CN101179177A - Structure and Fabrication Method of Long Wavelength Vertical Cavity Surface Emitting Laser - Google Patents
Structure and Fabrication Method of Long Wavelength Vertical Cavity Surface Emitting Laser Download PDFInfo
- Publication number
- CN101179177A CN101179177A CNA2006101144068A CN200610114406A CN101179177A CN 101179177 A CN101179177 A CN 101179177A CN A2006101144068 A CNA2006101144068 A CN A2006101144068A CN 200610114406 A CN200610114406 A CN 200610114406A CN 101179177 A CN101179177 A CN 101179177A
- Authority
- CN
- China
- Prior art keywords
- layer
- cycles
- bragg reflector
- active area
- cavity surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 26
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 8
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000000206 photolithography Methods 0.000 claims description 12
- 238000005275 alloying Methods 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 6
- 238000005566 electron beam evaporation Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 229920002120 photoresistant polymer Polymers 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 3
- 238000000576 coating method Methods 0.000 claims 3
- 239000000126 substance Substances 0.000 claims 2
- 238000000407 epitaxy Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 16
- 229910052681 coesite Inorganic materials 0.000 abstract description 8
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 8
- 239000000377 silicon dioxide Substances 0.000 abstract description 8
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 8
- 229910052682 stishovite Inorganic materials 0.000 abstract description 8
- 229910052905 tridymite Inorganic materials 0.000 abstract description 8
- 238000005530 etching Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 5
- 238000002310 reflectometry Methods 0.000 description 4
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000000879 optical micrograph Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
一种长波长垂直腔面发射激光器的结构,包括:一N型GaAs衬底;多个周期的下布拉格反射镜,该多个周期的下布拉格反射镜制作在衬底上;一有源区与多个周期的下布拉格反射镜联结;多个周期的上布拉格反射镜制作在有源区上的中间位置;一SiO2掩膜沉积在多个周期的下布拉格反射镜的上面、有源区的部分上部和侧壁以及上布拉格反射镜的部分上部和侧壁;一P电极制作在有源区的SiO2掩膜上和暴露的有源区表面;一N电极,该N电极制作在衬底的下面。
A structure of a long-wavelength vertical cavity surface-emitting laser, comprising: an N-type GaAs substrate; a plurality of periods of lower Bragg reflectors, the plurality of periods of lower Bragg reflectors are fabricated on the substrate; an active region and The lower Bragg reflectors of multiple periods are connected; the upper Bragg reflectors of multiple periods are fabricated in the middle position on the active area; a SiO 2 mask is deposited on the upper surface of the lower Bragg reflectors of multiple periods, and the active area Part of the upper part and the side wall and the part of the upper part and the side wall of the upper Bragg reflector; a P electrode is made on the SiO2 mask of the active area and the exposed active area surface; an N electrode is made on the substrate below.
Description
技术领域 technical field
本发明是一种长波长垂直腔面发射激光器的结构和制作方法,采用了GaAs/AlGaAs材料系组合作为下布拉格反射镜,并通过键合方式将下布拉格反射镜与有源区粘连。本发明还涉及制造该结构的工艺和方法。The invention relates to the structure and manufacturing method of a long-wavelength vertical cavity surface-emitting laser, which adopts a combination of GaAs/AlGaAs material system as a lower Bragg reflector, and adheres the lower Bragg reflector to the active area by bonding. The invention also relates to processes and methods of making the structure.
背景技术 Background technique
垂直腔面发射激光器因其本身低阈值、圆形光束、易耦合和易二维集成等优点,成为光电子领域研究的热点。在光纤通讯系统中,动态单模工作的长波长垂直腔面发射激光光源是不可缺少的关键性元件。主要用于中距离和长距离高速数据通讯和光互连、光并行处理、光识别系统,在城域网和广域网中都有着重要的应用。Due to its low threshold, circular beam, easy coupling and easy two-dimensional integration, vertical cavity surface emitting laser has become a research hotspot in the field of optoelectronics. In the optical fiber communication system, the long-wavelength vertical cavity surface-emitting laser source with dynamic single-mode operation is an indispensable key component. It is mainly used for medium-distance and long-distance high-speed data communication and optical interconnection, optical parallel processing, and optical identification system, and has important applications in both metropolitan area network and wide area network.
1.3μm和1.55μm波长处于光纤的低色散和低衰减窗口,使得1.3μm和1.55μm VCSEL在中长距离超高并行度光纤通信方面具有短波长VCSEL无法比拟的优点,加上这两个波段已有的通信标准和成熟技术,使长波长VCSEL在并行光传输、光通信和波分复用(WDM)系统中应用前景十分广阔,极具市场前潜力。在1.3μm与1.55μm波长附近区域,能够提供高增益的材料主要是基于InP衬底的材料,InP基的InGaAsP QW和AlGaInAs QW系VCSEL的一大难点就是与有源层材料晶格匹配的布拉格反射镜材料,InGaAsP/InP、AlGaInAs/InP、InAlGaAs/InAlAs等材料的折射率差比较小,因此,要使DBR达到99%以上的反射率,就需要较多的周期数,从而增加了外延生长的困难。而且,较厚的DBR也会带来更大的串联电阻、更严重的热效应和更大的光损耗。另一方面,四元合金材料的热导率低,使器件的热阻难以降低,这些因素使InP基长波长VCSEL的研究进展与短波长VCSEL相比显著缓慢。而GaAs/AlGaAs材料系组成的布拉格反射镜因其折射率差较大,所以可以通过相对较少的周期就可以达到非常高的反射率,改进了传统长波长垂直腔面发射激光器分布布拉格反射镜层数多,热阻大,难以达到高反射率,外延生长困难的缺点。The wavelengths of 1.3μm and 1.55μm are in the low dispersion and low attenuation windows of optical fibers, making 1.3μm and 1.55μm VCSELs have incomparable advantages over short-wavelength VCSELs in medium and long-distance ultra-high parallelism optical fiber communications. Some communication standards and mature technologies make long-wavelength VCSELs have broad application prospects in parallel optical transmission, optical communications and wavelength division multiplexing (WDM) systems, and have great pre-market potential. In the region around the wavelength of 1.3μm and 1.55μm, the materials that can provide high gain are mainly based on InP substrate materials. A major difficulty of InP-based InGaAsP QW and AlGaInAs QW VCSELs is the Bragg lattice matching with the active layer material. Reflector materials, InGaAsP/InP, AlGaInAs/InP, InAlGaAs/InAlAs and other materials have relatively small refractive index difference. Therefore, to make the DBR achieve a reflectivity of more than 99%, more cycles are required, thereby increasing the epitaxial growth. Difficulties. Moreover, thicker DBRs also lead to greater series resistance, more severe thermal effects, and greater optical loss. On the other hand, the low thermal conductivity of quaternary alloy materials makes it difficult to reduce the thermal resistance of devices. These factors make the research progress of InP-based long-wavelength VCSELs significantly slower than that of short-wavelength VCSELs. The Bragg reflector composed of GaAs/AlGaAs material system has a large refractive index difference, so it can achieve very high reflectivity through relatively few cycles, which improves the traditional long-wavelength vertical cavity surface emitting laser distributed Bragg reflector. The number of layers is large, the thermal resistance is large, it is difficult to achieve high reflectivity, and the disadvantages of epitaxial growth are difficult.
发明内容 Contents of the invention
本发明的目的在于提供一种长波长垂直腔面发射激光器的结构和制作方法,改进了传统长波长垂直腔面发射激光器分布布拉格反射镜层数多,热阻大,难以达到高反射率,外延生长困难的缺点。The object of the present invention is to provide a structure and manufacturing method of a long-wavelength vertical-cavity surface-emitting laser, which improves the traditional long-wavelength vertical-cavity surface-emitting laser with many layers of distributed Bragg mirrors, large thermal resistance, and difficulty in achieving high reflectivity. Disadvantages of difficult growth.
本发明一种长波长垂直腔面发射激光器的结构,其特征在于,该结构包括:A structure of a long-wavelength vertical cavity surface emitting laser according to the present invention is characterized in that the structure comprises:
一衬底,该衬底为N型GaAs衬底;A substrate, the substrate is an N-type GaAs substrate;
多个周期的下布拉格反射镜,该多个周期的下布拉格反射镜制作在衬底上,该多个周期的下布拉格反射镜用于反射激光腔内的光来形成激光振荡;A lower Bragg reflector with multiple periods, the lower Bragg reflector with multiple periods is fabricated on the substrate, and the lower Bragg reflector with multiple periods is used to reflect the light in the laser cavity to form laser oscillation;
一有源区,该有源区通过键合方式与多个周期的下布拉格反射镜联结,用来形成光增益;An active region, the active region is connected with a plurality of periodic lower Bragg reflectors by bonding to form optical gain;
多个周期的上布拉格反射镜,该多个周期的上布拉格反射镜制作在有源区上的中间位置,同时形成出光窗口,并用于反射激光腔内的光来形成激光振荡;A multi-period upper Bragg reflector, the multi-period upper Bragg reflector is fabricated in the middle of the active area, and forms a light exit window at the same time, and is used to reflect the light in the laser cavity to form laser oscillation;
一SiO2掩膜,沉积在多个周期的下布拉格反射镜的上面、有源区的部分上部和侧壁以及上布拉格反射镜的部分上部和侧壁,起到形成出光窗口和防止短路的作用;A SiO 2 mask, deposited on the top of the lower Bragg reflector, part of the upper part and side walls of the active region, and part of the upper part and side walls of the upper Bragg reflector, plays the role of forming a light exit window and preventing short circuits ;
一P电极,该P电极制作在有源区的SiO2掩膜上和暴露的有源区表面,形成内腔接触,用于电流注入;a P electrode fabricated on the SiO2 mask of the active area and the exposed surface of the active area to form a cavity contact for current injection;
一N电极,该N电极制作在衬底的下面。An N electrode, the N electrode is fabricated under the substrate.
其中多个周期的下布拉格反射镜包括32个周期的Al0.9Ga0.1As层和GaAs层及一个周期的Al0.9Ga0.1As层、Al0.98Ga0.002As层和GaAs层;其中Al0.98Ga0.02As层用于氧化,形成氧化孔,以形成绝缘区域以起电流限制作用。Among them, the lower Bragg reflector with multiple periods includes 32 periods of Al 0.9 Ga 0.1 As layer and GaAs layer and one period of Al 0.9 Ga 0.1 As layer, Al 0.98 Ga 0.002 As layer and GaAs layer; among them, Al 0.98 Ga 0.02 As The layer is used for oxidation, forming oxidation holes to form insulating regions for current confinement.
其中氧化孔的孔径约在10~20微米。The diameter of the oxidation pores is about 10-20 microns.
其中上布拉格反射镜包括3.5个周期的Si介质膜和SiO2介质膜。The upper Bragg reflector includes 3.5 periods of Si dielectric film and SiO 2 dielectric film.
本发明一种长波长垂直腔面发射激光器结构的制作方法,其特征在于,该方法包括如下步骤:A method for manufacturing a long-wavelength vertical cavity surface-emitting laser structure of the present invention is characterized in that the method comprises the following steps:
(1)采用外延工艺金属有机化学气相沉积方法在衬底生长多个周期的下布拉格反射镜;(1) The lower Bragg reflector is grown on the substrate for multiple cycles by the metal-organic chemical vapor deposition method of the epitaxial process;
(2)采用分子束外延生长方法在InP衬底生长有源区;(2) The active region is grown on the InP substrate by molecular beam epitaxy;
(3)将有源区与布拉格反射镜采用键合技术粘连,键合界面是InP/GaAs,然后采用化学腐蚀的方法去除InP衬底;(3) The active region and the Bragg reflector are bonded by bonding technology, the bonding interface is InP/GaAs, and then the InP substrate is removed by chemical etching;
(4)通过标准光刻工艺形成掩膜,带光刻胶电子束回旋共振淀积或者电子束蒸发上布拉格反射镜;(4) A mask is formed by a standard photolithography process, with a photoresist electron beam cyclotron resonance deposition or electron beam evaporation on a Bragg mirror;
(5)通过标准光刻工艺形成掩膜,通过化学腐蚀有源区和下布拉格反射镜形成台面,露出下布拉格反射镜的Al0.98Ga0.02As层和GaAs层;(5) A mask is formed by a standard photolithography process, and a mesa is formed by chemically etching the active region and the lower Bragg reflector, exposing the Al 0.98 Ga 0.02 As layer and the GaAs layer of the lower Bragg reflector;
(6)通过氧化工艺使Al0.98Ga0.02As层部分氧化,形成氧化孔及绝缘区域以起到电流限制作用;(6) Partially oxidize the Al 0.98 Ga 0.02 As layer through an oxidation process to form oxidation holes and insulating regions to play a role in current confinement;
(7)热沉积SiO2掩膜,通过标准光刻、腐蚀,露出出光窗口,同时在上布拉格反射镜和有源区侧壁形成掩膜,以防止电流短路;(7) Thermally deposited SiO2 mask, through standard photolithography and etching, to expose the light exit window, and at the same time form a mask on the upper Bragg reflector and the side wall of the active region to prevent current short circuit;
(8)蒸发P电极,再通过标准光刻工艺形成掩膜,然后腐蚀形成P电极形状,然后进行合金化处理;(8) Evaporate the P electrode, then form a mask through a standard photolithography process, then corrode to form the P electrode shape, and then carry out alloying treatment;
(9)减薄、抛光N型InP衬底,蒸发N电极,然后进行合金化处理,完成器件的制作。(9) Thinning and polishing the N-type InP substrate, evaporating the N electrode, and then performing alloying treatment to complete the fabrication of the device.
其中下布拉格反射镜包括32个周期的Al0.9Ga0.1As层和GaAs层及一个周期的Al0.9Ga0.1As层、Al0.98Ga0.02As层和GaAs层。The lower Bragg reflector includes 32 periods of Al 0.9 Ga 0.1 As layer and GaAs layer and one period of Al 0.9 Ga 0.1 As layer, Al 0.98 Ga 0.02 As layer and GaAs layer.
其中有源区的光学厚度为1.5λ,λ为激射波长。The optical thickness of the active region is 1.5λ, where λ is the lasing wavelength.
其中上布拉格反射镜是通过带胶剥离工艺形成,包括依次淀积或蒸发的3.5个周期的介质膜Si层和SiO2层。Wherein the upper Bragg reflector is formed by a peel-off process with glue, including 3.5 cycles of dielectric film Si layer and SiO2 layer deposited or evaporated in sequence.
其中该氧化孔的孔径为10~20微米。Wherein the oxidized pores have a diameter of 10-20 microns.
附图说明 Description of drawings
为进一步说明本发明的内容及特点,以下结合实例及附图,详细说明如后,其中:For further illustrating content and characteristics of the present invention, below in conjunction with example and accompanying drawing, describe in detail as follows, wherein:
图1是本发明长波长面发射激光器的示意图;Fig. 1 is the schematic diagram of long-wavelength surface-emitting laser of the present invention;
图2是InP衬底腐蚀后的光学照片;Fig. 2 is the optical photograph of InP substrate corrosion;
图3是本发明下布拉格反射镜3与有源区4键合后,电子束蒸发上布拉格反射镜5的扫描电子显微镜图;Fig. 3 is the scanning electron microscope picture of the upper Bragg
图4是上布拉格反射镜5带胶剥离后的光学显微镜图;Fig. 4 is the optical microscope picture after the upper Bragg
图5有源区4和下布拉格反射镜3湿法腐蚀后的光学照片;The optical photo of the
图6是Al0.98Ga0.02As层33部分氧化后的光学显微镜图。FIG. 6 is an optical micrograph of the Al 0.98 Ga 0.02 As
具体实施方式 Detailed ways
本发明是利用GaAs/AlGaAs材料系作为下布拉格反射镜4,3.5个周期的Si层51和SiO2层52介质膜作为上布拉格反射镜5来实现长波长面发射激光器的结构。图1为本发明长波长面发射激光器示意图。包括N电极1,N型GaAs衬底2,下布拉格反射镜3,包括32个周期的Al0.98Ga0.1As层31和GaAs层32及一个周期的Al0.9Ga0.1As层31、Al0.98Ga0.02As层33和GaAs层32,应变量子阱有源区4,上布拉格反射镜5,由3.5个周期Si/SiO2多层介质膜51和52组成,同时也是出光窗口,SiO2掩膜6,P电极7。该结构的主要特征如下:The present invention utilizes the GaAs/AlGaAs material system as the lower Bragg
1.其中下布拉格反射镜3包括32个周期的Al0.9Ga0.1As层31和GaAs层32及一个周期的Al0.9Ga0.1As层31、Al0.98Ga0.02As层33和GaAs层32。其中Al0.98Ga0.02As层33用于氧化以起电流限制作用,氧化孔径约在10~20微米左右。1. The lower Bragg
2.其中上布拉格反射镜5包括3.5个周期Si/SiO2多层介质膜51和52;2. Wherein the
3.下布拉格反射镜3和有源区4分别在不同的衬底采用不同的外延方式生长,然后通过键合方法粘连在一起;3. The
4.有源区设计的光学厚度为1.5λ,λ为激射波长;4. The optical thickness of the active region is designed to be 1.5λ, where λ is the lasing wavelength;
5.该结构的P电极7制作在有源区4上,N电极1制作在衬底2上,是典型的内腔接触式垂直腔面发射激光器。5. The
在外延生长时,采用两种生长方式分别在两种衬底上进行下布拉格反射镜3和有源区4的外延生长。其中采用分子束外延生长方法在GaAs衬底2上生长下布拉格反射镜3,外延工艺金属有机化学气相沉积方法在InP衬底生长有源区4。During the epitaxial growth, the epitaxial growth of the
将有源区4与布拉格反射镜3采用键合技术粘连,键合界面是InP/GaAs,然后采用化学腐蚀的方法去除InP衬底及腐蚀停止层InGaAs,衬底去除的腐蚀液采用3HCl∶1H2O,腐蚀停止层InGaAs的去除采用1H3PO4∶5H2O2∶5H2O腐蚀液。图2是InP衬底及腐蚀停止层InGaAs去除后的光学照片,由图可见,腐蚀后的表面十分平整光亮。The
通过标准光刻工艺形成掩膜,带光刻胶电子束回旋共振淀积或者电子束蒸发上布拉格反射镜5,包括依次淀积或蒸发的3.5个周期的介质膜Si层51和SiO2层52,图3是电子束蒸发上布拉格反射镜5后的透射电子显微镜照片。然后进行带胶剥离形成上布拉格反射镜5,带胶剥离形成的图案见图4;A mask is formed by a standard photolithography process, with photoresist electron beam cyclotron resonance deposition or electron beam evaporation on the
通过标准光刻工艺形成掩膜,通过化学腐蚀有源区4和下布拉格反射镜3形成台面,露出下布拉格反射镜3的Al0.98Ga0.02As层33和GaAs层32,有源区4和下布拉格反射镜3腐蚀的光学照片见图5;A mask is formed by a standard photolithography process, and a mesa is formed by chemically etching the
通过氧化工艺使Al0.9Ga0.02As层33部分氧化以起到电流限制作用,氧化孔径35控制在10~20微米左右;对于厚度为50nm的Al0.98Ga0.02As层33,在温度为420℃,水温保持在88℃,氮气流量1L/min的条件下,氧化速率约为1微米/分钟。图6为Al0.98Ga0.02As层33部分氧化后的光学显微镜图像。The Al 0.9 Ga 0.02 As
热沉积SiO2掩膜6,通过标准光刻、腐蚀,露出出光窗口,同时在上布拉格反射镜5和有源区4侧壁形成掩膜,以防止电流短路;Thermally deposited SiO2
蒸发P电极7,再通过标准光刻工艺形成掩膜,然后腐蚀形成P电极7形状,然后进行合金化处理;Evaporate the
上布拉格反射镜5通过以下步骤制备,首先采用标准光刻工艺形成掩膜,然后带光刻胶低温进行电子束回旋共振淀积或者电子束蒸发上布拉格反射镜5,包括依次淀积或蒸发的3.5个周期的介质膜Si层51和SiO2层52,然后进行带胶剥离形成上布拉格反射镜5。图3为整体结构的扫描电镜图像,图4为带胶剥离后的上布拉格反射镜5光学显微镜图像。The
减薄、抛光N型InP衬底2,然后蒸发N电极1,最后进行合金化处理。Thinning and polishing the N-
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101144068A CN100495839C (en) | 2006-11-09 | 2006-11-09 | Structure and Fabrication Method of Long Wavelength Vertical Cavity Surface Emitting Laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006101144068A CN100495839C (en) | 2006-11-09 | 2006-11-09 | Structure and Fabrication Method of Long Wavelength Vertical Cavity Surface Emitting Laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101179177A true CN101179177A (en) | 2008-05-14 |
CN100495839C CN100495839C (en) | 2009-06-03 |
Family
ID=39405318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006101144068A Expired - Fee Related CN100495839C (en) | 2006-11-09 | 2006-11-09 | Structure and Fabrication Method of Long Wavelength Vertical Cavity Surface Emitting Laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100495839C (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101667715B (en) * | 2008-09-03 | 2010-10-27 | 中国科学院半导体研究所 | A single-mode high-power vertical-cavity surface-emitting laser and its manufacturing method |
CN102013633A (en) * | 2010-10-29 | 2011-04-13 | 北京工业大学 | Bridge type nano grating tunable vertical cavity surface emitting laser and preparation method thereof |
CN101667716B (en) * | 2008-09-03 | 2011-10-26 | 中国科学院半导体研究所 | Double-sided bonding long-wavelength vertical cavity surface emitting laser and manufacturing method thereof |
CN101714605B (en) * | 2009-11-25 | 2012-12-12 | 山东华光光电子有限公司 | AlGaInp system LED chip with current regulating layer and preparing method thereof |
CN103904175A (en) * | 2014-04-18 | 2014-07-02 | 中国科学院半导体研究所 | Method for manufacturing photonic crystal light-emitting diode of waveguiding structures |
CN107749565A (en) * | 2017-11-27 | 2018-03-02 | 江苏点晶光电科技有限公司 | Si based vertical cavity surface launching chips |
CN108777433A (en) * | 2018-03-23 | 2018-11-09 | 江苏宜兴德融科技有限公司 | Vertical plane cavity surface emitting laser and preparation method thereof |
CN110635352A (en) * | 2019-09-29 | 2019-12-31 | 河北工业大学 | VCSEL device with N-type semiconductor confined hole structure |
CN111293583A (en) * | 2020-02-24 | 2020-06-16 | 长春中科长光时空光电技术有限公司 | High-power long-wavelength vertical-cavity surface-emitting laser array and manufacturing method thereof |
CN112133643A (en) * | 2020-08-18 | 2020-12-25 | 华芯半导体研究院(北京)有限公司 | Novel Vcsel epitaxial structure and method for testing corresponding oxidation aperture thereof |
CN114188820A (en) * | 2022-02-14 | 2022-03-15 | 常州承芯半导体有限公司 | Method for forming vertical cavity surface emitting laser |
CN118156972A (en) * | 2024-05-13 | 2024-06-07 | 山东省科学院激光研究所 | Long wavelength vertical cavity surface emitting laser and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6668005B2 (en) * | 1998-01-31 | 2003-12-23 | Klaus Streubel | Pre-fusion oxidized and wafer-bonded vertical cavity laser |
US7072376B2 (en) * | 2004-09-16 | 2006-07-04 | Corning Incorporated | Method of manufacturing an InP based vertical cavity surface emitting laser and device produced therefrom |
-
2006
- 2006-11-09 CN CNB2006101144068A patent/CN100495839C/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101667716B (en) * | 2008-09-03 | 2011-10-26 | 中国科学院半导体研究所 | Double-sided bonding long-wavelength vertical cavity surface emitting laser and manufacturing method thereof |
CN101667715B (en) * | 2008-09-03 | 2010-10-27 | 中国科学院半导体研究所 | A single-mode high-power vertical-cavity surface-emitting laser and its manufacturing method |
CN101714605B (en) * | 2009-11-25 | 2012-12-12 | 山东华光光电子有限公司 | AlGaInp system LED chip with current regulating layer and preparing method thereof |
CN102013633A (en) * | 2010-10-29 | 2011-04-13 | 北京工业大学 | Bridge type nano grating tunable vertical cavity surface emitting laser and preparation method thereof |
CN103904175A (en) * | 2014-04-18 | 2014-07-02 | 中国科学院半导体研究所 | Method for manufacturing photonic crystal light-emitting diode of waveguiding structures |
CN103904175B (en) * | 2014-04-18 | 2016-07-06 | 中国科学院半导体研究所 | There is the manufacture method of waveguiding structure photonic crystal light-emitting diode |
CN107749565B (en) * | 2017-11-27 | 2020-12-04 | 江苏点晶光电科技有限公司 | Si-based vertical cavity surface emitting chip |
CN107749565A (en) * | 2017-11-27 | 2018-03-02 | 江苏点晶光电科技有限公司 | Si based vertical cavity surface launching chips |
CN108777433A (en) * | 2018-03-23 | 2018-11-09 | 江苏宜兴德融科技有限公司 | Vertical plane cavity surface emitting laser and preparation method thereof |
CN110635352A (en) * | 2019-09-29 | 2019-12-31 | 河北工业大学 | VCSEL device with N-type semiconductor confined hole structure |
CN111293583A (en) * | 2020-02-24 | 2020-06-16 | 长春中科长光时空光电技术有限公司 | High-power long-wavelength vertical-cavity surface-emitting laser array and manufacturing method thereof |
CN111293583B (en) * | 2020-02-24 | 2021-06-01 | 长春中科长光时空光电技术有限公司 | High-power long-wavelength vertical-cavity surface-emitting laser array and manufacturing method thereof |
CN112133643A (en) * | 2020-08-18 | 2020-12-25 | 华芯半导体研究院(北京)有限公司 | Novel Vcsel epitaxial structure and method for testing corresponding oxidation aperture thereof |
CN112133643B (en) * | 2020-08-18 | 2021-09-07 | 华芯半导体研究院(北京)有限公司 | Novel Vcsel epitaxial structure and method for testing corresponding oxidation aperture thereof |
CN114188820A (en) * | 2022-02-14 | 2022-03-15 | 常州承芯半导体有限公司 | Method for forming vertical cavity surface emitting laser |
CN118156972A (en) * | 2024-05-13 | 2024-06-07 | 山东省科学院激光研究所 | Long wavelength vertical cavity surface emitting laser and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN100495839C (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100495839C (en) | Structure and Fabrication Method of Long Wavelength Vertical Cavity Surface Emitting Laser | |
CN101667716B (en) | Double-sided bonding long-wavelength vertical cavity surface emitting laser and manufacturing method thereof | |
CN100428593C (en) | Structure and Fabrication Method of Long Wavelength Vertical Cavity Surface Emitting Laser | |
CN101667715B (en) | A single-mode high-power vertical-cavity surface-emitting laser and its manufacturing method | |
CN101443915B (en) | Quantum dot based optoelectronic device and method of making same | |
US4582390A (en) | Dielectric optical waveguide and technique for fabricating same | |
CN106711761B (en) | DFB semiconductor laser preparation method and laser prepared by same | |
AU707420B2 (en) | Method of manufacturing a semiconductor surface emitting laser | |
US9042418B2 (en) | III-V photonic crystal microlaser bonded on silicon-on-insulator | |
JPH09116228A (en) | Perpendicular cavity laser emission part and its manufacture | |
CN103259190A (en) | Annular semiconductor laser of vertical coupling structure and preparing method thereof | |
CN101132119A (en) | Cantilever beam wavelength tunable vertical cavity surface emitting laser structure and fabrication method | |
JP5198793B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3689621B2 (en) | Semiconductor light emitting device | |
US6846685B2 (en) | Vertical-cavity surface-emitting semiconductor laser | |
US6208680B1 (en) | Optical devices having ZNS/CA-MG-fluoride multi-layered mirrors | |
CN108400523B (en) | High-speed integrated DFB semiconductor laser chip and preparation method thereof | |
JP2001068783A (en) | Surface emitting laser and method of manufacturing the same | |
US6989312B2 (en) | Method for fabricating semiconductor optical device | |
RU2554302C2 (en) | Vertically emitting laser with bragg mirrors and intracavity metal contacts | |
JPH10233558A (en) | Multilayer film structure wherein diamond layer is incorporated, optical device with it and its manufacturing method | |
CN206412634U (en) | A kind of DFB semiconductor laser | |
Lee et al. | Generic heterogeneously integrated III–V lasers-on-chip with metal-coated etched-mirror | |
JP2004063972A (en) | Semiconductor laser, and manufacturing method thereof | |
JPH0677582A (en) | Surface emitting laser on silicon substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090603 Termination date: 20091209 |