到Dm供给该数据电压。
栅驱动电路264包括多个栅驱动IC,每个驱动IC都包括移位寄存器、用于将移位寄存器的输出信号的摆动宽度转换为适于驱动液晶单元的TFT的摆动宽度的电平移位器和连接在电平移位器与栅线G1到Gn之间的输出缓冲器。栅驱动电路264响应于栅时序控制信号而顺序向每条栅线供给一对扫描脉冲。该对扫描脉冲包括连续产生的第一和第二扫描脉冲。至少一部分第一扫描脉冲与向前一栅线供给的第二扫描脉冲交迭。
依照本发明第六实施方式的典型液晶显示器件还包括用于向时序控制器261供给数字视频数据RGB和时序信号Vsync、Hsync、DE、CLK的视频信号源265。视频信号源265包括广播信号、外部器件接口电路、图形处理电路、线存储器266等。视频信号源265从外部器件或广播信号的图像源提取视频数据并将该视频数据转换为数字数据从而供给到时序控制器261。在视频信号源265中接收的隔行扫描广播信号存储在线存储器266中。隔行扫描广播信号的视频数据在奇数帧周期中仅存在于奇数线中而在偶数帧周期中仅存在于偶数线中。因此,如果接收到隔行扫描广播信号,视频信号源265就产生存储在线存储器266中的黑色数据值或有效数据的平均值,作为奇数帧周期中的偶数线数据和偶数帧周期中的奇数线数据。
视频信号源265将时序信号Vsync、Hsync、DE、CLK与数字视频数据一起供给到时序控制器261。此外,视频信号源265向电路,例如时序控制器261、第一和第二逻辑电路262和267、数据驱动电路263、栅驱动电路264、用于产生液晶显示面板的驱动电压的DC-DC转换器、用于点亮背光单元的光源的反相器以及用于操作液晶显示器件的其他组件供给电力。
图27显示了栅驱动电路264的典型移位寄存器。栅驱动电路264的典型移位寄存器供给有栅移位时钟GSC,并包括以级联方式彼此连接的多个级ST1到STm。将栅开始脉冲GSP输入到产生第一扫描脉冲的第一级ST1。当栅开始脉冲保持为高逻辑电压时,第一级ST1响应于栅移位时钟GSC产生扫描脉冲。第二到第m级(即ST2到STm)接收前一级的输出作为开始脉冲并响应于栅移位脉冲GSC而顺序移位前一级的输出,从而通过它们的输出端子输出扫描脉冲。
如上所述,本发明的典型实施方式使用第二逻辑电路267调制栅时序控制信号,从而从移位寄存器的每个级连续输出第一和第二扫描脉冲。此外,本发明将输出到前一级的第二扫描脉冲SP2与输出到下一级的第一扫描脉冲SP1交迭,从而在第N倍帧周期处降低液晶单元中充入的电荷量。
图28显示了在第N倍帧周期处产生的栅时序控制信号和数据电压的波形的典型实施方式。在图28中,“源输出”是指从数据驱动电路263输出的数据电压波形。在该情形中,由于极性控制信号,数据电压的极性在每个水平周期处都反转。如图27和28中所示,第二逻辑电路267在每个第N倍帧周期处调制栅时序控制信号。
调制过的栅时序控制信号包括在第一栅移位时钟GSC1之前产生的预栅移位时钟PreGSC和在第一栅输出使能信号GOE1之前产生的预栅输出使能信号PreGOE。预栅移位时钟PreGSC几乎与栅开始脉冲GSP同时产生。在栅开始脉冲GSP保持为高逻辑电压的同时,在从预栅移位时钟PreGSC的下降沿过了指定时间之后产生第一栅移位时钟GSC1。因此,在栅开始脉冲GSP内,预栅移位脉冲PreGSC与第一栅移位时钟GSC1交迭。预栅输出使能信号PreGOE与预栅移位时钟PreGSC的上升沿交迭,并且第一栅输出使能信号GOE1与预栅移位时钟PreGSC的下降沿和第一栅移位时钟GSC1的上升沿交迭。
在栅驱动电路264的移位寄存器中,第一级ST1响应于预栅移位时钟PreGSC而在预栅输出使能信号PreGOE的下降沿和第一栅输出使能信号GOE1的上升沿之间产生预扫描脉冲PreSP。在该情形中,与第一栅线G1连接的TFT响应于预扫描脉冲PreSP而导通。然而,因为此时没有输出数据电压,所以第一像素行的液晶单元没有用数据电压充电。
接着,当产生第一栅移位时钟GSC1时,栅开始脉冲GSP保持为高逻辑电压。因而,第一级ST1移位栅开始脉冲GSP从而产生第二扫描脉冲SP2,同时第二级ST2移位从第一级ST1输出的预扫描脉冲SP2从而产生第一扫描脉冲SP1。在该情形中,与第一栅线G1连接的TFT通过供给到第一栅线G1的第二扫描脉冲SP2导通。因而,第一像素行的液晶单元用具有正(或负)极性的第一数据电压Data1充电。同时,与第二栅线G2连接的TFT通过供给到第二栅线G2的第一扫描脉冲SP1导通。因而,第二像素行的液晶单元用具有正(或负)极性的第一数据电压Data1充电。
接着,当产生第二栅移位时钟GSC2时,栅开始脉冲GSP被反转为低逻辑电压。因而,第一级ST1的输出电压被放电为低电平电压Vss或地电压GND。第二级ST2响应于第二栅移位时钟GSC2而移位从第一级ST1输出的第二扫描脉冲SP2,从而产生第二扫描脉冲SP2。对于该周期,第三级ST3移位从第二级ST2输出的第二扫描脉冲SP2,从而产生第一扫描脉冲SP1。在该情形中,与第二栅线G2连接的TFT通过供给到第二栅线G2的第二扫描脉冲SP2导通。因而,第二像素行的液晶单元用具有负(或正)极性的第二数据电压Data2充电。同时,与第三栅线G3连接的TFT通过供给到第三栅线G3的第一扫描脉冲SP1导通。因而,第三像素行的液晶单元用具有负(或正)极性的第二数据电压Data2充电。
以相同的方式,栅驱动电路264的移位寄存器在第N倍帧周期处顺序移位一对扫描脉冲SP1和SP2。供给到前一栅线的第二扫描脉冲SP2与供给到下一栅线的第一扫描脉冲SP1交迭。因此,在液晶单元用在前一像素行中具有相反极性的前一数据电压预充电之后,液晶单元用与前一数据电压的极性相比具有相反极性的将要显示的数据电压充电。
为了示例的目的,帧频取大约120Hz。在该情形中,对于具有充入到前一像素行相反极性的数据电压预充到下一像素行的时间周期大约为“1/120(秒)×1/垂直分辨率=1线充电时间”。将要显示的数据电压保持为其他的帧周期,而不是该1线充电时间。因此,在紧接液晶单元用施加到前一像素行的具有相反极性的数据电压临时充电之后,液晶单元用与施加到前一像素行的数据电压相比具有相反极性的数据电压充电。因而,降低了电荷量。此外,在每一第N倍帧周期处施加到液晶单元的数据电压包括具有不同极性的两个电压。结果,增加了施加到液晶单元的数据电压的频率分量。
图29显示了在每一第N倍帧周期处产生的栅时序控制信号和数据电压波形的另一实施例的典型波形图。如图29中所示,“源输出”是指从数据驱动电路263输出的数据电压波形。在该情形中,由于极性控制信号,数据电压的极性通过每个水平周期反转。如图27和29中所示,第二逻辑电路267在每一第N倍帧周期处调制栅时序控制信号。调制过的栅时序控制信号包括具有加宽的脉冲宽度的栅开始脉冲WGSP。在栅开始脉冲WGSP的脉冲宽度周期内产生第一和第二栅移位时钟GSC1和GSC2。
在栅驱动电路264的移位寄存器中,第一级ST1响应于第一栅移位时钟GSC1而在第一栅输出使能信号GOE1的下降沿和第二栅输出使能信号GOE2的上升沿之间产生第一扫描脉冲SP2。在该情形中,与第一栅线G1连接的TFT响应于第一扫描脉冲SP1而导通。然而,因为此时没有输出数据电压,所以第一像素行的液晶单元没有充入数据电压。
接着,当产生第二栅移位时钟GSC2时,栅开始脉冲GSP保持为高逻辑电压。因而,第一级ST1移位栅开始脉冲GSP从而产生第二扫描脉冲SP2,同时第二级ST2移位从第一级ST1输出的第一扫描脉冲SP1,从而产生第一扫描脉冲SP1。在该情形中,与第一栅线G1连接的TFT通过供给到第一栅线G1的第二扫描脉冲SP2导通。因而,第一像素行的液晶单元用具有正(或负)极性的第一数据电压Data1充电。同时,与第二栅线G2连接的TFT通过供给到第二栅线G2的第一扫描脉冲SP1导通。因而,第二像素行的液晶单元用具有正(或负)极性的第一数据电压Data1充电。
接着,当产生第三栅移位时钟GSC3时,栅开始脉冲GSP被反转为低逻辑电压。因而,第一级ST1的输出电压放电为低电平电压Vss或地电压GND。第二级ST2响应于第三栅移位时钟GSC3而移位从第一级ST1输出的第二扫描脉冲SP2,从而产生第二扫描脉冲SP2。对于该周期,第三级ST3移位从第二级ST2输出的第二扫描脉冲SP2,从而产生第一扫描脉冲SP1。在该情形中,与第二栅线G2连接的TFT通过供给到第二栅线G2的第二扫描脉冲SP2导通。因而,第二像素行的液晶单元用具有负(或正)极性的第二数据电压充电。同时,与第三栅线G3连接的TFT通过供给到第三栅线G3的第一扫描脉冲SP1导通。因而,第三像素行的液晶单元用具有负(或正)极性的第二数据电压Data2充电。
以相同的方式,栅驱动电路264的移位寄存器在第N倍帧周期处顺序移位一对扫描脉冲SP1和SP2。供给到前一栅线的第二扫描脉冲SP2与供给到下一栅线的第一扫描脉冲SP1交迭。因此,在液晶单元用充入到前一像素行的具有相反极性的前一数据电压预充电之后,该液晶单元用与前一数据电压的极性相比具有相反极性的将要显示的数据电压充电。
为了示例的目的,帧频取大约120Hz。在该情形中,对于要充入到下一像素行且与充入到前一像素行的数据电压具有相反极性的数据电压的时间周期大约为“1/120(秒)×1/垂直分辨率=1线充电时间”。将要显示的数据电压保持为其他的帧周期,而不是1线充电时间。因此,在紧接液晶单元用施加到前一像素行的具有相反极性的数据电压临时充电之后,该液晶单元用与施加到前一像素行的数据电压相比具有相反极性的数据电压充电。因而,降低了电荷量。此外,在每一第N倍帧周期处施加到液晶单元的数据电压包括具有不同极性的两个电压。结果,增加了施加到液晶单元的数据电压的频率分量。
在图29的典型实施方式中,第一数据电压Data1与供给到第一栅线G1的第二扫描脉冲SP2必须同步。因而,与图28的实施方式相比,时序控制器261必须延迟供给对应于第一数据电压Data1的数字视频数据RGB。
图30是显示在依照本发明的液晶显示器件的典型驱动方法中,在除第N倍帧周期之外的其他帧周期处产生的栅时序信号和数据电压波形的典型波形图。如图30中所示,“源输出”是指从数据驱动电路263输出的数据电压波形。在该情形中,由于极性控制信号,数据电压的极性在每个水平周期处都反转。如图27和30中所示,第二逻辑电路267在除第N倍帧周期之外的帧周期处不调制而是绕过栅时序控制信号。仅在栅开始脉冲GSP的脉冲宽度周期内产生第一栅移位时钟GSC1。
在栅驱动电路264的移位寄存器中,第一级ST1响应于第一栅移位时钟GSC1而在第一栅输出使能信号GOE1的下降沿和第二栅输出使能信号GOE2的上升沿之间产生扫描脉冲SP。在该情形中,与第一栅线G1连接的TFT响应于扫描脉冲SP而导通。因而,第一像素行的液晶单元用具有正(或负)极性的第一数据电压Data1充电。
接着,当产生第二栅移位时钟GSC2时,栅开始脉冲GSP保持为高逻辑电压。因而,第一级ST1不移位扫描脉冲,而第二级ST移位从第一级ST1输出的扫描脉冲。在该情形中,与第二栅线G2连接的TFT通过供给到第二栅线G2的扫描脉冲SP导通。因而,第二像素行的液晶单元用具有负(或正)极性的第二数据电压Data2充电。
接着,第三级ST3响应于第三栅移位时钟GSC3而移位从第二级ST2输出的扫描脉冲SP。在该情形中,与第三栅线G3连接的TFT通过供给到第三栅线G3的扫描脉冲SP导通。因而,第三像素行的液晶单元用具有正(或负)极性的第三数据电压Data3充电。
以相同的方式,栅驱动电路264的移位寄存器在除第N倍帧周期之外的其他帧周期处顺序移位一个扫描脉冲SP。因此,因为当产生扫描脉冲时,液晶单元只采用将要显示的数据电压充电,所以没有降低电荷量。
图31是图解依照本发明第七实施方式的液晶显示器件的典型驱动方法的流程图。如图31中所示,依照本发明第七实施方式的液晶显示器件的典型驱动方法分析输入数据,判断输入数据是否是可能产生DC图像残留的数据,如隔行扫描数据或卷动数据,并计算帧周期(S311和S312)。本发明使用线存储器和比较器反复比较两个线数据。如果相邻的两个线数据超过预定的阈值,则本发明确定相邻的两个线数据是隔行扫描数据。此外,本发明使用帧存储器和比较器比较前一帧图像与当前帧图像,从而检测在当前帧中以恒定速度移动的部分,由此检测卷动数据。
如果当前输入的数据是不会产生DC图像残留的数据且当前帧周期不是第N倍帧周期,则本发明使用第一极性控制信号POL控制数据电压的极性,并且因此不调制栅时序控制信号(S313、S314和S316)。因此,因为在液晶单元中没有充入具有相反极性的电压,所以没有降低液晶单元中充入的数据电压的量。另一方面,如果当前输入的数据是可能产生DC图像残留的数据且当前帧周期是第N倍帧周期,则本发明使用第二极性控制信号FGDPOL控制数据电压的极性,并以图28或图29中所示的方式调制栅时序控制信号(S313、S315和S317)。因此,由于存储在液晶单元中的电压电荷具有相反极性,所以降低了液晶单元中充入的数据电压的量。
图32显示了依照本发明第七实施方式的典型液晶显示器件。如图32中所示,依照本发明第七实施方式的典型液晶显示器件包括视频信号源265、液晶显示面板100、图像分析电路321、时序控制器261、第一逻辑电路322、第二逻辑电路323、数据驱动电路263和栅驱动电路264。在该实施方式中,视频信号源265、液晶显示面板100、时序控制器261、数据驱动电路263和栅驱动电路264可大致以与上面第六实施方式所述的相同方式实现。因而,对相同组件给出相同的附图标记,并将省略其详细描述。
图像分析电路321判断当前输入图像的数字视频数据是否是可能产生DC图像残留的数据。如果相邻线之间的数据不小于预定的阈值,则图像分析电路321比较一个帧图像中该相邻线之间的数据并确定当前输入数据是隔行扫描数据。此外,图像分析电路321以帧为单元比较每个像素的数据并检测显示图像中的移动图像和移动图像的速度。如果移动图像以预定速度移动,则确定具有移动图像的帧数据为卷动数据。作为图像分析的结果,图像分析电路321产生表示隔行扫描数据和卷动数据的第二和第三选择信号SEL2和SEL3。
使用图16解释第一极性控制信号POL和第二极性控制信号FGDPOL的操作原理。如图16中所示,在输入不产生DC图像残留的数据时,第一逻辑电路322响应于第二选择信号SEL2的第一逻辑值向数据驱动电路263供给第一极性控制信号POL。另一方面,在输入可能产生DC图像残留的数据时,第一逻辑电路322响应于第二选择信号SEL2的第二逻辑值向数据驱动电路263供给第二极性控制信号FGDPOL。
在输入不产生DC图像残留的数据时,第二逻辑电路323响应于第三选择信号SEL3的第一逻辑值向栅驱动电路264供给未调制的时序控制信号。另一方面,在输入可能产生DC图像残留的数据时,如图28或29中所示,在第N倍帧周期处,第二逻辑电路323响应于第三选择信号SEL3而调制栅时序控制信号并将其供给到栅驱动电路264。时序控制器261、图像分析电路321、第一逻辑电路322和第二逻辑电路323可集成为一个芯片。
图33是图解依照本发明第八实施方式的液晶显示器件的典型驱动方法的流程图。如图33中所示,依照本发明第八实施方式的液晶显示器件的典型驱动方法计算随数字视频数据输入的时序信号,从而确定帧周期(S331)。在每个帧周期处,帧极性反转从而在每个帧周期处反转在液晶单元Clc中充入的数据电压的极性(S333)。在每一第N倍帧周期处,帧极性被控制为与前一帧周期的帧极性相同(S332和S334)。
帧极性是指由每个帧周期内由极性控制信号POL确定的一个屏幕的液晶单元的极性(即一个屏幕的数据电压的极性)。极性控制信号POL从控制数据驱动电路和栅驱动电路的操作时序的时序控制器产生。极性控制信号POL的逻辑在每个水平周期(例如1点)或每两个水平周期(例如2点)处反转。因此在第N个帧周期之前的(N-1)个帧周期充入到液晶单元的数据电压具有对于每个帧周期都反转的极性(S332和S333)。此外,在第(N-1)个帧周期和第N个帧周期处液晶单元中充入的数据电压固定为任意一个极性(S332和S334)。以相同的方式,在第2N个帧周期之前的(2N-1)个帧周期液晶单元中充入的数据电压具有在每个帧周期处都反转的极性(S332和S333)。此外,在第(2N-1)个帧周期和第2N个帧周期处液晶单元中充入的数据电压固定为任意一个极性(S332和S334)。
依照本发明第八实施方式的液晶显示器件的典型驱动方法在第N倍帧周期之前的(N-1)个帧周期的每个帧周期处将数据电压与扫描脉冲同步,从而将在每个水平周期处液晶单元中充入的数据电压的极性固定为任意一个极性(S335)。另一方面,依照本发明第八实施方式的液晶显示器件的典型驱动方法在第N倍帧周期中将数据电压的相位和扫描脉冲的相位控制为彼此不同,从而将每个水平周期处液晶单元中充入的数据电压的极性控制为从正(+)到负(-),或从负(-)到正(+)(S336)。
结果,与在第N个帧周期之前(N-1)个帧周期的每个帧周期处的每个水平周期处液晶单元中充入的数据电压的量相比,在第N倍帧周期处液晶单元中充入的数据电压的量减小。以相同的方式,与在第2N个帧周期之前(2N-1)个帧周期的每个帧周期处的每个水平周期处液晶单元中充入的数据电压的量相比,在第2N倍帧周期中的每个水平周期处液晶单元中充入的数据电压的量也减小。图33中的附图标记“Vlc”是指由数据电压充电的液晶单元的电压。
图34显示了在依照本发明第八实施方式的液晶显示器件的典型驱动方法中,在第N个帧周期之前的(N-1)个帧周期产生的数据电压和扫描脉冲的典型波形。如图34中所示,“源输出”是指从数据驱动电路输出的数据电压Vdata的波形,数据电压Vdata的极性对于每个帧周期都反转。“栅输出”是指从栅驱动电路输出的扫描脉冲SP的波形,一个扫描脉冲SP的脉冲宽度对应于大约每个水平周期。如图34中所示,在第N个帧周期之前的(N-1)个帧周期的每个帧周期处,数据电压Vdata的波形的相位与扫描脉冲SP的波形的相位相同。因此,对于第N个帧周期之前的每个帧周期处的每个水平周期来说,液晶单元的电压Vlc的极性固定为正或负。
图35显示了在依照本发明第八实施方式的液晶显示器件的典型驱动方法中,在第N倍帧周期,如第N个帧周期、第2N个帧周期等,处产生的数据电压和扫描脉冲的典型波形。如图35中所示,“源输出”是指从数据驱动电路输出的数据电压Vdata的波形,摈弃数据电压Vdata的极性产生为具有与第N倍帧周期之前的帧周期相同的极性。“栅输出”是指从栅驱动电路输出的扫描脉冲SP的波形,一个扫描脉冲SP的脉冲宽度对应于大约每个水平周期。
如图35中所示,对于N的倍数的帧周期来说,数据电压Vdata的相位和扫描脉冲SP的相位控制为彼此不同。因此,对于第N倍帧周期中的每个水平周期,液晶单元的电压Vlc从正(+)变为负(-),或从负(-)变为正(+)。如图35中所示,附图标记“tlc”是指在液晶单元中充有数据电压Vdata的每个水平周期。每个水平周期tlc包括充上前一线的数据电压的第一周期t1、充上正数据电压与负数据电压之间的电荷共享电压或公共电压Vcom的第二周期t2和充入具有与前一线的数据电压不同极性的数据电压的第三周期t3。在该情形中,电荷共享电压是由两条相邻数据线之间的短路而产生的正数据电压和负数据电压的平均值,两条相邻数据线中的一条在源输出使能信号SOE的高逻辑部分中供给有正数据电压,而另一条供给有负数据电压。当“tlc”定义为100%时,第一周期t1大约为30%到40%,第二周期t2大约为0%到20%,第三周期t3大约为40%到60%。t1、t2和t3的这些值基于DC图像残留现象的实验获得。发现t1、t2和t3获得的这些值在没有产生DC图像残留时是最佳时间,并发现减小了液晶单元中充入的电压量,由此提高了第N倍帧周期中的图像质量。
为了使数据电压的相位与第N倍帧周期之前的(N-1)个帧周期处的扫描脉冲的相位同步,依照本发明第八实施方式的液晶显示器件的典型驱动方法使用具有同步相位的第一栅移位时钟信号GSC1和第一栅输出使能信号GOE1控制栅驱动电路的输出。另一方面,为了使在第N倍帧周期处数据电压的相位与扫描脉冲的相位不同,依照本发明第八实施方式的液晶显示器件的典型驱动方法在第N倍帧周期处使用第二栅移位时钟信号GSC2和第二栅输出使能信号GOE2控制栅驱动电路的输出。第二栅移位时钟信号GSC2以比第一栅移位时钟信号GSC1快的时序产生,第二栅输出使能信号GOE2以比第一栅输出使能信号GOE1快的时序产生。
依照本发明第八实施方式的典型液晶显示器件包括如图26B中所示的驱动电路和逻辑电路。为了降低在N的倍数的帧周期中液晶单元的数据电压的电荷量,依照本发明第八实施方式的液晶显示器件的第二逻辑电路267使用栅开始脉冲GSP、第一栅移位时钟GSC1和第一栅输出使能信号GOE1产生第二栅移位时钟信号GSC2和第二栅输出使能信号GOE2,它们两个具有比第一栅移位时钟信号GSC1和第一栅输出使能信号GOE1快的相位。
图36显示了用于控制栅移位时钟和栅输出使能信号的相位的典型逻辑电路。如图36中所示,依照本发明第八实施方式的液晶显示器件的第二逻辑电路267(或323)包括帧计数器361、第一相位调节器362、第二相位调节器363以及第一和第二多路复用器364和365。帧计数器361计算栅开始脉冲GSP,从而产生表示第N倍帧周期的N帧信息Ncnt。第一相位调节器362快速调节第一栅移位时钟信号GSC1的相位,从而产生第二栅移位时钟信号GSC2。第二相位调节器363快速调节第一栅输出使能信号GOE1的相位,从而产生第二栅输出使能信号GOE2。
对于第N倍帧周期之前的(N-1)个帧周期,第一多路复用器364输出第一栅移位时钟信号GSC1,并响应于N帧信息Ncnt在第N倍帧周期处输出第二栅移位时钟信号GSC2。对于第N倍帧周期之前的(N-1)个帧周期,第二多路复用器365输出第一栅输出使能信号GOE1,并响应于N帧信息Ncnt在第N倍帧周期处输出第二栅输出使能信号GOE2。第一和第二多路复用器364和365根据基于上述输入图像确定的结果而产生的第三选择信号SEL3,分别在栅移位时钟信号GSC1和GSC2之间以及栅输出使能信号GOE1和GOE2之间进行选择。
图37是显示在依照本发明第八实施方式的液晶显示器的典型驱动方法中,对于N的倍数的帧周期来说数据时序控制信号和栅时序控制信号的典型波形图。如图37中所示,第二逻辑电路267在第N倍帧周期期间输出具有快相位的第二移位时钟信号GSC2,并输出具有快相位的第二栅输出使能信号GOE2。因此,在第N倍帧周期期间扫描脉冲SP的相位与数据电压Vdata的相位不同。在第N倍帧周期中的每个水平周期处,液晶单元用前一线的数据电压充电。之后,液晶单元用具有与前一线的数据电压相反极性的将要显示的数据电压Vdata充电。结果,在第N倍帧周期处降低了液晶单元中充入的电压量。
图38是图解依照本发明第九实施方式的液晶显示器件的典型驱动方法的流程图。如图38中所示,依照本发明第九实施方式的液晶显示器件的典型驱动方法分析输入数据,从而判断输入数据是否是可能产生DC图像残留的数据,如隔行扫描数据或卷动数据,并计算帧周期(S381和S382)。本发明使用线存储器和比较器反复比较两个线数据。如果两条相邻线的线数据超过预定的阈值,则本发明就确定相邻的两个线数据是隔行扫描数据。此外,本发明使用帧存储器和比较器比较前一帧图像与当前帧图像,从而检测在当前帧中以恒定速度移动的部分,由此检测卷动数据。
如果当前输入数据是不会产生DC图像残留的数据且当前帧周期不是第N倍帧周期,则本发明就在每一帧周期处反转帧极性并在每个帧周期内将液晶单元电压Vcl的极性固定为任意一个极性(S383、S384和S386)。另一方面,如果当前输入数据是可能产生DC图像残留的数据且当前帧周期是第N倍帧周期,则本发明就将第N倍帧周期的帧极性控制为与前一帧周期的帧极性相同并在每个水平周期内反转液晶单元电压Vlc的极性(S383、S385和S387)。
依照本发明第九实施方式的液晶显示器件的典型驱动方法可以以图32所述的方式实现。如图32中所示,依照本发明第九实施方式的液晶显示器件的图像分析电路321判断当前输入图像的数字视频数据RGB是否是可能产生DC图像残留的数据。图像分析电路321比较一个帧图像中相邻线之间的数据,如果该相邻线之间的数据不小于预定的阈值就确定当前输入的数据为隔行扫描数据。此外,图像分析电路321以帧为单位比较每个像素的数据并检测显示图像中的移动图像和移动图像的速度。如果移动图像以预定速度移动,则确定具有移动图像的帧数据为卷动数据。从图像分析的结果,图像分析电路321产生表示存在可能产生DC图像残留的数据,如隔行扫描数据和卷动数据,的第二和第三选择信号SEL2和SEL3,并使用选择信号SEL2和SEL3控制第一和第二逻辑电路322和323。
在输入不产生DC图像残留的数据时,第二逻辑电路323响应于第三选择信号SEL3而向栅驱动电路264供给第一栅移位时钟信号GSC1和第一栅输出使能信号GOE1。此外,在输入可能产生DC图像残留的数据时,第二逻辑电路323响应于第三选择信号SEL3而向栅驱动电路264供给第二栅移位时钟信号GSC2和第二栅输出使能信号GOE2。
图39A是图解依照本发明第十实施方式的液晶显示器件的典型驱动方法的流程图。如图39A中所示,依照本发明第十实施方式的液晶显示器件的典型驱动方法计算随数字视频数据输入的时序信号,从而计算帧周期(S391)。接着,依照本发明第十实施方式的液晶显示器件的典型驱动方法通过使用第一极性控制信号POL和第二极性控制信号FGDPOL,在每个帧周期处反转帧极性,从而在每个帧周期处反转液晶单元Clc中充入的数据电压的极性,并将第N倍帧周期的帧极性保持为与前一帧周期的帧极性相同。因为已经参照图16描述过第一和第二极性控制信号POL和第FGDPOL的产生和使用,所以省略其详细描述。因此,在第N倍帧周期之前的(N-1)个帧周期充入在液晶单元中的数据电压的极性在每个帧周期处都反转(S392和S393),且将在第N倍帧周期和前一帧周期期间充入在液晶单元中的数据电压的极性控制为相同(S392和S394)。
依照本发明第十实施方式的液晶显示器件的典型驱动方法在除第N倍帧周期之外的其他帧周期中没有减小液晶单元的电荷量(S395)。另一方面,为了补偿由于具有相同极性的数据电压充电两个帧周期而导致的在第N倍帧周期期间液晶单元的过度充电,依照本发明第十实施方式的液晶显示器件的典型驱动方法临时调制数据电压,从而在第N倍帧周期期间降低液晶单元的电荷量(S396)。
图39B图解了依照本发明第十实施方式的典型液晶显示器件。如图39B中所示,依照本发明第十实施方式的典型液晶显示器件包括液晶显示面板100、时序控制器391、逻辑电路392、数据驱动电路393和栅极驱动电路394。液晶显示面板100大致与上述的液晶显示面板100相同。因此省略其详细描述。
时序控制器391的基本功能大致与上述图32的时序控制器321相同。除了上述基本功能之外,时序控制器391还将输入的数字视频数据RGB分为奇数像素数字视频数据RGBodd1和偶数像素数字视频数据RGBeven1,从而将供给到逻辑电路392的数据的传输频率减小一半。为了阻止残留图像(即DC图像残留)和闪烁,逻辑电路392接收栅开始脉冲GSP和第一极性控制信号POL,从而产生在第二极性控制信号FGDPOL,对于在第N倍帧周期之前的(N-1)个帧周期,该第二极性控制信号FGDPOL的极性在每个帧周期处都反转,且该第二极性控制信号FGDPOL的相位在第N倍帧周期和前一帧周期中相同。逻辑电路392选择性地向数据驱动电路393供给第一极性控制信号POL或第二极性控制信号FGDPOL。时序控制器391和逻辑电路392可集成为一个芯片。
第一和第二极性控制信号POL和FGDPOL的操作原理参照图16描述。如图16中所示,第一极性控制信号POL具有在每个水平周期(例如1点)或每两个水平周期(例如2点)反转的逻辑,且为了在每个帧周期处反转数据电压的极性,其相位在每个帧周期处也反转。为了在第N倍帧周期处将数据电压的极性保持为与前一帧周期相同的极性图案,第二极性控制信号FGDPOL产生为在第N倍帧周期之前的帧周期处具有与第一极性控制信号POL相同的相位,并产生为在第N倍帧周期处具有与第一极性控制信号POL相反的相位。此外,逻辑电路392在第N倍帧周期中向下调制数据RGBodd1和RGBeven1。例如,逻辑电路392将在第N倍帧周期处输入的具有“191”的灰度级值的数据向下调制到“127”。
数据驱动电路393在时序控制器391的控制下锁存数字视频数据RGBodd2和RGBeven2。数据驱动电路393根据第二极性控制信号FGDPOL将数字视频数据RGBodd2和RGBeven2转换为模拟正/负伽玛补偿电压,从而产生正/负模拟数据电压,并向数据线D1到Dm供给数据电压。栅驱动电路394包括多个IC,每个IC都包括移位寄存器、用于将移位寄存器的输出信号的摆动宽度转换为适于驱动液晶单元的TFT的摆动宽度的电平移位器和连接在电平移位器与栅线G1到Gn之间的输出缓冲器。栅驱动电路394响应于栅时序控制信号而顺序向栅线供给扫描脉冲。
依照本发明第十实施方式的典型液晶显示器件还包括用于给时序控制器391供给数字视频数据RGB和时序信号Vsync、Hsync、DE、CLK的视频信号源395。视频信号源395包括广播信号、外部器件接口电路、图形处理电路、线存储器396和其他组件。视频信号源395从外部器件或广播信号输入的图像源提取视频数据并将该视频数据转换为数字数据,从而供给到时序控制器391。在视频信号源395中接收的隔行扫描广播信号存储在线存储器396中。隔行扫描广播信号的视频数据在奇数帧周期处仅存在于奇数线中,在偶数帧周期处仅存在于偶数线中。因此,如果接收到隔行扫描广播信号,视频信号源395就产生存储在线存储器396中的黑色数据值或有效数据的平均值,作为奇数帧周期中的偶数线数据和偶数帧周期中的奇数线数据。视频信号源395将时序信号Vsync、Hsync、DE、CLK与数字视频数据一起供给到时序控制器391。此外,视频信号源395给电路,例如时序控制器391、逻辑电路392、数据驱动电路393、栅驱动电路394、用于产生液晶显示面板的驱动电压的DC-DC转换器、用于点亮背光单元的光源的反相器、以及其他组件供给电力,从而操作液晶显示器件。
图40是图解依照本发明第十实施方式的逻辑电路的典型电路图。如图40中所示,逻辑电路392包括帧计数器401、POL反相器402、异或门(之后称作“XOR门”)403、多路复用器404和数据调制器405。
帧计数器141通过在一个帧周期期间产生一次并与帧周期的开始同时产生的栅开始脉冲GSP输出表示帧数的帧计数信息Fcnt。POL反相器402从帧计数器401接收帧计数信息Fcnt并对该帧计数信息Fcnt用N进行取模。当取模操作的余数为“0”时,POL反相器402将逻辑反转,由此产生输出信号。输出信号是POL反转信号POLinv。如图40中所示,输出信号对于第N倍帧周期之前的帧周期保持为低逻辑(或高逻辑),并在第N倍帧周期开始时反转为高逻辑(或低逻辑)。因此,从POL反相器402输出的POL反转信号POLinv在每一第N倍帧周期处都反转。POL反转信号POLinv还表示第N倍帧周期的开始时间。
XOR 403对第一极性控制信号POL和POL反转信号POLinv进行异或操作,从而产生第二极性控制信号FGDPOL。如图16中所示,在第N倍帧周期中第二极性控制信号FGDPOL的极性图案保持为与前一帧周期的相同并在除第N倍帧周期之外的其他每一帧周期处反转。
多路复用器404在第一选择信号SEL1的控制下在第一极性控制信号POL和第二极性控制信号FGDPOL之间进行选择,通过与多路复用器404的控制端子连接的任意引脚确定第一选择信号SEL1。任意引脚可由制造商选择性地连接到地电压源GND或电源电压Vcc。例如,如果任意引脚与地电压源GND连接,则多路复用器404具有供给有“0”的第一选择控制信号SEL1的控制端子,从而输出第二极性控制信号FGDPOL。如果任意引脚与电源电压Vcc连接,则多路复用器404具有供给有“1”的第一选择控制信号SEL1的控制端子,从而输出第一极性控制信号POL。依照本发明第十实施方式的液晶显示器件用地电压源GND控制多路复用器404的控制端子,从而使多路复用器404输出第二极性控制信号FGDPOL。在本发明的另一实施方式中,多路复用器404根据由输入图像的判断结果产生的第四选择信号SEL4在第一和第二极性控制信号POL和FGDPOL之间进行选择。
数据调制器405从帧计数器401接收帧计数信息Fcnt并对该帧计数信息Fcnt用N进行取模,从而当取模操作的余数为“0”(即当前帧周期是第N倍帧周期)时,向下调制数据RGBodd1和RGBeven1。为此,在每一第N倍帧周期处通过帧计数信息Fcnt激活数据调制器405,并使用查找表或减法器向下调制数据的灰度级值。
图41A是图解依照本发明第十一实施方式的液晶显示器件的典型驱动方法的流程图。如图41A中所示,依照本发明第十一实施方式的液晶显示器件的典型驱动方法计算随数字视频数据输入的时序信号,从而计算帧周期(S411)。接着,依照本发明第十一实施方式的液晶显示器件的典型驱动方法在每个帧周期处反转帧极性,从而在每个帧周期处反转液晶单元Clc中充入的数据电压的极性,并将第N倍帧周期的帧极性保持为与前一帧周期的帧极性相同。因此,在第N倍帧周期之前的(N-1)个帧周期处液晶单元中充入的数据电压的极性在每个帧周期处都反转(S412和S413)且将在第N倍帧周期和前一帧周期处液晶单元中充入的数据电压的极性控制为相同(S412和S414)。
依照本发明第十一实施方式的液晶显示器件的典型驱动方法在除第N倍帧周期之外的其他帧周期期间没有减小液晶单元的电荷量(S415)。另一方面,为了补偿由于具有相同极性的数据电压充电入两个帧周期而导致的在第N倍帧周期处液晶单元的过度充电,依照本发明第十一实施方式的液晶显示器件的典型驱动方法向下调制数据电压,并通过调制数据时序控制信号或栅时序控制信号,用具有与将要显示的数据电压极性相反的极性的前一线数据电压对液晶单元进行预充电,从而在第N倍帧周期期间降低液晶单元的电荷量(S416)。
图41B图解了依照本发明第十一实施方式的典型液晶显示器件。如图41B中所示,依照本发明第十一实施方式的典型液晶显示器件包括液晶显示面板100、时序控制器411、逻辑电路412、数据驱动电路413和栅驱动电路394。在该实施方式中,视频信号源395、液晶显示面板100和栅驱动电路394大致与前面第十实施方式的相同。因而对相同的组件给出相同的附图标记,省略对其的详细描述。
时序控制器411的基本功能大致与上述图11的时序控制器101相同。此外,时序控制器411还将输入数字视频数据RGB分为奇数像素数字视频数据RGBodd1和偶数像素数字视频数据RGBeven1,从而将供给到逻辑电路412的数据的传输频率减小一半。为了阻止残留图像(即DC图像残留)和闪烁,逻辑电路412接收栅开始脉冲GSP和第一极性控制信号POL,从而产生第二极性控制信号FGDPOL,如图16中所示,并在每一第N倍帧周期处向下调制输入数据。此外,逻辑电路412调制数据时序信号,从而在每一第N倍帧周期处向液晶单元供给前一线的数据电压,其具有与将要显示的数据电压极性相反的极性,从而减小当供给将要显示的数据电压时液晶单元中充入的电压量。
依照本发明第十一实施方式的典型液晶显示器件还包括连接在时序控制器411与逻辑电路412之间以产生第三时钟信号CLK3的多路复用器。多路复用器根据供给到其控制端子的控制信号,在从时序控制器411的内部振荡器供给的第一时钟信号CLK1和从外部振荡器供给的第二时钟信号CLK2之间进行选择。此外,多路复用器作为第三时钟信号CLK3向逻辑电路412供给选择的时钟信号CLK1或CLK2。多路复用器的控制端子与任意引脚相连。该任意引脚可由制造商指定选择性地连接到地电压源GND或电源电压Vcc。例如,如果任意引脚与地电压源GND连接,则多路复用器具有供给有“0”的选择控制信号SEL的控制端子,从而输出第一时钟信号CLK1作为第三时钟信号CLK3。如果任意引脚与电源电压Vcc连接,则多路复用器具有供给有“1”的选择控制信号SEL的控制端子,从而输出第二时钟信号CLK2作为第三时钟信号CLK3。
数据驱动电路413在时序控制器411的控制下锁存从逻辑电路412输出的数字视频数据RGBodd2和RGBeven2。数据驱动电路413根据第二极性控制信号FGDPOL将数字视频数据RGBodd2和RGBeven2转换为模拟正/负伽玛补偿电压,从而产生正/负模拟数据电压,并向数据线D1到Dm供给数据电压。时序控制器411和逻辑电路412可集成为一个芯片。
图42和43是图解依照本发明第十一实施方式的典型逻辑电路的电路图。如图42中所示,逻辑电路412包括逻辑部分421、第一多路复用器422和第二多路复用器423。逻辑部分421接收栅开始脉冲GSP、第一极性控制信号POL和第一源输出使能信号SOE,从而在第N倍帧周期处向下调制数据。为了减小在每一第N倍帧周期处液晶单元中充入的电压量,逻辑部分421产生第二极性控制信号FGDPOL,如图16中所示。由逻辑部分421调制的时序控制信号是第一源输出使能信号SOE。逻辑部分421将第一源输出使能信号SOE的脉冲宽度调节为变宽,从而在每一第N倍帧周期处产生第二源输出使能信号FGDSOE。
第一多路复用器422根据施加到控制端子的控制信号的逻辑值在第一极性控制信号POL和第二极性控制信号FGDPOL之间进行选择。第二多路复用器423根据施加到控制端子的控制信号的逻辑值在第一源输出使能信号SOE和第二源输出使能信号FGDSOE之间进行选择。第一和第二多路复用器的控制端子与任意引脚连接。该任意引脚可由制造商指定选择性地连接到地电压源GND或电源电压Vcc。例如,如果任意引脚与地电压源GND连接,则第一多路复用器422具有供给有“0”的选择控制信号SEL2的控制端子,从而输出第二极性控制信号FGDPOL,第二多路复用器423具有供给有“0”的选择控制信号SEL2的控制端子,从而输出第二源极输出使能信号FGDSOE。如果任意引脚与电源电压Vcc连接,则第一多路复用器422具有供给有“1”的选择控制信号SEL2的控制端子,从而输出第一极性控制信号POL,第二多路复用器423具有供给有“1”的选择控制信号SEL2的控制端子,从而输出第一源极输出使能信号SOE。
依照本发明第十一实施方式的典型液晶显示器件控制第一和第二多路复用器422和423,从而向数据驱动电路413以与图16所示的方式供给第二极性控制信号FGDPOL,以图6所示的方式供给第二源输出使能信号FGDSOE
如图43中所示,逻辑部分421包括帧计数器431、POL反相器432、XOR门433、SOE时序分析器434、SOE调节器435、第三多路复用器436和数据调制器437。帧计数器431响应于在一个帧周期期间产生一次并与帧周期的开始同时产生的栅开始脉冲GSP而输出帧计数信息Fcnt,其表示将要在液晶显示面板100上显示的图像的帧数。此外,帧计数器431产生表示第N倍帧周期的第N个帧信息。
POL反相器432接收来自帧计数器431的帧计数信息Fcnt并对该帧计数信息Fcnt用N进行取模操作,由此当取模操作的余数为“0”时产生逻辑反转的输出信号。输出信号是POL反转信号POLinv。因此,如图16中所示,对于(N-1)个帧周期输出信号POLinv保持为高逻辑(或低逻辑),且当第N个帧周期开始时反转为低逻辑(或高逻辑)。因此,从POL反相器432输出的POL反转信号POLinv表示每个第N倍帧周期的开始时间。XOR 433对第一极性控制信号POL和POL反转信号POLinv进行异或操作,从而产生第二极性控制信号FGDPOL,其在第N倍帧周期中具有与前一帧周期相同的相位,且其相位对于每一其他帧周期都反转。
SOE时序分析器434以第三时钟信号CLK3为单位分析第一源输出使能信号SOE,从而检测第一源输出使能信号SOE的上升沿、脉冲宽度和下降沿。SOE调节器435使用来自SOE时序分析器434的SOE信息,在每一第N倍帧周期处产生具有比第一源输出使能信号SOE宽的脉冲宽度的脉冲。根据来自帧计数器431的第N个帧信息,第三多路复用器436在每一第N倍帧周期处选择SOE调节器435的输出,并对于其他所有帧周期,第三多路复用器436选择第一源输出使能信号SOE,从而产生第二源输出使能信号FGDSOE。
数据调制器437从帧计数器431接收第N个帧信息Fcnt,从而向下调制在第N倍帧周期处输入的数据RGBodd1和RGBeven1。为此,数据调制器437由每一第N倍帧周期处的第N个帧信息激活并使用查找表或减法器向下调制数据。
图44图解了依照本发明第十二实施方式的典型液晶显示器件。如图44中所示,依照本发明第十二实施方式的典型液晶显示器件液晶显示面板100、时序控制器441、第一逻辑电路442、数据驱动电路443、栅驱动电路444和第二逻辑电路447。在该实施方式中,视频信号源395和液晶显示面板100大致与前面实施方式的相同。因而对相同的组件给出相同的附图标记,省略对其的详细描述。
时序控制器441的基本功能大致与上述图39B的时序控制器391相同。第一逻辑电路442使用如图40中所示的电路产生第二极性控制信号FGDPOL,其相位在第N倍帧周期之前的(N-1)个帧周期中的每个帧周期处都反转,且其相位在第N倍帧周期中与前一帧周期的相同。第一逻辑电路442在每一第N倍帧周期处向下调制RGBodd1和RGBeven1。
第二逻辑电路447调制栅时序控制信号,从而减小在每一第N倍帧周期处液晶单元中充入的数据电压的量。通过栅时序调制,用具有与前一线相反极性的数据电压对液晶单元预充电,然后用将要显示的数据电压进行充电。因此,与其他帧周期相比,在每一第N倍帧周期处减小了液晶显示器中充入的数据电压的量。
调制栅时序信号的典型方法包括下列实施方式:
(1)在第N倍帧周期中首次产生的栅移位时钟GSC之前产生预GSP时钟,并在第N倍帧周期中首次产生的栅输出使能信号GOE1之前产生预GOE的方法。
(2)对于N的倍数的帧周期来说,加宽栅开始脉冲GSP1的脉冲宽度的方法。
(3)增加栅移位时钟信号GSC1和栅输出使能信号GOE1的相位时序的方法。
在(2)的调制栅时序的方法中,时序控制器441通过延迟供给到数据驱动电路443的数字视频数据RGBodd1和RGBeven1,将首次接收扫描脉冲的第一栅线的第一和第二扫描脉冲SP1,SP2的第二扫描脉冲SP2与第一数据同步。时序控制器441以及第一和第二逻辑电路442和447可集成为一个芯片。
数据驱动电路443锁存数字视频数据RGBodd2和RGBeven2。数据驱动电路443根据第二极性控制信号FGDPOL将数字视频数据RGBodd2和RGBeven2转换为模拟E/负伽马补偿电压,从而产生正/负模拟数据电压并将数据电压供给到数据线D1到Dm。
栅驱动电路444包括多个驱动IC,每个驱动IC都包括移位寄存器、用于将移位寄存器的输出信号的摆动宽度转换为适于驱动液晶单元的TFT的摆动宽度的电平移位器和连接在电平移位器与栅线G1到Gn之间的输出缓冲器。栅驱动电路444响应于在第N倍帧周期处被调制的栅时序控制信号而顺序向栅线供给一对扫描脉冲或加快扫描脉冲的输出时序。该对扫描脉冲包括连续产生的第一和第二扫描脉冲。第一和第二扫描脉冲的至少一部分第一扫描脉冲与给前一栅线供给的第二扫描脉冲交迭。
图45图解了依照本发明第十二实施方式调制栅时序控制信号的典型方法。如图45中所示,“源输出”是指从数据驱动电路443输出的数据电压波形。在第十二实施方式中,由于极性控制信号FGPOL,数据电压的极性在每个水平周期处都反转。“GSC2”是指在第N倍帧周期处由第二逻辑电路447调制的栅移位时钟,“GOE2”是指在第N倍帧周期处由第二逻辑电路447调制的栅输出使能信号。
如图44中所示,第二逻辑电路447在每一第N倍帧周期处调制栅移位时钟信号GSC1和栅输出使能信号GOE1的相位。因此,扫描脉冲SP和数据电压Vdata的相位在第N倍帧周期处变化。在第N倍帧周期期间的每个水平周期处用来自前一线的数据电压对液晶单元预充电,然后用具有与前一线的数据电压相反极性的将要显示的数据电压充电。结果,在每一第N倍帧周期处减小了液晶单元的电荷量。
图46是图解依照本发明第十三实施方式的液晶显示器件的典型驱动方法的流程图。如图46中所示,依照本发明第十三实施方式的液晶显示器件的典型驱动方法分析输入数据,从而判断输入数据是否是可能产生DC图像残留的数据,如隔行扫描数据或卷动数据,并计算帧周期(S461和S462)。接着,本发明使用线存储器和比较器反复比较两个线数据。如果相邻的两个线数据超过预定的阈值,则本发明就确定相邻的两个线数据是隔行扫描数据。本发明还使用帧存储器和比较器比较前一帧图像与当前帧图像,从而检测在当前帧中以恒定速度移动的部分,由此检测卷动数据。
如果当前输入数据是不会产生DC图像残留的数据且当前帧周期不是第N倍帧周期,则本发明就用第一极性控制信号POL控制数据电压的极性,不调制数据和/或时序控制信号(S463、S464和S466)。因此,如果当前输入数据是不产生DC图像残留的数据且当前帧周期不是第N倍帧周期,则液晶单元没有用具有相反极性的电压充电。结果,没有降低液晶单元中充入的数据电压的量。
另一方面,如果当前输入数据是可能产生DC图像残留的数据且当前帧周期是第N倍帧周期,则本发明的第十三实施方式就用第二极性控制信号FGDPOL控制数据电压的极性,并以上述实施方式中所述的方式在第N倍帧周期处调制数据和/或时序控制信号(S463、S465和S467)。因此,如果当前输入数据是可能产生DC图像残留的数据且当前帧周期是第N倍帧周期,则与其他帧周期相比,降低了液晶单元中充入的数据电压的量。
图47图解了依照本发明第十三实施方式的典型液晶显示器件。在第十三实施方式中,视频信号源、液晶显示面板、数据驱动电路和栅驱动电路大致与前面实施方式的相同。因而,省略其详细描述。如图28中所示,依照本发明第十三实施方式的典型液晶显示器件包括时序控制器471、图像分析器472、数据调制器473、第一时序控制信号调制器474和第二时序控制信号调制器475。
时序控制器471接收时序信号,如垂直/水平同步信号Vsync和Hsync、数据使能信号、时钟信号CLK和其他信号,从而产生控制数据驱动电路、栅驱动电路、数据调制器473以及第一和第二时序控制信号调制器284和285的操作时序的时序控制信号。时序控制信号包括栅时序控制信号,如栅开始脉冲GSP1、栅移位时钟GSC1和栅输出使能信号GOE1等。时序控制信号还包括数据时序控制信号,如源开始脉冲SSP、源采样时钟SSC、源输出使能信号SOE1和极性控制信号POL1等。
图像分析器472确定当前输入图像的数字视频数据是否是可能产生DC图像残留的数据。图像分析器472比较在一帧图像中的相邻线之间的数据,且如果该相邻线之间的数据不小于预定的阈值,则就确定当前输入数据是隔行扫描数据。此外,图像分析器472以帧为单位比较每个像素的数据并检测显示图像的移动图像和移动图像的速度。如果移动图像以预定速度移动,则确定具有移动图像的帧数据为卷动数据。
从图像分析的结果可得出,如果输入可能产生DC图像残留的数据,如隔行扫描数据或卷动数据,则图像分析器472就产生激活数据调制器473、第一时序控制信号调制器474和第二时序控制信号调制器475的选择信号SEL4、SEL5和SEL6。
数据调制器473接收可能产生DC图像残留的数据,并当当前帧周期是第N倍帧周期时其响应于第六选择信号SEL6而向下调制来自时序控制器471的数据RGBodd1和RGBeven1。
第一时序控制信号调制器474接收可能产生DC图像残留的数据,且当当前帧周期是第N倍帧周期时其响应于第四选择信号SEL4而调制从时序控制器471输入的数据时序控制信号。调制过的源输出使能信号SOE2输入到数据驱动电路,从而降低在第N倍帧周期处液晶单元中充入的数据电压的量。调制过的极性控制信号FGDPOL输入到数据驱动电路,从而如此控制数据电压的极性,即第N倍帧周期中的极性图案与前一帧周期中的相同。调制过的极性控制信号FGDPOL在每个帧周期处还反转帧极性图案,从而控制所有其他帧周期中的数据电压的极性。
第二时序控制信号调制器475接收可能产生DC图像残留的数据,且当当前帧周期是第N倍帧周期时其响应于第四选择信号SEL4而调制从时序控制器471输入的栅时序控制信号。调制过的栅开始脉冲GSP2、调制过的栅移位时钟GSC2和调制过的栅输出使能信号GOE2输入到栅驱动电路,从而降低在第N倍帧周期处液晶单元中充入的数据电压的量。
在不脱离本发明的精神或范围的情况下可在本发明的液晶显示器及其驱动方法中做各种修改和变化,这对于本领域普通技术人员来说是显而易见的。因此,本发明意在覆盖落入所附权利要求及其等价物范围中的本发明的修改和变化。

Claims (19)

1.一种液晶显示器件,包括:
液晶显示面板,其包括供给有数据电压的多条数据线、供给有栅脉冲的多条栅线和多个液晶单元;
数据驱动电路,其响应于极性控制信号而将数据电压的极性反转,并响应于源输出使能信号而向数据线输出数据电压;
栅驱动电路,其向栅线供给栅脉冲;和
POL/SOE逻辑电路,其对于除第N(其中N是正整数)倍帧周期之外的其他每一帧周期都反转极性控制信号,其中所述POL/SOE逻辑电路在每一第N倍帧周期处如此控制极性控制信号,即数据电压的极性与前一帧周期相同,并将在每一第N倍帧周期处的源输出使能信号的脉冲宽度控制为比其他帧周期长。
2.根据权利要求1所述的液晶显示器件,其特征在于,在除第N倍帧周期之外的其他每一帧周期处液晶单元用数据电压充电,且在每一第N倍帧周期处液晶单元在用公共电压和电荷共享电压充电之后用数据电压充电,该公共电压是大致与供给到液晶单元的公共电极的电压相同的电压,该电荷共享电压是供给到相邻数据线的正数据电压和负数据电压的平均电压。
3.根据权利要求1所述的液晶显示器件,其特征在于,对于除每一第N倍帧周期之外的每一帧周期产生的源输出使能信号的脉冲宽度为1,儿对于每一第N倍帧周期产生的源输出使能信号的脉冲宽度为大约1.36-1.71。
4.根据权利要求1所述的液晶显示器件,还进一步包括时序控制器,其用于产生在每一帧周期处都反转的基准极性控制信号、脉冲宽度对于所有帧周期都固定的基准源输出使能信号和表示在帧周期的开始点处栅脉冲开始的栅开始脉冲。
5.根据权利要求4所述的液晶显示器件,其特征在于,所述POL/SOE控制电路包括:
逻辑部分,其使用栅开始脉冲、基准极性控制信号、基准源输出使能信号和时钟信号产生在每一第N倍帧周期处具有与前一帧周期相同相位的极性控制信号以及在每一第N倍帧周期处脉冲宽度加宽的源输出使能信号,
第一多路复用器,其选择基准极性控制信号和所述极性控制信号中的任意一个,和
第二多路复用器,其选择基准源输出使能信号和所述源输出使能信号中的任意一个。
6.根据权利要求5所述的液晶显示器件,其特征在于,所述逻辑部分包括:
帧计数器,其通过计算栅开始脉冲而产生帧计数信息,
极性反相器,其使用帧计数器的输出产生在第N倍帧周期开始时反转的极性反转信号,
异或门,其通过对基准极性控制信号和极性反转信号进行异或操作而产生极性控制信号,
时序分析器,其通过使用时钟信号检测基准源输出使能信号的上升沿、脉冲宽度和下降沿而产生时序分析信号,
脉冲宽度调节器,其使用时序分析信号产生具有比基准源输出使能信号的脉冲宽度宽的脉冲宽度的源输出使能信号,和
第三多路复用器,其响应于帧计数器的输出,通过对于第N倍帧周期选择脉冲宽度调节器的输出并对于所有其他帧周期选择基准源输出使能信号而输出源输出使能信号。
7.一种液晶显示器件,包括:
液晶显示面板,其包括供给有数据电压的多条数据线、供给有栅脉冲的多条栅线和多个液晶单元;
图像分析电路,其在输入图像中检测隔行扫描数据和卷动数据中的任意一种;
数据驱动电路,其响应于极性控制信号将数据电压的极性反转,并响应于源输出使能信号向数据线输出数据电压;
栅驱动电路,其向栅线供给栅脉冲;和
POL/SOE逻辑电路,其对于除第N(其中N是正整数)倍帧周期之外的其他每一帧周期反转极性控制信号,其中当图像分析电路检测到输入图像数据是隔行扫描数据和卷动数据中的任意一种时,该POL/SOE逻辑电路在每一第N倍帧周期处控制极性控制信号以使数据电压的极性与前一帧周期相同,并将在每一第N倍帧周期处的源输出使能信号的脉冲宽度控制为比其他帧周期的长。
8.一种液晶显示器件,包括:
液晶显示面板,其包括供给有数据电压的多条数据线、供给有栅脉冲的多条栅线和多个液晶单元;
数据驱动电路,其响应于极性控制信号将数据电压的极性反转,并响应于源输出使能信号向数据线输出数据电压;
栅驱动电路,其向栅线供给扫描脉冲;和
图像分析电路,其检测在输入图像中的隔行扫描数据和卷动数据中的任意一种;
第一控制器,其在老化周期期间增加液晶单元的数据电荷量,该老化周期从产生驱动电路的电力开始一直到之后的预定时间,并当在老化周期之后的正常驱动周期期间通过图像分析电路检测到隔行扫描数据和卷动数据中的任意一种时,该第一控制器使用源输出使能信号在每一第N(其中N是正整数)倍帧周期处降低液晶单元的数据电荷量;以及
第二控制器,当在正常驱动周期期间通过图像分析电路检测到隔行扫描数据和卷动数据中的任意一种时,其将在每一第N倍帧周期处供给到液晶单元的数据极性控制为与前一帧周期的相同,并使用极性控制信号在所有其他帧周期处反转供给到液晶单元的数据极性。
9.根据权利要求8所述的液晶显示器件,其特征在于,所述源输出使能信号的脉冲和栅脉冲在第N倍帧周期期间交迭。
10.根据权利要求8所述的液晶显示器件,其特征在于,在第N倍帧周期期间,对于包括液晶单元用前一线的数据电压充电的第一周期、液晶单元用公共电压和正数据电压与负数据电压之间的电荷共享电压的任意之一进行充电的第二周期和液晶单元用具有与前一线的数据电压相反极性的数据电压进行充电的第三周期的大约每个水平周期,液晶单元被顺序用数据电压充电。
11.根据权利要求10所述的液晶显示器件,其特征在于,当每个水平周期被定义为100%时,第一周期为大约30%到大约40%,第二周期为大约0%到大约20%,第三周期为大约40%到大约60%。
12.根据权利要求8所述的液晶显示器件,还进一步包括第三控制器,其用于产生栅时序控制信号,栅驱动电路根据该栅时序控制信号向栅线供给扫描脉冲。
13.根据权利要求12所述的液晶显示器件,其特征在于,所述栅时序控制信号包括:
在除第N倍帧周期之外的其他每一帧周期处的第一栅移位时钟信号和第一栅输出使能信号,和
在每一第N倍帧周期处的第二栅移位时钟信号和第二栅输出使能信号,与第一栅移位时钟信号相比,该第二栅移位时钟信号具有较快的相位,并且与第一栅输出使能信号相比,该第二栅输出使能信号具有较快的相位。
14.根据权利要求13所述的液晶显示器件,其特征在于,所述第三控制器包括:
帧计数器,其通过计算栅开始脉冲而输出表示第N倍帧周期的N帧信息,
第一相位调节器,其快速调节第一栅移位时钟信号的相位以产生第二栅移位时钟信号,
第二相位调节器,其快速调节第一栅移位时钟信号的相位以产生第二栅移位时钟信号,
第一多路复用器,对于第N倍帧周期之前的(N-1)个帧周期,其向栅驱动电路供给第一栅移位时钟信号,并在第N倍帧周期处响应于所述N帧信息而向栅驱动电路供给第二栅移位时钟信号,和
第二多路复用器,对于第N倍帧周期之前的(N-1)个帧周期,其向栅驱动电路供给第一栅输出使能信号,并在第N倍帧周期处响应于所述N帧信息而向栅驱动电路供给第二栅输出使能信号。
15.根据权利要求12所述的液晶显示器件,其特征在于,所述栅时序控制信号包括:
输入到栅驱动电路中的移位寄存器的栅开始脉冲以表示第一扫描脉冲的开始点,
输入到栅驱动电路中的移位寄存器的栅移位时钟信号以顺序移位栅开始脉冲,和
栅输出使能信号,其表示栅驱动电路的输出。
16.根据权利要求12所述的液晶显示器件,其特征在于,所述第三控制器产生与栅开始脉冲交迭的预栅移位时钟以及第一栅移位时钟,从而对于第N倍帧周期来说预栅移位时钟和第一栅移位时钟与栅开始脉冲交迭,并对于第N倍帧周期来说还产生与预栅移位时钟的上升沿交迭的预栅输出使能信号以及与预栅移位时钟的下降沿交迭的第一栅输出使能信号。
17.根据权利要求16所述的液晶显示器件,其特征在于,所述数据驱动电路在第一栅输出使能信号之后输出数据电压。
18.根据权利要求17所述的液晶显示器件,其特征在于,对于第N倍帧周期来说,栅驱动电路响应于具有栅开始脉冲、预栅移位时钟和第一栅移位时钟的调制过的栅移位时钟以及具有预栅输出使能信号和第一栅输出使能信号的调制过的栅输出使能信号,顺序向栅线供给包括第一扫描脉冲和第二扫描脉冲的一对扫描脉冲,其中供给到第(i-1)(其中i为正整数)条栅线的第二扫描脉冲预供给到第i条栅线的第一扫描脉冲交迭。
19.根据权利要求18所述的液晶显示器件,其特征在于,所述数据驱动电路响应于极性控制信号,使与第一扫描脉冲同步输出的数据电压的极性和与第二扫描脉冲同步输出的数据电压的极性不同。
CN2007103063214A 2007-01-15 2007-12-28 液晶显示器及其驱动方法 Active CN101226724B (zh)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
KR1020070004255A KR100870500B1 (ko) 2007-01-15 2007-01-15 액정표시장치와 그 구동 방법
KR1020070004255 2007-01-15
KR10-2007-0004255 2007-01-15
KR1020070019587 2007-02-27
KR10-2007-0019587 2007-02-27
KR1020070019587A KR100870511B1 (ko) 2007-02-27 2007-02-27 액정표시장치와 그 구동방법
KR1020070028228A KR100870491B1 (ko) 2007-03-22 2007-03-22 액정표시장치와 그 구동방법
KR1020070028228 2007-03-22
KR10-2007-0028228 2007-03-22
KR1020070035126A KR100870510B1 (ko) 2007-04-10 2007-04-10 액정표시장치와 그 구동방법
KR10-2007-0035126 2007-04-10
KR1020070035126 2007-04-10
KR1020070037936 2007-04-18
KR10-2007-0037936 2007-04-18
KR1020070037936A KR100870513B1 (ko) 2007-04-18 2007-04-18 액정표시장치와 그 구동방법

Publications (2)

Publication Number Publication Date
CN101226724A true CN101226724A (zh) 2008-07-23
CN101226724B CN101226724B (zh) 2011-01-19

Family

ID=39821476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007103063214A Active CN101226724B (zh) 2007-01-15 2007-12-28 液晶显示器及其驱动方法

Country Status (2)

Country Link
KR (1) KR100870500B1 (zh)
CN (1) CN101226724B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157136A (zh) * 2011-02-24 2011-08-17 深圳市华星光电技术有限公司 液晶显示器及其驱动方法
CN102654991A (zh) * 2012-03-30 2012-09-05 友达光电股份有限公司 减少液晶显示器的残影的方法与采用此方法的液晶显示器
CN102741913A (zh) * 2010-02-08 2012-10-17 夏普株式会社 显示装置
CN102810301A (zh) * 2011-06-02 2012-12-05 青岛海信电器股份有限公司 液晶显示器和控制液晶显示器像素电压的极性变换的方法
CN103000154A (zh) * 2012-12-05 2013-03-27 京东方科技集团股份有限公司 一种液晶面板的驱动方法、装置及显示装置
CN103151012A (zh) * 2013-03-06 2013-06-12 京东方科技集团股份有限公司 极性反转驱动方法、驱动装置和液晶显示设备
CN103310756A (zh) * 2013-07-05 2013-09-18 合肥京东方光电科技有限公司 液晶显示面板极性反转驱动方法、驱动装置及显示装置
TWI423228B (zh) * 2009-01-23 2014-01-11 Novatek Microelectronics Corp 用於一液晶顯示裝置之驅動方法及其相關裝置
CN104112415A (zh) * 2013-04-22 2014-10-22 精工爱普生株式会社 投影仪
CN104795030A (zh) * 2014-01-21 2015-07-22 三星显示有限公司 栅极驱动电路及包括栅极驱动电路的显示装置
WO2016070461A1 (zh) * 2014-11-07 2016-05-12 深圳市华星光电技术有限公司 液晶面板及其驱动方法、液晶显示器
CN106486086A (zh) * 2017-01-05 2017-03-08 京东方科技集团股份有限公司 一种源极驱动装置、其极性反转控制方法及液晶显示装置
CN106782411A (zh) * 2017-02-22 2017-05-31 京东方科技集团股份有限公司 预充电时间调节装置、方法、显示驱动电路和显示装置
CN106997754A (zh) * 2017-04-14 2017-08-01 京东方科技集团股份有限公司 时序控制器、显示装置及显示驱动方法
CN108831392A (zh) * 2018-06-25 2018-11-16 武汉天马微电子有限公司 显示面板和显示装置
CN108877728A (zh) * 2018-09-11 2018-11-23 惠科股份有限公司 显示装置及其驱动方法
CN109817171A (zh) * 2017-11-22 2019-05-28 奇景光电股份有限公司 显示设备及其驱动方法
CN109817175A (zh) * 2019-01-31 2019-05-28 京东方科技集团股份有限公司 显示面板的驱动方法、其装置、显示面板及显示装置
CN110718192A (zh) * 2018-07-12 2020-01-21 乐金显示有限公司 选通时钟发生器和具有该选通时钟发生器的显示装置
TWI790256B (zh) * 2017-08-04 2023-01-21 南韓商矽工廠股份有限公司 用於顯示設備的低功率驅動系統及時序控制器
WO2023178515A1 (zh) * 2022-03-22 2023-09-28 京东方科技集团股份有限公司 显示面板的驱动方法及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040658B1 (ko) * 2013-05-24 2019-11-27 엘지디스플레이 주식회사 저속 구동용 표시장치와 그 구동방법
KR102081135B1 (ko) * 2013-12-31 2020-04-14 엘지디스플레이 주식회사 저속 구동이 가능한 표시장치
KR102278743B1 (ko) * 2014-03-14 2021-07-19 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07199867A (ja) * 1993-12-28 1995-08-04 Nec Corp アクティブマトリクス型液晶表示装置の駆動法
JPH09171371A (ja) * 1995-12-19 1997-06-30 Hitachi Ltd 液晶表示装置
DE10259326B4 (de) * 2001-12-19 2018-11-29 Lg Display Co., Ltd. Flüssigkristallanzeige
JP4267873B2 (ja) 2002-07-11 2009-05-27 パナソニック株式会社 画像表示装置及び画像表示方法
KR101341784B1 (ko) * 2007-03-12 2013-12-13 엘지디스플레이 주식회사 액정표시장치와 그 구동방법

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423228B (zh) * 2009-01-23 2014-01-11 Novatek Microelectronics Corp 用於一液晶顯示裝置之驅動方法及其相關裝置
US9041639B2 (en) 2009-01-23 2015-05-26 Novatek Microelectronics Corp. Driving device including charge sharing for driving liquid crystal display device
US8928571B2 (en) 2009-01-23 2015-01-06 Novatek Microelectronics Corp. Driving method including charge sharing and related liquid crystal display device
CN102741913A (zh) * 2010-02-08 2012-10-17 夏普株式会社 显示装置
CN102157136B (zh) * 2011-02-24 2012-12-12 深圳市华星光电技术有限公司 液晶显示器及其驱动方法
CN102157136A (zh) * 2011-02-24 2011-08-17 深圳市华星光电技术有限公司 液晶显示器及其驱动方法
CN102810301A (zh) * 2011-06-02 2012-12-05 青岛海信电器股份有限公司 液晶显示器和控制液晶显示器像素电压的极性变换的方法
CN102810301B (zh) * 2011-06-02 2015-10-14 青岛海信电器股份有限公司 液晶显示器和控制液晶显示器像素电压的极性变换的方法
CN102654991B (zh) * 2012-03-30 2015-04-08 友达光电股份有限公司 减少液晶显示器的残影的方法与采用此方法的液晶显示器
CN102654991A (zh) * 2012-03-30 2012-09-05 友达光电股份有限公司 减少液晶显示器的残影的方法与采用此方法的液晶显示器
US9483988B2 (en) 2012-12-05 2016-11-01 Boe Technology Group Co., Ltd. Driving method and driving device for liquid crystal panel, and display device
CN103000154A (zh) * 2012-12-05 2013-03-27 京东方科技集团股份有限公司 一种液晶面板的驱动方法、装置及显示装置
CN103151012A (zh) * 2013-03-06 2013-06-12 京东方科技集团股份有限公司 极性反转驱动方法、驱动装置和液晶显示设备
US9437147B2 (en) 2013-03-06 2016-09-06 Boe Technology Group Co., Ltd. Polarity inversion driving method, driving apparatus and liquid crystal display device
CN104112415A (zh) * 2013-04-22 2014-10-22 精工爱普生株式会社 投影仪
CN104112415B (zh) * 2013-04-22 2017-01-11 精工爱普生株式会社 投影仪
CN103310756B (zh) * 2013-07-05 2016-04-13 合肥京东方光电科技有限公司 液晶显示面板极性反转驱动方法、驱动装置及显示装置
CN103310756A (zh) * 2013-07-05 2013-09-18 合肥京东方光电科技有限公司 液晶显示面板极性反转驱动方法、驱动装置及显示装置
US9311873B2 (en) 2013-07-05 2016-04-12 Boe Technology Group Co., Ltd. Polarity inversion driving method for liquid crystal display panel, driving apparatus and display device
US10134352B2 (en) 2014-01-21 2018-11-20 Samsung Display Co., Ltd. Gate driving circuit and display apparatus including the same
CN104795030A (zh) * 2014-01-21 2015-07-22 三星显示有限公司 栅极驱动电路及包括栅极驱动电路的显示装置
WO2016070461A1 (zh) * 2014-11-07 2016-05-12 深圳市华星光电技术有限公司 液晶面板及其驱动方法、液晶显示器
CN106486086A (zh) * 2017-01-05 2017-03-08 京东方科技集团股份有限公司 一种源极驱动装置、其极性反转控制方法及液晶显示装置
US11308903B2 (en) 2017-01-05 2022-04-19 Boe Technology Group Co., Ltd. Source driving device, polarity reversal control method thereof, and liquid crystal display device
CN106782411A (zh) * 2017-02-22 2017-05-31 京东方科技集团股份有限公司 预充电时间调节装置、方法、显示驱动电路和显示装置
CN106782411B (zh) * 2017-02-22 2019-02-12 京东方科技集团股份有限公司 预充电时间调节装置、方法、显示驱动电路和显示装置
CN106997754A (zh) * 2017-04-14 2017-08-01 京东方科技集团股份有限公司 时序控制器、显示装置及显示驱动方法
WO2018188389A1 (zh) * 2017-04-14 2018-10-18 京东方科技集团股份有限公司 时序控制器、显示装置及显示驱动方法
CN106997754B (zh) * 2017-04-14 2019-07-02 京东方科技集团股份有限公司 时序控制器、显示装置及显示驱动方法
TWI790256B (zh) * 2017-08-04 2023-01-21 南韓商矽工廠股份有限公司 用於顯示設備的低功率驅動系統及時序控制器
CN109817171A (zh) * 2017-11-22 2019-05-28 奇景光电股份有限公司 显示设备及其驱动方法
CN108831392A (zh) * 2018-06-25 2018-11-16 武汉天马微电子有限公司 显示面板和显示装置
CN110718192A (zh) * 2018-07-12 2020-01-21 乐金显示有限公司 选通时钟发生器和具有该选通时钟发生器的显示装置
CN108877728A (zh) * 2018-09-11 2018-11-23 惠科股份有限公司 显示装置及其驱动方法
CN109817175A (zh) * 2019-01-31 2019-05-28 京东方科技集团股份有限公司 显示面板的驱动方法、其装置、显示面板及显示装置
WO2023178515A1 (zh) * 2022-03-22 2023-09-28 京东方科技集团股份有限公司 显示面板的驱动方法及显示装置

Also Published As

Publication number Publication date
KR100870500B1 (ko) 2008-11-26
KR20080067095A (ko) 2008-07-18
CN101226724B (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
CN101226724B (zh) 液晶显示器及其驱动方法
JP5348884B2 (ja) 液晶表示装置
CN104751757B (zh) 能够以低速驱动的显示装置
CN100527211C (zh) 具有改进的预充电电路的液晶显示设备
US9390666B2 (en) Display device capable of driving at low speed
CN101334973B (zh) 液晶显示器及其驱动方法
KR101222987B1 (ko) 액정표시장치와 그 구동방법
US7133035B2 (en) Method and apparatus for driving liquid crystal display device
CN101334972B (zh) 液晶显示器及其驱动方法
KR101341905B1 (ko) 액정 표시장치의 구동장치와 그 구동방법
CN101465103B (zh) 液晶显示器及其驱动方法
US20140320465A1 (en) Display Device For Low Speed Drive And Method For Driving The Same
US9728151B2 (en) Display panel driving and scanning method and system
CN102568413A (zh) 液晶显示设备及其驱动方法
CN101714322A (zh) 电光学装置、其驱动方法、及电子设备
KR100870510B1 (ko) 액정표시장치와 그 구동방법
US9697785B2 (en) Display device
KR100870513B1 (ko) 액정표시장치와 그 구동방법
KR101341784B1 (ko) 액정표시장치와 그 구동방법
KR100894641B1 (ko) 액정표시장치와 그 구동 방법
KR20050018288A (ko) 액정표시장치
KR20060041435A (ko) 액정표시장치의 구동장치 및 구동방법
KR100870511B1 (ko) 액정표시장치와 그 구동방법
KR20050053446A (ko) 액정표시장치의 데이터 구동장치 및 구동방법
KR20040017708A (ko) 액정 표시 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant