CN101160472B - 动压轴承装置及马达 - Google Patents

动压轴承装置及马达 Download PDF

Info

Publication number
CN101160472B
CN101160472B CN200680012735XA CN200680012735A CN101160472B CN 101160472 B CN101160472 B CN 101160472B CN 200680012735X A CN200680012735X A CN 200680012735XA CN 200680012735 A CN200680012735 A CN 200680012735A CN 101160472 B CN101160472 B CN 101160472B
Authority
CN
China
Prior art keywords
bearing
thrust
dynamic pressure
components
division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200680012735XA
Other languages
English (en)
Other versions
CN101160472A (zh
Inventor
伊藤健二
古森功
里路文规
伊藤冬木
稻塚贵开
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005121253A external-priority patent/JP4937524B2/ja
Priority claimed from JP2005210335A external-priority patent/JP2007024267A/ja
Application filed by NTN Corp filed Critical NTN Corp
Priority claimed from PCT/JP2006/308072 external-priority patent/WO2006115104A1/ja
Publication of CN101160472A publication Critical patent/CN101160472A/zh
Application granted granted Critical
Publication of CN101160472B publication Critical patent/CN101160472B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本发明的目的是谋求动压轴承装置的低成本化。动压轴承装置通过轴构件(2)的外周面与轴承构件(7)的内周面(7a)之间的向心轴承间隙产生的动压作用,在径向上对轴构件(2)进行非接触支承,由轴构件(2)、轴承构件(7)、盖构件(8)以及密封构件(9)构成。轴承构件(7)的内周插入有轴构件(2),其下端开口部被盖构件(8)封住。密封构件(9)安装于轴承构件(7)的上端开口部,与轴构件(2)的外周面之间形成密封空间(S)。向心轴承部(R1、R2)的动压槽(G)通过模制成形形成于轴承构件(7)的内周面(7a)。

Description

动压轴承装置及马达
技术领域
本发明涉及动压轴承装置。
背景技术
动压轴承装置是一种利用轴承构件与插入到轴承构件内周的轴构件的相对旋转,通过在轴承空隙中产生的流体的动压作用产生压力,利用该压力对轴构件进行非接触支承的轴承装置。该动压轴承装置具有高速旋转、高旋转精度、低噪音等特征。作为信息机器,例如HDD等磁盘装置、CD-ROM、CD-R/RW、DVD-ROM/RAM等光盘装置、MD、MO等光磁盘装置等中的磁盘驱动用的主轴马达、激光打印机(LBP)的多边扫描仪马达(polygon scanner motor)、投影机的彩色转盘马达(color wheelmotor)、或轴流扇等小型马达用的轴承装置适用。
例如,在组装入HDD等磁盘驱动装置的主轴马达中的动压轴承装置中,如图19所示,设有在径方向支承轴构件20的向心轴承部R和在轴向支承轴构件的推力轴承部T。作为该向心轴承部R的轴承,公知有在圆筒状的轴承套筒(sleeve)80的内周面设置了用于产生动压的槽(动压槽)的动压轴承,作为推力轴承部T,例如,公知的是在轴构件20的凸缘部20b的两端面、或者与其相对的面(套筒部80的端面81、固定于壳体70底部的盖构件61的端面61a等)上设置了动压槽的动压轴承(例如,参照专利文献1~2)。
在该种动压轴承装置中,通常,轴承套筒80固定于壳体70内周的规定位置。并且,为了防止注入到壳体70的内部空间中的润滑油泄漏至外部,大多情况下在壳体70的开口部配置密封构件90。
专利文献1:日本特开2003-65324号公报
专利文献2:日本特开2003-336636号公报
如上所述,在图19所示的动压轴承装置中,因为是在壳体的内周面固定轴承套筒的构造,所以需要用于固定两者的粘结工序等,组装工序复杂化。特别是轴承套筒相对于壳体的在轴方向的固定精度,也影响在推力轴承部处的推力轴承间隙的宽度精度,因此该固定需要慎重进行,这成为进一步高成本化的原因。
发明内容
因此,本发明的目的是谋求动压轴承装置的低成本化。
为了达成所述目的,本发明的动压轴承装置的特征在于,其具备:轴构件;轴承构件,其在内周插入轴构件,在外周面形成了用于固定在托架上的固定面,所述轴承构件通过注射成形形成;向心轴承部,其通过在轴构件的外周面和轴承构件的内周面之间的向心轴承间隙产生的润滑流体的动压作用,在径向上支承轴构件;推力轴承部,其在轴向上支承轴构件;以及动压发生部,其在轴承构件的注射成形时利用模具成形在面对于向心轴承间隙的轴承构件的内周面,在向心轴承间隙产生润滑流体的动压作用。
如此,在本发明中,轴承构件具备用于固定在托架(例如,具有定子线圈的安装部的托架)上的固定面。另外,在轴承构件的内周面和与其相对的轴构件的外周面之间,形成有产生润滑流体(润滑油、磁性流体、空气等)的动压作用的向心轴承间隙。根据以上的结构,本发明的轴承构件,相当于图19所示的以往品中壳体70与轴承套筒80一体化后的构造。由此,在省略壳体和轴承套筒的固定工序的同时,可以通过减少构件件数来谋求动压轴承装置的低成本化。还有,不会如以往那样因轴承套筒相对于壳体的固定精度而影响到推力轴承部的推力轴承间隙的宽度,本发明可以使推力轴承间隙的宽度管理容易化。
如果考虑成本方面,优选轴承构件通过树脂或金属等的注射成形形成。如果是注射成形,则可以将向心轴承部的动压发生部,通过使用具有与其形状对应的成形部的成形模具,可以在轴承构件成形的同时模制成形,可以谋求动压轴承装置的进一步低成本化。
在轴承构件的开口部可以由密封构件形成密封空间。该密封空间,除了可形成于密封构件的内周以外,也可以形成于密封构件的外周。前者适用于将密封构件固定于轴承构件的构造,此时,例如在密封构件的内周面和轴构件的外周面之间形成密封空间。后者适用于将密封构件固定于轴构件的构造,此时,例如在密封构件的外周面和轴承构件的内周面之间形成密封空间。
另外,本发明的动压轴承装置的特征在于,其具备:轴构件;轴承构件,其设有小径内周面以及大径内周面,使小径内周面隔着向心轴承间隙与轴构件的外周面相对,并在外周面形成了用于固定在托架上的固定面,所述轴承构件通过注射成形形成并且在内周面形成有产生润滑流体的动压作用的动压发生部;密封构件,其具备与轴承构件的大径内周面相对的外周面,在轴承构件的开口部形成密封空间;向心轴承部,其通过在向心轴承间隙产生的润滑油的动压作用,在径向上支承轴构件;以及推力轴承部,其在轴向上支承轴构件。
该结构中,轴承构件具备用于固定在托架(特别是具有定子线圈的安装部的托架)上的固定面。另外,在轴承构件的小径内周面和与其相对的轴构件的外周面之间,形成有产生润滑流体(润滑油、磁性流体、空气等)的动压作用的向心轴承间隙。根据以上的构成,本发明的轴承构件,相当于图19所示的以往品中壳体70与轴承套筒80一体化的构造。由此,在省略壳体和轴承套筒的固定工序的同时,通过减少构件件数来谋求动压轴承装置的低成本化。还有,不会如以往那样因轴承套筒相对于壳体的固定精度而影响到推力轴承部的推力轴承间隙的宽度,本发明可以使推力轴承间隙的宽度管理容易化。
此时,密封空间除了可形成于密封构件的内周,也可以形成于密封构件的外周。前者适用于将密封构件固定于轴承构件的构造,此时,例如在密封构件的内周面和轴构件的外周面之间形成密封空间。后者适用于将密封构件固定于轴构件的构造,此时,例如在密封构件的外周面和轴承构件的大径内周面之间形成密封空间。
在上述的任一个结构中,都可以使轴承构件的端面与密封构件的端面在轴向上卡合。此时,组装时如果使两者卡合,可以提高密封构件在轴方向上的位置精度。例如如图19所示,在与密封空间相对的轴构件的外周面呈锥状时,如果密封构件的位置精度不够,则密封空间的容积会存在产生偏差的顾虑。密封空间具有吸收伴随充满在动压轴承装置内部空间的润滑油的温度变化而引起的容积变化量的功能(缓冲功能),因此,密封空间容积的偏差有成为漏油等原因的可能性。相对于此,在本发明中,通过与轴构件的端面卡合,密封构件也能得到高位置精度,所以可以消除该悬念。
动压轴承装置的运转中,由于加工误差等影响,有时轴承装置内的充满润滑流体的空间局部会变为负压。此种负压的产生,因为会导致润滑流体中的气泡的生成、由气泡的生成引起的振动的产生等,所以并不优选。
相对于此,如果设置贯通轴承构件、连通推力轴承部的轴承空隙和密封空间的流体流路,则充满在作为密闭侧的推力轴承部的轴承间隙中的润滑流体,通过流体流路,可以在大气开放侧的密封空间以及向心轴承部的轴承间隙之间流通,所以可以防止局部的负压的产生、以及由此引起的气泡的产生等。即使是在由于某种理由润滑流体中混入气泡的情况下,由于气泡与润滑流体一起循环时从密封空间排出至外部气体,因此可以更有效防止气泡引起的不良影响。
该流体流路,例如可以构成为具备:轴方向部,其一端连接于推力轴承部的轴承间隙(推力轴承间隙);和半径方向部,其形成于轴承构件的端面和密封构件的端面之间,连通轴方向部的另一端和密封空间。
流体流路可以在与轴承构件(轴承套筒)的成形同时、或通过轴承构件成形后的后加工而形成。但是,因为流体流路的内径尺寸一般很微小(数十μm~数百μm左右),所以难以高精度并且稳定地形成。
上述问题可以通过使流体流路大径化而解决。但是另一方面,只是简单地将流体流路的整体大径化,有可能导致轴承构件的强度下降。还有伴随着流体流路的大径化,由于流体从其它流体保持空间过度地流入流体流路,所以有流体从本来压力应该大的位置逃逸,或在局部产生负压状态的顾虑。因此,反而存在破坏轴承内部的压力平衡的可能。
本发明的动压轴承装置中,由于高精度并且稳定地形成流体流路,使轴承内部的压力状态最优化,所以在轴承构件设置向其轴向两侧开口的流体流路,所述流体流路可以使流体在包含向心轴承间隙的轴构件的外周面与轴承构件的内周面的间隙的两端间流通,并且流体流路的流路面积在其轴向上不同。
像这样,本发明的特征在于,设在轴承构件上的流体流路的流路面积在轴向上不同。根据所述结构,在流体流路中,至少在其流路面积增大的区域中,可以改善所述流体流路的加工性和成形性。另外通过增加在轴承内部的流体的保有量,可以抑制流体的劣化。此外,通过在流体流路设置减小了其流路面积的区域,从而可尽量避免流体向流体流路的过度流入,可以适当确保轴承内部的压力平衡。
上述流体流路,例如可以设有流路面积小的第1流路部、和流路面积大于第1流路部的第2流路部。
作为具有上述流体流路的动压轴承装置,例如可以考虑作为推力轴承部具备第1推力轴承部,所述第1推力轴承部通过在推力轴承间隙形成的流体膜支承轴构件和轴承构件中的任一方,且所述轴构件和轴承构件中的任一方在轴向上旋转自如,并且在第1推力轴承部设有在其推力轴承间隙产生流体的动压作用的第1动压发生部。此时,如果流体流路在推力轴承间隙的压力发生区域开口,则通过开口部产生压力的逃逸,存在动压发生部的动压效果不充分的顾虑。因此,流体流路优选避开第1动压发生部,向其内径侧或外径侧开口。
在流体流路比第1动压发生部更靠外径侧开口的情况下,因为需要顾及轴构件的必要轴径,所以第1动压发生部的形成区域难以向内径侧扩大。此时,通过将流体流路的该开口部作为流路面积小的第1流路部,从而可以使第1动压发生部的形成区域尽可能向外径侧扩大。因此,在第1动压发生部可以容易确保必要面积,提高轴承设计的自由度。
另外作为其它结构,还可以考虑作为推力轴承部还具备第2推力轴承部,所述第2推力轴承部通过在推力轴承间隙形成的流体膜支承轴构件和轴承构件中的任一方,且所述轴构件和轴承构件中的任一方在轴向上旋转自如,并且在第2推力轴承部设有在其推力轴承间隙产生流体的动压作用的第2动压发生部。
在上述结构中,在使流体流路开口时,由于在该轴承装置的外径侧,与内径侧相比尺寸上的限制小,所以可以使第2动压发生部的形成区域容易向外径侧扩大。因此,在使流体流路比第2动压发生部更靠内径侧开口的情况下,与其开口面积无关,可以确保第2动压发生部的形成区域。由此,在将该开口部作为与第1流路部相比增大了其流路面积的第2流路部时,可以避免由此引起的第2动压发生部的面积减少,谋求轴承设计的进一步容易化。
流体流路,只要在轴向上具有流路面积不同的区域(例如第1流路部和第2流路部),可以采用各种形态。具体地说,例如流体流路可以由向轴承构件的轴方向一端侧开口的第2流路部,以及在和第2流路部之间有阶梯差、并且向轴承构件的轴方向一端侧开口的第1流路部构成。或者可以遍及流体流路的轴向一部分或整体地设置从第2流路部到第1流路部的流路面积逐渐缩小的区域。
包含这些流体流路的轴承内部的流体保有空间,通常,通过密封空间可以与大气连通。此时,优选设置推力轴承部,使第1流路部通过第2流路部向外部气体开放。在使第1流路部比第1动压发生部更靠外径侧开口时,优选将所述第1动压发生部设于与密封空间相反一侧的大气闭塞侧。根据所述结构,与将第1动压发生部设于轴承构件的与外部气体连通的密封空间的一侧的情况相比,可以容易提高所述推力轴承间隙的流体压力。
另外,通过树脂或金属的一体成形品形成轴承构件,从而在轴承构件成形时,可以使流体流路与轴承构件本体同时形成。
上述结构的动压轴承装置,可以优选适用于具备转子磁铁和定子线圈的马达,例如HDD用的主轴马达等。
发明效果
以上,根据本发明,可以谋求动压轴承装置的低成本化。
另外,可以高精度并且稳定地形成流体流路,使轴承内部的压力状态最优化。
附图说明
图1是表示组装了动压轴承装置的马达的一个例子的截面图;
图2是动压轴承装置的截面图;
图3是动压轴承装置的截面图;
图4是动压轴承装置的截面图;
图5是动压轴承装置的截面图;
图6是动压轴承装置的截面图;
图7是表示向心轴承部的其它构成的截面图;
图8是表示向心轴承部的其它构成的截面图;
图9是组装了动压轴承装置的主轴马达的截面图;
图10是动压轴承装置的截面图;
图11是轴承构件的截面图;
图12是从图10中的箭头A方向观察轴承构件的俯视图;
图13是从图10中的箭头B方向观察轴承构件的俯视图;
图14是动压轴承装置的截面图;
图15是动压轴承装置的截面图;
图16是动压轴承装置的截面图;
图17是动压轴承装置的截面图;
图18是表示流体流路的其它构成的截面图;
图19是表示动压轴承装置的以往构成的一个例子的截面图。
图中,
1-动压轴承装置;2-轴构件;2a-轴部;6-托架;6b-定子线圈安装部;7-轴承构件;7a-小径内周面;7b-外周面;7c-下侧端面;7d1-第1大径内周面;7d2-第1大径内周面;7e-上侧端面;8-盖构件;9-密封构件;G-动压槽;S-密封空间;R1-第1向心轴承部;R2-第2向心轴承部;T1-第1推力轴承部;T2-第2推力轴承部;T-推力轴承部;1、21、31、41、51-动压轴承装置;2、22a-轴;2b、22b-凸缘部;3、22-轴构件;4-定子线圈;5-转子磁铁;7、27-轴承构件;8-套筒部;8b-第1推力轴承面;8b1-动压槽;9、29、49、59-壳体部;9a-第2推力轴承面;9a1-动压槽;10-轮毂部;12-连通孔;12a-小径部;12b-大径部;25-盖构件;25a-第2推力轴承面;25c-径向槽;32-轴向槽;32a-小径部;32b-大径部;S、S2-密封空间;R1、R2-向心轴承部;T1、T2、T11、T12-推力轴承部。
具体实施方式
以下,基于附图说明本发明的实施方式。
图1概念性表示安装了动压轴承装置(流体动压轴承装置)1的信息机器用主轴马达的一个构成例。该信息机器用主轴马达,用于HDD等盘驱动装置,具备:动压轴承装置1;安装在动压轴承装置1的轴构件2上的盘轮毂(disk hub)3;例如隔着半径方向的空隙相对的定子线圈4以及转子磁铁5;及托架6。定子线圈4安装于在托架6的例如外周面设置的定子线圈安装部6b,转子磁铁5安装于盘轮毂3的内周。盘轮毂3在其外周保持一张或多张磁盘等盘D。如果向定子线圈4通电,则在定子线圈4以及转子磁铁5之间产生的电磁力的作用下,转子磁铁5旋转,伴随于此,盘轮毂3以及轴构件2成为一体而旋转。
图2是在上述主轴马达使用的动压轴承装置1的截面图。该动压轴承装置1的主要构成部件有:轴构件2;在内周插入有轴构件2的轴承构件6;固定于轴承构件7的盖构件8;以及密封构件9。并且,以下为了方便说明,将轴承构件7的被密封构件9密封的一侧作为上侧,其轴方向相反侧作为下侧,进行说明。
在该动压轴承装置1中,在轴承构件7的内周面7a和轴构件2的轴部2a外周面之间,在轴方向上相隔设置有第1向心轴承部R1和第2向心轴承部R2。还有,在轴承构件7的下侧端面7c和轴构件2的凸缘部2b的上侧端面2b1之间设置有第1推力轴承部T1,在盖构件8的内底面8a1和凸缘部2b的下侧端面2b2之间设置有第2推力轴承部T2。
轴构件2由不锈钢等金属材料形成,具备轴部2a和一体或分体地设置于轴部2a的下端的凸缘部2b。除了由金属形成轴构件2的整体以外,例如也可以由树脂构成凸缘部2b的整体或其一部分(例如两端面),形成金属和树脂的混合构造。
轴承构件7通过树脂的注射成形而形成。该轴承构件7由在内周插入有轴构件2的轴部2a的套筒部71、在套筒部71的上端外径部形成的上侧突出部72、和在套筒部71的下端外径部形成的下侧突出部73一体构成。轴承构件7的内周面由小径内周面7a和直径大于其的第1以及第2大径内周面7d1、7d2构成。在套筒部71形成小径内周面7a,在上侧突出部72形成第1大径内周面7d1,在下侧突出部73形成第2大径内周面7d2。另一方面,轴承构件7的外周面7b的外径尺寸与套筒部71、以及上下的突出部72、73无关,是大致相等的直径。轴承构件7的外周面7b为用于固定在图1所示的托架6的内周面6a上的固定面。轴承构件7向托架6的固定,例如通过粘结进行。
形成轴承构件7的树脂主要是热可塑性树脂,例如,作为非晶性树脂可以使用聚砜(PSU)、聚醚砜(PES)、聚苯砜(PPSU)、聚醚亚胺(PEI)等;作为结晶性树脂,可以使用液晶聚合物(LCP)、聚醚醚酮(PEEK)、聚对苯二甲酸丁二醇酯(PBT)、聚苯硫醚(PPS)等。另外,填充于上述树脂的填充材料的种类没有特别限定,例如作为填充材料,可以使用玻璃纤维等纤维状填充材料、钛酸钾等须(whisker)状填充材料、云母等鳞片状填充材料、碳纤维、碳黑、石墨、碳纳米材料(carbon nano-material)、金属粉末等纤维状或粉末状的导电性填充材料。这些填充材料,可以单独使用,也可以两种以上混合使用。在该动压轴承装置1中,作为形成轴承构件7的材料使用树脂材料,该树脂材料是在作为结晶性树脂的液晶聚合物(LCP)中配合了2~8wt%的作为导电性填充材料的碳纤维或碳纳米管(carbon nano-tube)构成。
在轴承构件7的小径内周面7a,在轴向上相隔设置上下两个领域,为第1向心轴承部R1和第2向心轴承部R2的向心轴承面。在该两个领域中,作为动压发生部,分别形成例如排列为人字形(herringbone)的多个动压槽G。与第1向心轴承部R1对应的上侧区域的动压槽G在轴向上非对称形成,在该区域内,上侧的动压槽的轴方向长度X稍微大于下侧的动压槽的轴方向长度Y(X>Y)。另一方面,与第2向心轴承部R2对应的下侧区域的动压槽G在轴向上对称形成,在该区域内,上下动压槽G的轴方向长度分别相等。
成为轴承构件7的小径内周面7a的向心轴承面的区域,可以在轴承构件7的注射成形时同时模制成形。例如,可以在作为成形模具的芯棒(core rod)的外周形成具有与人字形对应的凹凸形状的成形部,在将该芯棒配置于与轴承构件7形状对应的型腔的规定位置的状态下,可以通过向型腔射出树脂进行成形。
在这种情况下,在射出材料固化后,因为芯棒的成形部和成为向心轴承面的区域在轴方向上凹凸嵌合,所以芯棒在脱模时的作业性存在问题。此时如果如上所述使用树脂作为射出材料,则由于伴随着芯棒的拔出,成为向心轴承面的区域的树脂发生弹性变形,之后恢复到原来的形状,因此,可以在不损坏、损伤成形后的动压槽形状的状态下,顺利地将芯棒从轴承构件7的内周拔出。并且,上述举例表示的树脂材料中的LCP,通过研究熔融树脂的流向、成形条件等,可以使固化后的成形品内径尺寸大于芯棒的外径尺寸,所以可以容易进行芯棒的拔出。另外,PPS、PEEK,通过选择填充材料,可以减少各向异性,由此可以提高圆度等尺寸精度,因此可以抑制拔出时的树脂的变形,可以提高拔出操作性。
在轴承构件7的下侧端面7c形成成为第1推力轴承部T1的推力轴承面的区域。在该区域,作为动压发生部而形成有例如配置为螺旋状的多个动压槽(图示省略)。该动压发生部可以在轴承构件7的注射成形的同时通过模制成形形成。
作为轴承构件7的成形材料,只要是在拔出芯棒时,在成为向心轴承面的区域能够得到足够的弹性变形的材质,也可以选择树脂以外的材质,例如,也可以由黄铜等软质金属材料或其他金属材料(也包括烧结金属)形成轴承构件7。另外,作为注射成形的一个方式,也可以采用低熔点金属(铝合金等)的注射成形或MIM成形。
轴承构件7的下侧开口部被盖构件8封住。盖构件8使用黄铜等软质金属材料、其他金属材料、或树脂材料,由底部8a和向底部8a的外径部上方突出的圆筒部8b一体形成为有底圆筒状。在盖构件8的内底面8a1形成成为第2推力轴承部T2的推力轴承面的区域。在该区域,作为动压发生部而形成有例如配置为螺旋状的多个动压槽(图示省略)。通过使圆筒部8b的上端面抵接于轴承构件7的下侧端面7c(套筒部71的下侧端面),第1推力轴承部T1以及第2推力轴承部T2的各推力轴承间隙被设定为规定宽度。通过利用粘接或压入等手段将圆筒部8b的外周面固定于轴承构件7的下侧突出部73的大径内周面7d2,由此盖构件8被固定于轴承构件7。在轴承构件7以及盖构件8都是树脂制的情况下,可以通过焊接(例如超声波焊接)对两者进行固定,可以使盖构件8与轴承构件7形成一体。
密封构件9都是由黄铜等软质金属材料或其他金属材料、或树脂材料形成为环状,例如通过粘接等固定于上侧突出部72的大径内周面7d1。此时,密封构件9的下侧端面9b与轴承构件7的上侧端面7e(套筒部71的上侧端面)接触,在轴方向上互相卡合。
密封构件9的内周面9a与轴部2a的外周面之间,形成具有一定容积的密封空间S。密封构件9的内周面9a形成为朝向轴承构件7的外部方向直径逐渐扩大的锥面状,因此密封空间S呈朝向轴承构件的内部方向逐渐缩小的锥形。因此,密封空间S内的润滑油通过毛细管力的吸入作用,被引入向密封空间S变窄的方向,其结果是轴承构件7的上端开口部被密封。在被密封构件9密封的轴承构件7的内部空间,充满了例如作为润滑流体的润滑油。密封空间S还具有缓冲功能,吸收伴随充满在轴承构件7内部空间的润滑油的温度变化而引起的容积变化量,油面恒常处于密封空间S内。
另外,一方面使密封构件9的内周面9a呈圆筒面,与其相对的轴部2a的外周面也可以形成为锥面状,此时,因为还能够得到作为离心力密封的功能,所以密封效果进一步提高。
在轴构件2旋转时,轴承构件7的小径内周面7a中,成为向心轴承面的上下两个位置的区域,分别与轴部2a的外周面隔着径向轴承间隙相对。还有,成为轴承构件7的下侧端面7c(套筒部71的下侧端面)的推力轴承面的区域,与凸缘部2b的上侧端面2b1相隔一定的推力轴承间隙相对,成为盖构件8的内底面8a1的推力轴承面的区域,与凸缘部2b的下侧端面2b2相隔一定的推力轴承间隙相对。而且,伴随着轴构件2的旋转,在上述径向轴承间隙产生润滑油的动压,轴构件2通过在径向轴承间隙内形成的润滑油油膜,在径向上旋转自如地被非接触支承。由此,构成在径向上旋转自如地非接触支承轴构件2的第1向心轴承部R1和第2向心轴承部R2。同时,在上述推力轴承间隙产生润滑油的动压,轴构件2通过在上述推力轴承间隙内形成的润滑油的油膜,在径向上旋转自如地被非接触支承。由此,构成在轴向上旋转自如地非接触支承轴构件2的第1推力轴承部T1和第2推力轴承部T2。
在该动压轴承装置1形成有流体流路10,该流体流路10用于连通第1推力轴承部T1的轴承间隙和密封空间S。该流体流路10由以下构成:贯通轴承构件7的套筒部71且在其上下端面7e、7c开口的轴方向延伸的部分(轴方向部)10a;和连通轴方向部10a的上端与密封空间S的在径向上延伸的部分(半径方向部)10b。在该动压轴承装置1中,例示出了使轴方向部10a向凸缘部2b的外周面与盖构件8的内周面之间的空间开口的情况。半径方向部10b,除了可以由图示那样的例如在套筒部71的上侧端面7e形成的槽构成以外,也可以由在密封构件9的下侧端面9b形成的槽构成。
流体流路10中的轴方向部10a的形成方法任意,例如可以通过在轴承构件的注射成形阶段中,在型腔中架设了成形销的状态下注射树脂,在之后的脱模时拔出成形销的方法来形成。除此之外,也可以通过注射成形后的机械加工等来形成轴方向部10a。半径方向部10b,例如可以通过在轴承构件7的注射成形的同时,或者通过在注射成形之后的机械加工等形成。
如前所述,第1向心轴承部R1的动压槽G在轴方向上非对称形成,上侧区域的轴方向尺寸X大于下侧区域的轴方向尺寸Y。因此,在轴构件2旋转时,动压槽G引起的润滑油的吸入力(泵吸力),与下侧区域相比,上侧区域要相对变大。而且根据该吸入力的差压,充满在轴承构件7的小径内周面7a与轴部2a的外周面之间的间隙中的润滑油向下方流动,以第1推力轴承部T1的推力轴承间隙→流体流路10的轴方向部10a→半径方向部10b这样的路线循环,再次被吸入到第1向心轴承部R1的向心轴承间隙。如此,通过使润滑油在轴承构件7的内部流动循环,防止在轴承构件7的内部充满的润滑油的压力局部变为负压的现象,可以解决伴随着负压产生的气泡的生成、因气泡的生成引起的润滑油泄漏或振动的发生等问题。还有,即使在因某种原因润滑油中混入了气泡的情况下,由于在伴随着润滑油而循环时,气泡从密封空间S内的润滑油的液面(气液界面)排出至外部气体,因此可以更有效地防止气泡引起的不良影响。
以上说明的动压轴承装置1的主要构成要素是轴构件2、轴承构件7、盖构件8以及密封构件9,与图19所示的以往产品相比可以减少零件个数。还有,不再需要该以往产品的在组装工序所需的轴承套筒和壳体的固定工序。因此,可以谋求动压轴承装置1的低成本化。另外,在该动压轴承装置中,推力轴承部T1、T2的推力轴承间隙的宽度精度,不依存于组装精度,而是依存于轴构件7和盖构件8的成形精度。因此,如果轴构件7和盖构件8分别以足够的精度成形,也可以高精度地设定推力轴承间隙的间隙宽度,可以使间隙宽度的管理容易化。并且,因为轴承构件7的上侧端面7e和密封构件9的下侧端面9b在轴方向抵接,所以也可以提高密封构件9的在轴方向的位置精度。
图3表示动压轴承装置1的其他结构。该动压轴承装置1与图2所示的动压轴承装置的不同点是,盖构件8为平坦的板状,将盖构件8固定于下侧突出部73的大径内周面7d2。此时,通过在大径内周面7d2形成阶梯部7f,使盖构件8的外径部卡合于该阶梯部7f,可以高精度管理推力轴承部T1、T2的推力轴承间隙的间隙宽度。
图4表示动压轴承装置1的其他结构。该动压轴承装置1与图2以及图3所示的动压轴承装置的不同点是,不是由动压轴承构成推力轴承部,而是由枢轴承构成推力轴承部。枢轴承具有使轴构件2的球面状轴端2c与盖构件8的内底面8a1(或在内底面a1上配置的低摩擦性的其他构件)接触的构造,由此构成在轴向上接触支承轴构件2的推力轴承部T。图中,例示了盖构件8与轴承构件7一体形成的情况,但两者也可以分开形成。还有,虽然省略图示,也可以与图2以及图3所示的动压轴承装置一样设置流体流路10,使在轴构件2的轴端2c和轴承构件7之间形成的空间与密封空间S连通。
图5表示动压轴承装置1的其他结构。该动压轴承装置与图2所示的动压轴承装置的不同点,主要是密封构件9固定于成为旋转侧的轴构件9。此时,在密封构件9的外周面9c与上侧突出部72的大径内周面7d1之间形成密封空间S。轴构件2旋转时,密封构件9的下侧端面9b,与轴承构件7的上侧端面7e相隔推力轴承间隙而相对,构成第2推力轴承部T2。在轴构件2停止时,密封构件9的下侧端面9b与轴承构件7的上侧端面7e成为在轴向卡合的状态。在组装阶段,在将密封构件9固定于轴构件2时,通过使密封构件9的下侧端面9b与轴承构件7的上侧端面7e在轴向卡合,可以正确管理第1以及第2推力轴承部T1、T2的推力轴承间隙的间隙宽度。
密封构件9的外周面9c形成为朝向轴承构件7的外部方向直径逐渐缩小的锥面状,因此密封空间S呈朝向轴承构件7的内部方向逐渐缩小的锥形。此时,因为在密封构件9的外周面9a侧形成有密封空间S,所以在密闭空间S确保得到既定的缓冲功能所必要的容积时,与图2所示的动压轴承装置相比,可以缩小密封空间S(密封构件9)的轴向尺寸,因此,可以缩小动压轴承装置1的轴向尺寸。
在图5所示的动压轴承装置1中,作为流体流路10只设置了轴方向部10a,第1推力轴承部T1的推力轴承间隙通过该轴方向部10a与密封空间S连通。伴随着轴构件2的旋转,在轴承构件7的内周面7a与轴部2a的外周面之间的间隙向下方流动的润滑油,以第1推力轴承部T1的推力轴承间隙→轴方向部10a→第2推力轴承部T2的推力轴承间隙这样的路径循环,再次被吸入到第1向心轴承部R1的向心轴承间隙。
此时,因为第2推力轴承部T2的动压槽G向内径侧吸入润滑油的吸入力(泵吸力)也作用于第1向心轴承部R1的向心轴承间隙的润滑油,所以即使第1向心轴承部R1的上述吸入力的差压相对较低,也可以确保润滑油良好的流动循环。其结果是可以使第1向心轴承部R1的动压槽G处的轴方向非对称小于以往技术,例如,与以往技术相比,可以缩小动压槽G的上侧区域的轴方向尺寸X,可以缩小轴承套筒8的轴向尺寸。
图6表示动压轴承装置1的其他结构。该动压轴承装置1与图5所示的动压轴承装置的不同点是,不仅由第1密封构件9密封轴承构件7的上端开口部,还用第2密封构件11密封被盖构件8封住的一侧的开口部。在第1密封构件9的外周面9c与上侧突出部72的大径内周面7d1之间形成第1密封空间S1,在第2密封构件11的外周面11c与下侧突出部72的大径内周面7d2之间形成有第2密封空间S2。两密封空间S1、S2通过流体流路10的轴方向部10a处于连通状态。在轴构件2旋转时,第2密封构件11的下侧端面11b与轴承构件7的下侧端面7c相隔推力轴承间隙而相对,构成第1推力轴承部T1。
第2密封构件11的外周面11c,与第1密封构件9一样,形成为朝向轴承构件7的内部方向直径逐渐扩大的锥面状,由此第2密封空间S2呈朝向轴承构件的内部方向逐渐缩小的锥状。
此时,因为在轴承构件7的两端开口部形成密封空间S1、S2,所以与只在上端开口部形成有密封空间S的图5所示的动压轴承装置1相比,能够提高轴承装置整体的缓冲功能。因此,可以进一步缩小各个密封空间S1、S2的容积,可缩小密封构件9、11的轴向尺寸,使动压轴承装置的轴向尺寸进一步小型化。
在以上的说明中,作为向心轴承部R1、R2以及推力轴承部T1、T2,例示了通过人字形状、螺旋形状的动压槽产生润滑油的动压作用的结构,但是作为向心轴承部R1、R2,也可以采用所谓的立式止推轴承(stepbearing)或多圆弧轴承,作为推力轴承部T1、T2,也可以采用将动压槽配置为放射状的所谓立式止推轴承、或所谓波型轴承(台阶型变为波型)等构成。
另外,在以上说明中,例示了第1以及第2向心轴承部R1、R2的动压槽G形成在套筒部71的小径内周面7a上的情况,但是该动压槽G也可以形成于轴构件2的轴部2a的外周面。具体来说,在轴构件2的轴部2a的外周面,在轴向相隔设置第1向心轴承部R1以及第2向心轴承部R2的成为向心轴承面的上下两个区域。在该两个区域中,作为动压发生部,分别形成例如排列为人字形的多个动压槽G。轴部2a的外周面的成为向心轴承面的上下区域,可以通过锻造、滚轧、蚀刻或印刷而形成。在轴构件2旋转时,轴部2a的外周面中,成为向心轴承面的上下两个位置的区域分别与轴承构件7的小径内周面7a相隔向心轴承间隙而相对,在上述向心轴承间隙产生润滑油的动压。并且,如果是该结构,在选择轴承构件7的成形材料时,没有必要考虑拔出芯棒时的弹性变形性。
图7以及图8表示由多圆弧轴承构成向心轴承部R1、R2一方或双方的情况的一个例子。其中,在图7所示的例子中,套筒部71的小径内周面7a的成为向心轴承面的领域,由作为动压发生部的三个圆弧面7a1构成(所谓的3圆弧轴承)。三个圆弧面7a1的曲率中心分别距轴承构件7(轴构件2)的轴中心O以相等距离被偏置。在被三个圆弧面7a1划分的各区域,向心轴承间隙具有相对于圆周方向的两个方向,分别呈楔状逐渐缩小的形状。因此,如果轴承构件7与轴构件2相对旋转,则对应于该相对旋转的方向,向心轴承间隙内的润滑油被挤入楔状缩小的最小间隙侧,其压力上升。通过这样的润滑油的动压作用,对轴承构件7与轴构件2进行非接触支承。并且,在三个圆弧面7a1的相互间的分界部,也可以形成被称为分离槽的更深一级的轴方向槽。
图8是多圆弧轴承的其它例子,在三个圆弧面7a1划分的各区域中,向心轴承间隙具有相对于圆周方向的一个方向分别呈楔状逐渐缩小的形状。如此构成的多圆弧轴承,也被称为锥轴承。还有,在三个圆弧面7a1的相互间的边界部,形成有被称为分离槽的更深一级的轴方向槽7a3。在该结构中,虽然省略图示,也可以由分别以轴承构件7(轴构件2)的轴中心O为曲率中心的同心的圆弧构成三个圆弧面7a1的最小间隙侧的规定区域(有时也被称为锥·平(taper-flat)轴承)。
由这样的多圆弧面7a1构成的动压发生部,与人字形的动压槽G的情况相同,可以在轴承构件7的注射成形的同时模制成形。此时,与人字形、螺旋形不同,由于在多圆弧面7a1与芯棒的成形部之间不产生轴向的凹凸嵌合,所以在脱模时能够将芯棒顺利地从轴承构件7的内周拔出。因此,作为轴承构件7的材料的特性,弹性变形的重要程度降低,材料选择的自由度变大。
并且,在以上说明中,例示了第1以及第2推力轴承部T1、T2的动压槽形成于轴承构件7的端面7c、盖构件8的内底面8a1的情况,但是,也可以在凸缘部2b的两端面2b1、2b2的一方或双方形成作为动压发生部的动压槽。
以下,根据图9~图18说明本发明的其它实施方式。
图9概念性地表示组装了动压轴承装置1的信息机器用主轴马达的一个构成例。该主轴马达用于HDD等盘驱动装置,具备:动压轴承装置1,该动压轴承装置1对具有轴2以及轮毂部10的轴构件3进行非接触支承,轴构件3旋转自如;定子线圈4以及转子磁铁5,它们例如相隔径向的间隙相对;以及托架6。定子线圈4安装于托架6的外径侧,转子磁铁5安装于轴构件3的轮毂部10的外周。动压轴承装置1的轴承构件7固定于托架6的内周。另外,在轴构件3的轮毂部10,虽然省略图示,但保持一张或多张磁盘等盘状信息记录介质(以下,简称为盘)。在如此构成的主轴马达中,如果向定子线圈4通电,则在定子线圈4以及转子磁铁5之间产生的励磁力的作用下,转子磁铁5旋转,伴随于此,轴构件3以及保持于轴构件3的轮毂部10上的盘和轴2一体地旋转。
图10放大表示动压轴承装置1。该动压轴承装置1主要具备:轴构件3和可以在内周收容轴构件3的轴2的轴承构件7。并且,为了方便说明,以下在轴方向两端形成的轴承构件7(壳体部9)开口部中的,将被盖构件11封住的一侧作为下侧,与封口侧相反的一侧作为上侧进行说明。
轴构件3具备:例如配置于轴承构件7开口侧的轮毂部10、和从轮毂部10的径向中央向旋转轴方向延伸的轴2。
轮毂部10由金属或树脂形成,由以下部分构成:覆盖轴承构件7的开口侧(上侧)的圆盘部10a;从圆盘部10a的外周部向轴方向下方延伸的筒状部10b;以及在筒状部10b的外周设置的盘搭载面10c以及凸缘部10d构成。未图示的盘外嵌于圆盘部10a的外周,载置于盘搭载面10c。然后,通过未图示的适当的保持机构(压板(clamper)等),将盘保持于轮毂部10。
轴2与轮毂部10形成为一体,在其下端作为防脱件另外具备独立个体的凸缘部2b。凸缘部2b是金属制的,例如通过螺钉螺合等方法固定于轴2。并且,轴2与轮毂部10除了如上述那样由金属或树脂一体成形以外,也可以分别独立地形成轴2和轮毂部10。此时,例如轴2由金属制成,可以将该金属制的轴2作为插入零件,与轮毂部10一体地用树脂模制成形轴构件3。
轴承构件7呈轴方向两端开口的形状,主要具备大致呈圆筒状的套筒部8,以及位于套筒部8的外径侧且将套筒部8保持于内周的壳体部9。轴承构件7例如通过由LCP或PPS、PEEK等结晶性树脂,或PSU、PES、PEI等非结晶性树脂作为基本树脂的树脂组成物通过注射成形,由此一体形成套筒部8以及壳体部9。
在套筒部8的内周面8a的整面或一部分圆筒面区域中,作为向心动压发生部形成排列有多个动压槽的区域。在该动压轴承装置中,例如如图11所示,将多个动压槽8a1、8a2排列成人字形的区域,在轴向上分开而形成在两处。在上侧的动压槽8a1的形成区域中,动压槽8a1相对于轴方向中心m(上下的倾斜槽间区域的轴方向中央)形成为轴方向非对称,轴方向中心m的上侧区域的轴方向尺寸X1大于下侧领域的轴方向尺寸X2。因此,在轴构件3旋转时,由于非对称的动压槽8a1,向心轴承间隙的润滑油被挤入向下方。
在套筒部8的下端面的正面或者一部分环状面区域设置有第1推力轴承面8b。在第1推力轴承面8b,作为第1推力动压发生部,例如如图13所示,形成有将多个动压槽8b1排列成螺旋形的区域。该第1推力轴承面8b(动压槽8b1形成区域)与凸缘部2b的上端面2b1相对,在轴2(轴构件3)旋转时,与上端面2b1之间形成第1推力轴承部T1的推力轴承间隙(参照图10)。
位于套筒部8的外径侧的壳体部9大致呈筒状,其轴向宽度要长于套筒部8的轴向宽度。壳体部9所呈状态是,其轴向下端要比套筒部8的下端面(第1推力轴承面8b)更向下端侧突出。
壳体部9的一端侧端面(上端面),位于在其内周连续的套筒部8的上端面8c的稍上方,在其整面或一部分环状区域设有第2推力轴承面9a。在第2推力轴承面9a,作为第2推力动压发生部,例如如图12所示,形成有将多个动压槽9a1排列成螺旋形(螺旋方向与图13所示的动压槽8b1的螺旋方向相反)的领域。该第2推力轴承面9a(动压槽9a1形成区域)与轮毂部10的圆盘部10a的下端面10a1相对,在轴构件3旋转时,与下端面10a1之间形成后述的第2推力轴承部T2的推力轴承间隙(参照图10)。
封住壳体部9(轴承构件7)的下端侧的盖构件11由金属或树脂形成,被固定于在壳体部9的下端内周侧设置的台阶部9b。此处,固定手段不特别限定,可以根据材料的组合、要求的组装强度、密封性等,适当选择例如粘接(包括活(loose)粘接、压入粘接)、压入、熔敷(例如超声波熔敷)、焊接(例如激光焊接)等手段。
在壳体部9的外周形成朝向上方直径逐渐扩大的锥状密封面9c。该锥状的密封面9c在与筒状部10b的内周面10b1之间,形成径向尺寸从轴承构件7的封口侧(下方)向开口侧(上方)逐渐缩小的环状的密封空间S。在轴2以及轮毂部10旋转时,该密封空间S与第2推力轴承部T2的推力轴承间隙的外径侧连通。
在轴承构件7的径向中间部,如图11所示,形成一个或多个作为在轴向贯通轴承构件7的流体流路的连通孔12。该连通孔12,例如在圆周方向等间隔设置在四处,在其下端向套筒部8的第1推力轴承面8b的外径侧开口(参照图13)。另外,连通孔12在其上端向壳体部9的第2推力轴承面9a的内径侧开口(参照图12)。由此,在轴承装置内部充满了后述的润滑油的状态下,在两推力轴承部T1、T2的推力轴承间隙之间,润滑油可以流通。另外,在套筒部8的轴方向两端面8b、8c之间,或在包括位于它们内径侧的向心轴承间隙的、轴2的外周面2a和套筒部8的内周面8a之间的空隙的两端之间,润滑油可以流通(均参照图10)。
另外,连通孔12呈在轴方向的截面积不同的形态,在包含第1推力轴承面8b的下端面的开口侧形成为较小直径(小径部12a);在包含第2推力轴承面9a的上端面的开口侧形成为较大直径(大径部12b)。
这些连通孔12,例如可以在用树脂注射成形轴承构件7时,与轴承构件7的成形同时成形。此时,虽然省略图示,但连通孔12的成形,例如使用具有与上述连通孔12对应的形状的成形销,此处使用具有与小径部12a以及大径部12b对应的外径尺寸的成形销。
在上述构成的动压轴承装置1的内部填充润滑油,润滑油的液面总是维持在密封空间S内。在该动压轴承装置中,例如如图10所示,润滑油被填充于连通孔12,以及包含在连通孔12的轴向两端侧分别形成的包括推力轴承部T1、T2的各推力轴承间隙的区域(图10中用散点图案表示的区域)。作为润滑油,可以使用各种润滑油,但供应给HDD等盘驱动装置用的动压轴承装置的润滑油,考虑到其使用时或输送时的温度变化,最好使用低蒸发率以及低粘度性优越的酯系润滑油,例如二辛基癸二酸酯(DOS)、二辛基壬二酸酯(DOZ)等。
在上述构成的动压轴承装置1中,在轴2(轴构件3)旋转时,成为套筒部8的内周面8a的向心轴承面的区域(上下两处的动压槽8a1、8a2形成区域),与轴2的外周面2a相隔向心轴承间隙而相对。而且,伴随着轴2的旋转,上述向心轴承间隙的润滑油被挤压至动压槽8a1、8a2的轴方向中心侧,其压力上升。在这样的动压槽8a1、8a2的动压作用下,分别构成在径向对轴2进行非接触支承的第1向心轴承部R1和第2向心轴承部R2。
与此同时,在套筒部8的第1推力轴承面8b(动压槽8b1形成区域)和与其相对的凸缘部2b的上端面2b1之间的推力轴承间隙,以及在壳体部9的第2推力轴承面9a(动压槽9a1形成区域)和与其相对的轮毂部10(圆盘部10a)的下端面10a1之间的推力轴承间隙,在动压槽8a1、9a1的动压作用下,分别形成润滑油的油膜。然后,在这些油膜的压力的作用下,分别构成在轴向对轴构件3进行非接触支承的第1推力轴承部T1以及第2推力轴承部T2。
像这样,通过在轴承构件7设置作为流体流路的连通孔12,通过该连通孔12,使得位于轴承构件7(套筒部8)下端的第2推力轴承部T2的推力轴承间隙,与形成于轴承构件7的开口侧(壳体部9的外径侧)的密封空间S之间处于连通状态。由此,可以防止例如因为某种原因导致的第2推力轴承部T2侧的流体(润滑油)压力变得过高或过低的情况,可以在轴向上安定地对轴构件3进行非接触支承。
另外,通过在第1推力轴承部T1的推力轴承间隙的一侧(下端侧)设置作为第1流路部的小径部12a,可以使套筒部8的第1推力轴承面8b(动压槽8b1形成区域)的面积向外径方向扩张。由此,伴随着盘张数的增加而引起的旋转体(轴构件3)的例如径向负荷也可以由推力轴承部支承,能够得到稳定的旋转精度。还有,通过在连通孔12的、第1推力轴承部T1的推力轴承间隙的开口侧设置小径部12a,可以尽量抑制该推力轴承间隙的流体向流体流路(连通孔12)逃逸,同时使流体在向心轴承间隙的两端间流通,可以保持两端间的压力平衡。同时,通过在设于轴承构件7上的连通孔12的、第2推力轴承部T2的推力轴承间隙的一侧(上端侧)设置作为第2流路部的大径部12b,可以增加包含大径部12b的轴承内部的润滑油保有区域。所述结构在由树脂一体成形轴承构件7,向心轴承间隙、推力轴承间隙以外的润滑油保有区域比较小的情况下特别有效。
还有,在该动压轴承装置1中,因为通过轴承构件7的注射成形形成具有大径部12b的连通孔12,所以至少在与大径部12b对应的位置,可以提高所述销的刚性或强度。另外由于通过设置大径部12b,可以减小小径部12a的轴方向宽度,由此可以改善成形用销的、与小径部12a对应位置的弯曲刚性。因此,在谋求动压轴承装置1的小型化,使连通孔12(流体流路)实现小径化时,即使是对应于所述连通孔12的内径尺寸,将销的外径尺寸整体缩小,也可以确保销的刚性以及强度。因此,也可以容易应对动压轴承装置1以及具备该动压轴承装置1的马达的小型化。
还有,如果是用此种方法形成的流体流路,因为可以抑制加工后流路内的切粉等的产生,所以可以简化或省略用于除去该种无用物的清洗,也有利于节约成本。
还有,在该动压轴承装置1中,第1向心轴承部R1的动压槽8a1,由于形成为相对于轴方向中心m轴方向非对称(X1>X2)(参照图11),因此轴2旋转时,动压槽8a1产生的润滑油的吸入力(泵吸力),与下侧区域相比,上侧区域的吸入力要相对变大。而且在该吸入力的差压的作用下,充满在套筒部8的内周面8a与轴2的外周面2a之间的润滑油向下方流动,以第1推力轴承部T1的推力轴承间隙→连通孔12→上端面8c与下端面10a1之间的轴向间隙这样的路径进行循环,再次被吸入到第1向心轴承部R1的向心轴承间隙。如此,通过在轴承构件7设置轴向的连通孔12,润滑油在包括向心轴承间隙的轴承内部空间循环流动,从而适当地确保以各轴承间隙为首的轴承内部的压力平衡。还有,防止轴承内部空间的润滑油的非优选流动、例如润滑油的压力局部地变为负压的现象,可以解决伴随着产生负压的气泡的生成、生成气泡而引起的润滑油的泄漏以及发生振动等问题。
本发明的动压轴承装置不限于以上结构,也可以采用其他结构。以下,就动压轴承装置的其他结构例进行说明。并且,在以下所示的图中,关于与图10所示的构成·作用相同的部位以及构件,使用相同的参考符号,省略重复说明。
在图14所示的结构的动压轴承装置21中,轴构件22具备:轴22a、以及一体或分体地设置于轴22a下端的凸缘部22b。
轴承构件27具备套筒部8以及壳体部29,壳体部29位于套筒部8的外径侧,与套筒部8形成为一体。
壳体部29所呈形态为:其轴向两端相比于套筒部8的两端面8b、8c还要向轴向上下突出。环状密封部24在其下端面24b抵接于套筒部8的上端面8c的状态下被固定在上端突出部29a的内周。在密封部24的内周面24a和与该面相对的轴22a的外周面22a1之间,形成环状的密封空间S2。在壳体部29的下端突出部29b的内周,固定有封住轴承构件27的下端侧的盖构件25。
在盖构件25的上端面的一部分环状区域设有第2推力轴承面25a。在该动压轴承装置21中,在第2推力轴承面25a作为推力动压发生部,形成例如图12所示的动压槽排列区域。在第2推力轴承面25a的外周设置有向上方突出的突出部25b。在使位于突出部25b上端的抵接面25b1抵接于套筒部8的下端面的状态下,盖构件25被固定于下端突出部29b。
流体流路在该结构成中,由以下构成:连通孔12,该连通孔12在轴向上贯通轴承构件27,向其轴方向两侧(套筒部8的两端面8b、8c侧)开口;径向槽25c,该径向槽25c设置于盖构件25的抵接面25b1,使连通孔12的下端开口侧和后述的推力轴承部T11、T12的推力轴承间隙连通。另外,在密封部24的下端面24b,形成有一个或多个径向槽24b1,该径向槽24b1使连通孔12的下端开口侧和第1向心轴承部R1的向心轴承间隙上端连通。
在上述结构的动压轴承装置21中,在轴构件22旋转时,在套筒部8的第1推力轴承面(下端面)8b和轴构件22的凸缘部22b的上端面22b1之间形成第1推力轴承部T11,并且在盖构件25的第2推力轴承面25a和凸缘部22b的下端面22b2之间形成第2推力轴承部T12。
在该动压轴承装置21中,通过在轴承构件27设置截面积不同的(具有小径部12a以及大径部12b)连通孔12,可以得到与图10所示的动压轴承装置1相同的效果(压力平衡的适当化、流体流路的成形性改善、润滑油保有量增加等)。
在以上说明中,将轴承构件7、27作为一体成形品,但是不限于该形态,例如也可以由两个或两个以上构件构成轴承构件7、27。
图15所示结构的动压轴承装置31与图10所示的动压轴承装置1的结构不同点主要在于:构成轴承构件7的套筒部8以及壳体部9是分开独立的个体。
套筒部8例如由黄铜或铝等金属形成,或者由烧结金属的多孔质体形成。在该动压轴承装置31中,套筒部8由以铜为主要成分的烧结金属的多孔质体形成,其外周面8d通过粘接、压入或熔敷等手段固定于壳体部9的内周面9d。另外,像这样,如果采用分别独立地形成套筒部8和壳体部9,将套筒部8固定于壳体部9的形态,则例如虽然省略图示,轴2也可以采用不具有凸缘部2b的笔直的形状。此时,壳体部9将盖构件11作底部,通过与其形成为一体,呈有底圆筒形。
在外周面8d,遍及轴向全长地形成有一个或多个轴向槽32,由该轴向槽32构成流体流路。在该动压轴承装置31中,例示出了在圆周方向上等间隔形成多根(例如3根)轴向槽32,轴向槽32将第1推力轴承部T1的一侧作为小径部32a,将第2推力轴承部T2的一侧作为大径部32b。并且,除此以外的结构,由于基于图10所示的动压轴承装置1,所以省略说明。
图16所示的动压轴承装置41与图14所示的动压轴承装置21的结构不同点主要在于,构成轴承构件27的套筒部8以及壳体部29(49)是分开独立的个体。
套筒部8例如由黄铜或铝等金属形成,或者由烧结金属的多孔质体形成。在该动压轴承装置41中,套筒部8由以铜为主要成分的烧结金属的多孔质体形成,其外周面8d通过粘接、压入或熔敷等手段固定于壳体部49的内周面49a。
在外周面8d,遍及轴向全长地形成有一个或多个轴向槽32,该轴向槽32以及在盖构件25的抵接面25b1设置的径向槽25c构成流体流路。在该动压轴承装置41中,例示出了在圆周方向上等间隔形成多个(例如3个)轴向槽32的情况,该轴向槽32将第1推力轴承部T1、T2的一侧作为小径部32a,将连通于密封空间S2的一侧作为大径部32b。
壳体部49的形状是与图14所示的密封部24以及壳体部29形成为一体。还有,取代图14所示的径向槽24b1,在该图示例中,在套筒部8的上端面8c形成周方向槽8c1以及径向槽8c2,由此使轴向槽32的上端开口部和第1向心轴承部R1的向心轴承间隙上端连通。并且除此以外的结构,由于基于图14所示的动压轴承装置21,所以省略说明。
图17所示的动压轴承装置51与图14所示的动压轴承装置21的结构不同点主要在于,构成轴承构件27的套筒部8和壳体部29(59)是分开独立的个体,并且封住轴承构件27下端的盖构件25与壳体部59形成一体。
壳体部59形成为以盖构件25为底部的所谓有底圆筒状。在壳体部59的内周大径面59a与在其下端设置的内周小径面59b之间设有阶梯差,在该阶梯差的轴向端面59c形成径向槽25c。另外,虽然省略图示,但是壳体部59的内周面在整个轴向上为均一直径,由此,还可以采用第1、第2推力轴承面8b、25a的面积向外径侧扩张的结构。并且,除此以外的结构,由于基于图14以及图16所示的动压轴承装置21、41,所以省略说明。
在这些不管哪一个的动压轴承装置(图15~图17所示的动压轴承装置)中,通过在轴承构件7、27设置截面积不同的(具有小径部32a以及大径部32b)轴向槽32,由此可以得到与图10以及图14所示的动压装置1、21相同的效果。
另外,在以上的动压轴承装置(图10、图14~图17所示的动压轴承装置)中,例示了作为向心轴承部R1、R2以及推力轴承部T1、T2,通过人字形或螺旋形的动压槽产生润滑油的动压作用的结构,但是,本发明并不限定于此。
例如,作为向心轴承部R1、R2,可以采用:在圆周方向的多处形成了轴向槽的、所谓台阶状的动压发生部,或者采用在圆周方向排列多个圆弧面,在与相对的轴2的外周面2a之间形成楔状的径向间隙(轴承间隙)的所谓多圆弧轴承(参照图7以及图8)。
或者,可以采用将作为向心轴承面的套筒部8的内周面8a形成为没有设置作为动压发生部的动压槽或圆弧面等的正圆内周面,由与该内周面相对的轴2的正圆状外周面2a一起构成所谓的正圆轴承。
另外,推力轴承部T1、T2的一方或双方,虽然也同样省略图示,但是也可以由在成为推力轴承面8b、9a、25a的区域,在圆周方向以一定间隔设置多个径向槽状的动压槽的所谓台阶轴承、或波型轴承(台阶型变为波型)来构成。
另外,在以上说明中,说明了在轴承构件7、27的一侧形成向心轴承面,或者在轴承构件7、27或盖构件25的一侧形成推力轴承面8b、9a、25a的情形,但是这些形成动压发生部的轴承面,也可以设置在例如与其相对的轴2、凸缘部2b或轮毂部10的一侧(旋转侧)。
构成流体流路的连通孔12,不限于图示位置,只要轴承构件7、27在轴方向两侧开口,可以形成于任意位置。另外,在流体流路由连通孔12和径向槽25c,或由轴向槽32和径向槽25c形成时,也可以将它们设置于相对的构件的一侧。例如在图15~图17所示的动压轴承装置中,轴向槽32形成于套筒部8的一侧,但也可以将其形成于壳体部9、49、59的一侧。或者在图14、图16、图17所示的动压轴承装置中,也可以将形成于盖构件25或壳体部59一侧的径向槽25c,形成于与其相对的套筒部8的一侧。
另外,在以上说明中,例示了由具有小径部12a以及大径部12b的连通孔12或轴向槽32构成流体流路的情况,但是只要流体流路的流路面积在轴方向上不同就可以,不限于上述方式。作为一个例子,可以列举在开口于轴承构件7的轴向两侧的连通孔12,遍及轴向的一部分或整体来设置其截面积(流路面积)逐渐扩大的区域,例如锥状区域。图18例示了在连通孔12的小径部12a以及大径部12b之间设置截头圆锥部12c(锥状区域)的情况。根据所述结构,由于可以进一步提高连通孔12的成形的销的耐久性,所以优选。

Claims (26)

1.一种动压轴承装置,其具备:
轴构件;
轴承构件,其在内周插入轴构件,在外周面形成了用于固定在托架上的固定面,所述轴承构件通过注射成形形成;
向心轴承部,其通过在轴构件的外周面和轴承构件的内周面之间的向心轴承间隙产生的润滑流体的动压作用,在径向上支承轴构件;
推力轴承部,其在轴向上支承轴构件;以及
动压发生部,其在轴承构件的注射成形时利用模具成形在面对于向心轴承间隙的轴承构件的内周面,在向心轴承间隙产生润滑流体的动压作用。
2.如权利要求1所述的动压轴承装置,其还具有:
在轴承构件的开口部形成密封空间的密封构件。
3.如权利要求2所述的动压轴承装置,其中,
轴承构件的端面与密封构件的端面在轴向上可以卡合。
4.如权利要求2所述的动压轴承装置,其中,
还具有流体流路,所述流体流路贯通轴承构件,连通推力轴承部的轴承间隙和密封空间。
5.如权利要求4所述的动压轴承装置,其中,
流体流路具备:轴方向部,其一端连接于推力轴承部的轴承间隙;和半径方向部,其形成于轴承构件的端面和密封构件的端面之间,连通轴方向部的另一端和密封空间。
6.如权利要求2所述的动压轴承装置,其中,
密封空间形成于密封构件的内周。
7.如权利要求2所述的动压轴承装置,其中,
密封空间形成于密封构件的外周。
8.如权利要求1所述的动压轴承装置,其中,
在轴承构件上设有向其轴向两侧开口的流体流路,所述流体流路可以使流体在包含向心轴承间隙的轴构件的外周面与轴承构件的内周面的间隙的两端间流通,并且流体流路的流路面积在其轴向上不同。
9.如权利要求8所述的动压轴承装置,其中,
在流体流路设有流路面积小的第1流路部、和流路面积大于第1流路部的第2流路部。
10.如权利要求1所述的动压轴承装置,其中,
作为推力轴承部具备第1推力轴承部,所述第1推力轴承部通过在推力轴承间隙形成的流体膜支承轴构件和轴承构件中的任一方,且所述轴构件和轴承构件中的任一方在轴向上旋转自如,并且在第1推力轴承部设有在其推力轴承间隙产生流体的动压作用的第1动压发生部。
11.如权利要求10所述的动压轴承装置,其中,
作为推力轴承部还具备第2推力轴承部,所述第2推力轴承部通过在推力轴承间隙形成的流体膜支承轴构件和轴承构件中的任一方,且所述轴构件和轴承构件中的任一方在轴向上旋转自如,并且在第2推力轴承部设有在其推力轴承间隙产生流体的动压作用的第2动压发生部。
12.如权利要求11所述的动压轴承装置,其中,
在流体流路设有流路面积小的第1流路部、和流路面积大于第1流路部的第2流路部,第2流路部在比第2动压发生部更靠内径侧开口。
13.如权利要求1所述的动压轴承装置,其中,
轴承构件是树脂或金属的一体成形品。
14.一种动压轴承装置,其特征在于,具备:
轴构件;
轴承构件,其设有小径内周面以及大径内周面,使小径内周面隔着向心轴承间隙与轴构件的外周面相对,并在外周面形成了用于固定在托架上的固定面,所述轴承构件通过注射成形形成并且在内周面形成有产生润滑流体的动压作用的动压发生部;
密封构件,其具备与轴承构件的大径内周面相对的外周面,在轴承构件的开口部形成密封空间;
向心轴承部,其通过在向心轴承间隙产生的润滑油的动压作用,在径向上支承轴构件;以及
推力轴承部,其在轴向上支承轴构件。
15.如权利要求14所述的动压轴承装置,其中,
轴承构件的端面与密封构件的端面在轴向上可以卡合。
16.如权利要求14所述的动压轴承装置,其中,
还具有流体流路,所述流体流路贯通轴承构件,连通推力轴承部的轴承间隙和密封空间。
17.如权利要求16所述的动压轴承装置,其中,
流体流路具备:轴方向部,其一端连接于推力轴承部的轴承间隙;和半径方向部,其形成于轴承构件的端面和密封构件的端面之间,连通轴方向部的另一端和密封空间。
18.如权利要求14所述的动压轴承装置,其中,
密封空间形成于密封构件的内周。
19.如权利要求14所述的动压轴承装置,其中,
密封空间形成于密封构件的外周。
20.如权利要求14所述的动压轴承装置,其中,
在轴承构件上设有向其轴向两侧开口的流体流路,所述流体流路可以使流体在包含向心轴承间隙的轴构件的外周面与轴承构件的内周面的间隙的两端间流通,并且流体流路的流路面积在其轴向上不同。
21.如权利要求20所述的动压轴承装置,其中,
在流体流路设有流路面积小的第1流路部、和流路面积大于第1流路部的第2流路部。
22.如权利要求14所述的动压轴承装置,其中,
作为推力轴承部具备第1推力轴承部,所述第1推力轴承部通过在推力轴承间隙形成的流体膜支承轴构件和轴承构件中的任一方,且所述轴构件和轴承构件中的任一方在轴向上旋转自如,并且在第1推力轴承部设有在其推力轴承间隙产生流体的动压作用的第1动压发生部。
23.如权利要求14所述的动压轴承装置,其中,
作为推力轴承部还具备第2推力轴承部,所述第2推力轴承部通过在推力轴承间隙形成的流体膜支承轴构件和轴承构件中的任一方,且所述轴构件和轴承构件中的任一方在轴向上旋转自如,并且在第2推力轴承部设有在其推力轴承间隙产生流体的动压作用的第2动压发生部。
24.如权利要求23所述的动压轴承装置,其中,
在流体流路设有流路面积小的第1流路部、和流路面积大于第1流路部的第2流路部,第2流路部在比第2动压发生部更靠内径侧开口。
25.如权利要求14所述的动压轴承装置,其中,
轴承构件是树脂或金属的一体成形品。
26.一种马达,具有:
权利要求1或14所述的动压轴承装置、定子线圈、和转子磁铁。
CN200680012735XA 2005-04-19 2006-04-17 动压轴承装置及马达 Expired - Fee Related CN101160472B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP121256/2005 2005-04-19
JP121253/2005 2005-04-19
JP2005121253A JP4937524B2 (ja) 2005-04-19 2005-04-19 動圧軸受装置
JP2005121256A JP4916673B2 (ja) 2005-04-19 2005-04-19 動圧軸受装置
JP210335/2005 2005-07-20
JP2005210335A JP2007024267A (ja) 2005-07-20 2005-07-20 流体軸受装置およびこれを備えたモータ
PCT/JP2006/308072 WO2006115104A1 (ja) 2005-04-19 2006-04-17 動圧軸受装置

Publications (2)

Publication Number Publication Date
CN101160472A CN101160472A (zh) 2008-04-09
CN101160472B true CN101160472B (zh) 2010-05-26

Family

ID=37468718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680012735XA Expired - Fee Related CN101160472B (zh) 2005-04-19 2006-04-17 动压轴承装置及马达

Country Status (2)

Country Link
JP (1) JP4916673B2 (zh)
CN (1) CN101160472B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892375B2 (ja) 2011-06-30 2016-03-23 日本電産株式会社 動圧軸受装置およびファン
CN103322034B (zh) * 2012-03-23 2018-01-05 富瑞精密组件(昆山)有限公司 轴承及其制造方法以及采用该种轴承的轴承系统
JP6244323B2 (ja) * 2015-03-06 2017-12-06 ミネベアミツミ株式会社 軸受構造および送風機
CN107036875B (zh) * 2016-11-04 2019-11-15 北京莱伯泰科仪器股份有限公司 真空赶酸系统及用于真空赶酸系统的真空气路集成装置
US11852241B2 (en) * 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component
JP7359295B2 (ja) 2020-04-06 2023-10-11 株式会社Ihi 多円弧軸受

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450281A (zh) * 2002-04-05 2003-10-22 Ntn株式会社 液力轴承装置
CN1488043A (zh) * 2001-10-24 2004-04-07 索尼公司 轴承装置及使用该轴承装置的马达

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148498A (ja) * 2001-11-14 2003-05-21 Ntn Corp 動圧型軸受ユニット
JP2004316925A (ja) * 2004-07-27 2004-11-11 Ntn Corp 動圧型焼結含油軸受ユニット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1488043A (zh) * 2001-10-24 2004-04-07 索尼公司 轴承装置及使用该轴承装置的马达
CN1450281A (zh) * 2002-04-05 2003-10-22 Ntn株式会社 液力轴承装置

Also Published As

Publication number Publication date
JP2006300181A (ja) 2006-11-02
JP4916673B2 (ja) 2012-04-18
CN101160472A (zh) 2008-04-09

Similar Documents

Publication Publication Date Title
US8256962B2 (en) Fluid dynamic bearing device
CN100552244C (zh) 流动动力轴承装置和设有其的电动机
JP5274820B2 (ja) 流体軸受装置
CN101160472B (zh) 动压轴承装置及马达
CN101600892A (zh) 流体轴承装置
CN101479492A (zh) 动压轴承装置
KR20080079242A (ko) 유체 베어링 장치
KR101413554B1 (ko) 유체 베어링 장치 및 그 제조 방법
US8016488B2 (en) Fluid dynamic bearing device
CN1702339B (zh) 动态轴承装置
CN101443563B (zh) 流体轴承装置
JP2009103252A (ja) 流体軸受装置およびこれを有するモータ
JP2006112614A (ja) 動圧軸受装置
JP4738964B2 (ja) 流体軸受装置およびこれを有するモータ
JP5005235B2 (ja) 流体軸受装置
JP2009228873A (ja) 流体軸受装置
JP4708228B2 (ja) 流体軸受装置
JP2009011018A (ja) 流体軸受装置およびその製造方法
JP5231095B2 (ja) 流体軸受装置
JP5122205B2 (ja) 流体軸受装置の組立方法
JP2011112075A (ja) 流体動圧軸受装置
JP4949216B2 (ja) 流体軸受装置
JP5133156B2 (ja) 流体動圧軸受装置
JP4937524B2 (ja) 動圧軸受装置
JP5188942B2 (ja) 流体動圧軸受装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100526

Termination date: 20200417