CN101124665A - 制造氮化栅极电介质的方法 - Google Patents

制造氮化栅极电介质的方法 Download PDF

Info

Publication number
CN101124665A
CN101124665A CNA2006800015284A CN200680001528A CN101124665A CN 101124665 A CN101124665 A CN 101124665A CN A2006800015284 A CNA2006800015284 A CN A2006800015284A CN 200680001528 A CN200680001528 A CN 200680001528A CN 101124665 A CN101124665 A CN 101124665A
Authority
CN
China
Prior art keywords
dielectric layer
annealing
dielectric
grid
nitrogenize
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800015284A
Other languages
English (en)
Other versions
CN100539042C (zh
Inventor
林尚羽
保罗·A·格鲁德斯基
骆典应
奥路班密·O·艾蒂图图
星·H·曾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Publication of CN101124665A publication Critical patent/CN101124665A/zh
Application granted granted Critical
Publication of CN100539042C publication Critical patent/CN100539042C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

用氮化步骤(16)和退火处理栅极电介质(14)。此后,执行另外的氮化步骤(20)和退火。第二氮化(20)和退火导致最终形成的晶体管(60)的栅极漏电流密度和电流驱动之间关系的改善。

Description

制造氮化栅极电介质的方法
技术领域
本发明涉及制造半导体器件,并且更特别地涉及制造具有氮化栅极电介质的半导体器件结构。
背景技术
随着半导体器件结构继续变得越来越小,栅极电介质也变得越来越薄。在图1的半对数图中说明了关于这点的困难,其中图1显示当有效栅极度Tox(作为从栅极到沟道的电测量值的有效栅极氧化物厚度)降低时,通过栅极电介质的漏电流密度Jg显著地增加。在较低的栅极厚度下,2埃的轻微变化引起漏电流密度增加10倍。降低栅极电介质厚度的主要动机在于提高晶体管的电流驱动Ion。电流驱动和栅极厚度一般地具有以下的对应性:厚度降低10%,电流驱动增加10%。这样,对于厚度降低2埃是大约10%的情况,驱动电流只有10%的增加,但漏电流密度有10倍的增加。因此,当栅极电介质厚度已进入20-30埃的范围时,已变得越来越难以找到一种方法,以通过栅极电介质厚度的降低来实现电流驱动的增加,同时将漏电流维持在合理水平上。
因此,需要找到一种方法,以实现电流驱动的增加,同时将栅极漏电流维持在合理水平上。
附图说明
作为例子通过附图说明本发明,但是本发明不被附图所限制,其中相似参考符号指示类似元素,并且其中:
图1是有效栅极厚度对栅极漏电流密度的曲线;
图2是在根据发明第一实施方案的过程的某个阶段中的器件结构的横截面;
图3是在图2中所示之后的过程的某个阶段中的图2的器件结构的横截面;
图4是在图3中所示之后的过程的某个阶段中的图3的器件结构的横截面;
图5是在图4中所示之后的过程的某个阶段中的图4的器件结构的横截面;
图6是在图5中所示之后的处理的某个阶段中的图5的器件结构的横截面;
图7是在图6中所示之后的过程的某个阶段中的图6的器件结构的横截面;
图8是显示对应一个氮化和退火以及对应额外的氮化和退火的电流驱动对栅极漏电流密度的曲线;
图9是根据发明的第一实施方案的方法的流程图;
图10是在根据发明的第二实施方案的过程的某个阶段中的器件结构的横截面;
图11是在图10中所示之后的过程的某个阶段中的图10的器件结构的横截面;
图12是在图11中所示之后的过程的某个阶段中的图11的器件结构的横截面;
图13是在图12中所示之后的过程的某个阶段中的图12的器件结构的横截面;
技术人员应当认识到,图中的元素是为了简单和清楚而示例,因此不一定按比例画出。例如,可以相对于其他元素放大图中的某些元素的尺寸,以帮助改善本发明的实施方案的理解。
具体实施方式
在一个方面中,用氮化步骤和退火来处理栅极电介质。在此之后,执行额外的氮化步骤和退火。第二氮化和退火导致最终形成的晶体管的栅极漏电流密度和电流驱动之间关系的改善。参考附图和下面描述可以更好地理解这点。
图2中所示的是包括半导体衬底12和在衬底12上的栅极电介质14的器件结构10。衬底12优选地是硅,但可以是另外的半导体材料例如硅锗。半导体衬底12显示为体硅衬底,但也可以是SOI衬底。该例子中的栅极电介质14是在高温下生长的二氧化硅,并且厚度大约为12埃。这里的厚度是物理厚度,除非另外说明。
图3中所示的是在等离子体氮化步骤16之后的器件结构10,步骤16促使栅极电介质14改变成掺杂氮的栅极电介质18。优选地,通过等离子体来实现掺杂栅极电介质14以变成栅极电介质18,但是可以使用其他方法例如高炉或注入。通过高炉和注入掺杂氮的缺点在于在栅极电介质18和衬底12之间的界面处可能有比通过等离子体更多的氮。这种等离子体氮化的例子用于获得3~10个原子百分比的氮浓度。
图4中所示的是在氧气气氛中执行退火之后的器件结构10。这具有生长无氮的大约1埃的氧化物层19的效果。优选地在大约1000摄氏度下执行退火。示例的过程是在大约10托(Torr)下以大约250SCCM的流速施加氧气作为分子氧。作为选择,可以执行进一步的氧化物生长步骤,以制造更厚的氧化物层19。作为另一种可选方案,可以在惰性气氛例如N2或氩气中执行退火步骤,后面是氧化物生长步骤。在使用惰性气氛的情况下,不形成氧化物层19。在氧气气氛中退火与氧化物生长有些类似,因为它们都处于相对高的温度下,并且氧化物的形成是通过在栅极电介质层18和衬底12之间的界面处的氧化物生长。如果两者都执行,那么差异主要在于氧化物生长处于比退火相对低的温度下并且执行更长时间。与通过氮化和退火的图4的器件结构10类似的器件结构的形成已知具有降低栅极漏电流的优点但是以降低电流驱动为代价。这被认为是因为通过退火栅极氮化电介质,从界面中置换一部分氮,而在衬底和等离子体氮化物电介质层之间的界面处形成氧化物层,从而形成原子上更平滑的界面。
图4的器件结构10的形成不同于先前技术在于为了随后的氮化和退火做准备而制造图4的器件结构10。
图5中所示的是在执行等离子体氮化步骤20之后的器件结构10。这具有将氮的百分比增加额外的1~3个原子百分比的效果。例如,如果在图3的器件结构10中氮浓度是3个原子百分比,那么在图5的器件结构10中的浓度是大约4~6个百分比。该过程可以与在图3中所示的氮化步骤中使用的过程相同。
图6中所示的是在氧气气氛中退火之后的器件结构10,该退火形成基本上无氮的氧化物层23。优选地,在大约1100摄氏度下执行退火。示例的过程是在大约10托下以大约250SCCM的流速施加氧气作为分子氧。
图7中所示的是当晶体管使用栅极电介质22作为晶体管的栅极电介质时的器件结构10。晶体管包括在栅极电介质22上面的栅电极24、在栅极24周围的侧壁隔离器26、在衬底12中且在一侧与栅极24相邻的源极/漏极28,以及在衬底12中且在另一侧与栅极24相邻的源极/漏极30。
图8中所示的是电流驱动(Ion)对栅极漏电流密度(Jg)的曲线32和曲线34的图示。曲线32对应于单个氮化和退火以及无氮化和退火的情况。曲线34对应于图2-7中所示的额外氮化和退火的情况。从无氮化和退火的曲线到单个氮化和退火基本上无变化,只是沿着曲线32在降低漏电和降低电流驱动的方向上移动位置。第二氮化和退火促成从曲线32到曲线34的位移。这被认为是因为氮化的远离衬底12的进一步定域,以及在氧化物层23和衬底12之间的界面25处的基本上无氮界面。曲线34上的位置36具有与曲线32上的位置38相同的电流驱动但是具有比位置38更低的漏电流密度。类似地,曲线34上的位置39具有比位置40更低的漏电流密度,同时维持相同的电流驱动。
通过在与第一氮化和退火相同的条件下进行第二氮化和退火已发现图8中所描绘的这种改善。例如,在10毫托下以250SCCM氮气流速在350瓦特、20%占空系数、10千赫下执行15秒的两个氮化,以及在1000摄氏度、0.5托下以250SCCM氧气流速执行15秒的两个退火导致栅极漏电流密度大约70%的改善,同时保持驱动电流基本上相同。
图9中所示的是显示形成图7的器件结构10的处理步骤的流程图并提供图8中所描绘的好处。步骤42形成栅极电介质层。然后步骤44执行等离子体氮化。步骤46是优选地在氧气气氛中执行的退火。步骤48是形成更多栅极电介质的任选步骤。如果在氧气气氛中发生退火步骤,那么通常不需要执行步骤48。步骤50是优选地以与步骤44相同的方式执行的另一个氮化步骤。步骤52是优选地以与步骤46相同的方式执行的另一个退火步骤。在该流程中,在两个氮化/退火步骤之后,在步骤54中形成晶体管。在形成晶体管之前,氮化/退火步骤可以超过两个。
图10-13显示关于图2-7的可选实施方案。
图10中所示的是包括半导体衬底62和栅极电介质的器件结构60,其中该栅极电介质包括在衬底62上的界面氧化物层64以及可以是例如金属氧化物、金属硅酸盐、金属铝酸盐、金属氮氧化硅或金属镧酸盐的高K电介质层。衬底12优选地是硅,但可以是另外的半导体材料例如硅锗。半导体衬底62显示为体硅衬底,但也可以是SOI衬底。该例子中的高K电介质层66是通过原子层沉积(ALD)沉积的氧化铪。界面氧化物层64是当形成栅极电介质尤其是在硅上形成栅极电介质时作为实际问题总是存在的氧化物层。
图11中所示的是在等离子体氮化步骤68之后的器件结构60,步骤68促使高K电介质层66改变成掺杂氮的金属氧化物层70,以及促使界面氧化物层64改变成具有痕量氮存在的界面氧化物层72。优选地,通过等离子体来实现掺杂高K电介质66以变成高K电介质层70,但可以使用其他方法例如高炉和注入,只是具有先前所描述的缺点。这种等离子体氮化的例子用于获得3~10个原子百分比的氮浓度。然后是在氧气气氛中退火。优选地,大约在1000~1200摄氏度下执行退火。示例的过程是在大约10托下以大约250SCCM的流速施加氧气作为分子氧。作为选择,可以执行进一步的高K电介质沉积步骤以制造更厚的高K层70。与通过氮化和退火的图11的器件结构60类似的器件结构的形成是众所周知的,并且已知具有降低栅极漏电流的优点但是以降低电流驱动为代价。这被认为是因为通过退火栅极氮化电介质,从界面中置换一部分氮,而在衬底和等离子体氮化电介质层之间的界面处形成氧化物层,从而形成原子上更平滑的界面。
图11的器件结构60的形成不同于先前技术在于为了随后的氮化和退火做准备而制造图11的器件结构60。
图12中所示的是在执行等离子体氮化步骤20和氧气气氛中的退火之后的器件结构60。该过程可以与在图11中所示的氮化和退火步骤中使用的过程相同。这具有改变高K电介质层70和界面层72以分别形成高K电介质层76和界面氧化物层78的效果。层76和78构成栅极电介质80。
图13中所示的是当晶体管使用栅极电介质80作为晶体管的栅极电介质时的器件结构60。晶体管包括在栅极电介质80上面的栅电极82、在栅极82周围的侧壁隔离器84、在衬底62中且在一侧与栅极82相邻的源极/漏极86,以及在衬底62中且在另一侧与栅极82相邻的源极/漏极88。
这描述两次氮化/退火过程。所描述的氮化/退火步骤的次数可以超过两次。在金属氧化物例子中,多次氮化/退火步骤好于单次氮化退火的优点是氮分布的调节以及高K电介质质量的改善。
在前面说明书中,已关于具体实施方案描述了发明。但是,本领域技术人员应当认识到可以进行各种修改和改变而不背离下面的权利要求中所陈述的本发明的范围。描述了某些材料,但是这些可以改变。作为进一步的可选方案,描述了氧化铪作为示例的金属氧化物,但是可以使用其他高K电介质例如氧化锆或其他金属氧化物,例如氧氮镧铝也可以受益于该过程。因此,说明书和附图应当认为是说明性的而不是限制性的,并且所有这种修改打算包含在本发明的范围内。
已在上面关于具体实施方案描述了好处、其他优点以及问题的解决方案。但是,不应当将发生的或变得更显著的好处、优点、问题的解决方案以及可以促成任意好处、优点或解决方案的任意元素解释为任意或全部权利要求的关键的、必须的、或基本的特征或元素。如这里所使用的,术语“包括”,“包含”或其任意其他变化形式打算用来覆盖非排他的包含,使得包括一列元素的过程、方法、产品或装置不仅仅包括那些元素,而是可以包括没有明确列举的或这种过程、方法、产品或装置所固有的其他元素。

Claims (20)

1.一种形成栅极氮化电介质的方法,包括:
在衬底上面形成电介质层;
将电介质层暴露于等离子体氮化,以形成等离子体氮化电介质层;
通过退火栅极氮化电介质,以从衬底和等离子体氮化电介质层之间的界面中置换一部分氮,而在界面处形成氧化物层,从而形成原子上更平滑的界面;
再次将电介质层暴露于等离子体氮化,以添加更多的氮到等离子体氮化电介质层;以及
退火栅极氮化电介质,以通过进一步平滑界面来处理衬底和等离子体氮化电介质层之间的界面。
2.根据权利要求1的方法,还包括:
将电介质层形成为二氧化硅、金属氧化物、金属硅酸盐、金属铝酸盐之一,或预先确定金属的组合,或多种金属和氧化物、硅酸盐、镧酸盐或铝酸盐之一的组合。
3.根据权利要求2的方法,还包括:
将金属氧化物形成为氧化铪。
4.根据权利要求1的方法,其中形成氧化物层还包括:
通过在基本上500~1200度的温度下退火栅极氮化电介质而在衬底和等离子体氮化电介质层之间的界面处形成氧化物层。
5.根据权利要求1的方法,其中形成氧化物层还包括:
在退火栅极氮化电介质之后在从室温升高的温度下形成额外的电介质层,以在衬底和等离子体氮化电介质层之间的界面处形成氧化物层。
6.根据权利要求1的方法,其中形成氧化物层还包括:
在基本上500~1200度的温度下在惰性气氛中退火栅极氮化电介质;以及
将栅极氮化电介质放置在氧气气氛中,以在衬底和等离子体氮化电介质层之间的界面处形成氧化物层。
7.根据权利要求1的方法,还包括:
通过在衬底上面生长电介质层而形成电介质层。
8.根据权利要求1的方法,还包括:
将以下步骤重复1~100的预先确定次数:
(1)形成另一个氧化物层;
(2)重复将电介质层暴露于等离子体氮化,以添加更多的氮到等离子体氮化电介质层;以及
(3)退火栅极氮化电介质,以通过进一步平滑界面而进一步处理在衬底和等离子体氮化电介质层之间的界面。
9.根据权利要求8的方法,其中在达到预先确定次数之后,省略最后一次的栅极氮化电介质的退火。
10.根据权利要求1的方法,还包括:
将以下步骤重复1~100的预先确定次数:
(1)形成另一个氧化物层;以及
(2)重复将电介质层暴露于等离子体氮化,以添加更多的氮到等离子体氮化电介质层。
11.根据权利要求10的方法,还包括:
一旦完成预先确定次数,退火栅极氮化电介质,以通过进一步平滑界面而进一步处理在衬底和等离子体氮化电介质层之间的界面。
12.根据权利要求10的方法,还包括:
在预先确定次数的一个或多个之间选择性地退火栅极氮化电介质,以进一步处理在衬底和等离子体氮化电介质层之间的界面。
13.一种形成栅极氮化电介质的方法,包括:
(a)在衬底上面形成电介质层并且在衬底和电介质层之间的界面处形成氧化物层;
(b)将电介质层暴露于等离子体氮化,以形成等离子体氮化电介质层;
(c)在预先确定温度下退火栅极氮化电介质;
(d)将步骤(a)、(b)和(c)重复1~100的预先确定次数;以及
(e)退火栅极氮化电介质,以在界面添加额外的氧化物层。
14.根据权利要求13的方法,其中退火栅极氮化物电介质还包括:
步骤(c)的退火处于惰性气氛中。
15.一种在半导体中形成栅极氮化电介质的方法,包括:
(a)在衬底上面形成栅极电介质层;
(b)将栅极电介质层暴露于氮气气氛,以在金属氧化物电介质层中形成氮以及形成氮化物电介质层;以及
(c)退火栅极电介质层;以及
将步骤(b)和(c)重复预先确定次数;
在栅极氮化电介质上面形成栅电极;以及
形成与栅电极相邻的第一和第二电流电极,以在半导体中提供晶体管。
16.根据权利要求15的方法,还包括:
将电介质层形成为二氧化硅、金属氧化物、金属硅酸盐、金属铝酸盐之一,或预先确定金属的组合,或多种金属和氧化物、硅酸盐、镧酸盐或铝酸盐之一的组合。
17.根据权利要求15的方法,其中步骤(c)还包括:
在惰性气氛中退火栅极电介质层;以及
在栅极电介质层上面形成额外的栅极电介质材料,从而在栅极电介质层和衬底之间形成具有较少氮含量的界面层。
18.根据权利要求15的方法,还包括:
一旦完成预先确定次数,退火栅极氮化电介质,以通过进一步平滑界面而进一步处理在衬底和栅极电介质层之间的界面。
19.根据权利要求15的方法,还包括:
通过用ALD、MOCVD和PVD的一种进行沉积形成氧化铪而形成栅极电介质层。
20.根据权利要求15的方法,其中步骤(c)还包括:
在氧气气氛中退火栅极电介质层。
CNB2006800015284A 2005-02-25 2006-02-08 制造氮化栅极电介质的方法 Expired - Fee Related CN100539042C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/067,257 US7402472B2 (en) 2005-02-25 2005-02-25 Method of making a nitrided gate dielectric
US11/067,257 2005-02-25

Publications (2)

Publication Number Publication Date
CN101124665A true CN101124665A (zh) 2008-02-13
CN100539042C CN100539042C (zh) 2009-09-09

Family

ID=36932459

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006800015284A Expired - Fee Related CN100539042C (zh) 2005-02-25 2006-02-08 制造氮化栅极电介质的方法

Country Status (7)

Country Link
US (1) US7402472B2 (zh)
EP (1) EP1856724A4 (zh)
JP (1) JP2008532282A (zh)
KR (1) KR101206144B1 (zh)
CN (1) CN100539042C (zh)
TW (1) TWI420601B (zh)
WO (1) WO2006093631A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364664A (zh) * 2011-11-10 2012-02-29 上海华力微电子有限公司 改善mos器件载流子迁移率的方法以及mos器件制造方法
CN112466748A (zh) * 2020-11-27 2021-03-09 华虹半导体(无锡)有限公司 Mos器件栅介质层制作方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080032510A1 (en) * 2006-08-04 2008-02-07 Christopher Olsen Cmos sion gate dielectric performance with double plasma nitridation containing noble gas
JP4762169B2 (ja) * 2007-02-19 2011-08-31 富士通セミコンダクター株式会社 半導体装置の製造方法
US8110490B2 (en) * 2007-08-15 2012-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Gate oxide leakage reduction
US7981808B2 (en) * 2008-09-30 2011-07-19 Freescale Semiconductor, Inc. Method of forming a gate dielectric by in-situ plasma
US8318565B2 (en) * 2010-03-11 2012-11-27 International Business Machines Corporation High-k dielectric gate structures resistant to oxide growth at the dielectric/silicon substrate interface and methods of manufacture thereof
WO2011111627A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
US8420477B2 (en) * 2011-04-27 2013-04-16 Nanya Technology Corporation Method for fabricating a gate dielectric layer and for fabricating a gate structure
US8394688B2 (en) 2011-06-27 2013-03-12 United Microelectronics Corp. Process for forming repair layer and MOS transistor having repair layer
US8741784B2 (en) 2011-09-20 2014-06-03 United Microelectronics Corp. Process for fabricating semiconductor device and method of fabricating metal oxide semiconductor device
US9634083B2 (en) 2012-12-10 2017-04-25 United Microelectronics Corp. Semiconductor structure and process thereof
CN104183470B (zh) * 2013-05-21 2017-09-01 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN111937118A (zh) * 2018-04-02 2020-11-13 朗姆研究公司 基于氧化铪的铁电材料的覆盖层

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757041A (en) * 1996-09-11 1998-05-26 Northrop Grumman Corporation Adaptable MMIC array
US6027961A (en) * 1998-06-30 2000-02-22 Motorola, Inc. CMOS semiconductor devices and method of formation
US6204203B1 (en) * 1998-10-14 2001-03-20 Applied Materials, Inc. Post deposition treatment of dielectric films for interface control
US6180543B1 (en) * 1999-07-06 2001-01-30 Taiwan Semiconductor Manufacturing Company Method of generating two nitrogen concentration peak profiles in gate oxide
US6342437B1 (en) * 2000-06-01 2002-01-29 Micron Technology, Inc. Transistor and method of making the same
US20080090425A9 (en) * 2002-06-12 2008-04-17 Christopher Olsen Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics
KR100460841B1 (ko) * 2002-10-22 2004-12-09 한국전자통신연구원 플라즈마 인가 원자층 증착법을 통한 질소첨가 산화물박막의 형성방법
US6716695B1 (en) * 2002-12-20 2004-04-06 Texas Instruments Incorporated Semiconductor with a nitrided silicon gate oxide and method
JP2004253777A (ja) * 2003-01-31 2004-09-09 Nec Electronics Corp 半導体装置及び半導体装置の製造方法
US20040209468A1 (en) * 2003-04-17 2004-10-21 Applied Materials Inc. Method for fabricating a gate structure of a field effect transistor
JP4190940B2 (ja) * 2003-05-13 2008-12-03 エルピーダメモリ株式会社 半導体装置の製造方法
US6921703B2 (en) * 2003-05-13 2005-07-26 Texas Instruments Incorporated System and method for mitigating oxide growth in a gate dielectric
WO2005013348A2 (en) * 2003-07-31 2005-02-10 Tokyo Electron Limited Formation of ultra-thin oxide and oxynitride layers by self-limiting interfacial oxidation
US8323754B2 (en) * 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364664A (zh) * 2011-11-10 2012-02-29 上海华力微电子有限公司 改善mos器件载流子迁移率的方法以及mos器件制造方法
CN112466748A (zh) * 2020-11-27 2021-03-09 华虹半导体(无锡)有限公司 Mos器件栅介质层制作方法

Also Published As

Publication number Publication date
WO2006093631A3 (en) 2007-11-01
US20060194423A1 (en) 2006-08-31
EP1856724A2 (en) 2007-11-21
TW200644127A (en) 2006-12-16
US7402472B2 (en) 2008-07-22
CN100539042C (zh) 2009-09-09
EP1856724A4 (en) 2009-03-11
JP2008532282A (ja) 2008-08-14
KR101206144B1 (ko) 2012-11-28
WO2006093631A2 (en) 2006-09-08
TWI420601B (zh) 2013-12-21
KR20070112783A (ko) 2007-11-27

Similar Documents

Publication Publication Date Title
CN100539042C (zh) 制造氮化栅极电介质的方法
CN103681285B (zh) 包括无氟钨阻挡层的半导体器件及其制造方法
JP6873890B2 (ja) Оnoスタックの形成方法
CN103069552B (zh) 包括具有在其侧壁上增强的氮浓度的SiON栅电介质的MOS晶体管
US7423311B2 (en) Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics
US7365027B2 (en) ALD of amorphous lanthanide doped TiOx films
US8993058B2 (en) Methods and apparatus for forming tantalum silicate layers on germanium or III-V semiconductor devices
CN102498561B (zh) 半导体装置的制造方法
CN102122614B (zh) 一种氮氧化硅栅氧化层制造方法
EP1321973A2 (en) CVD deposition of a metal-silicon-oxynitride gate dielectrics
US20100187644A1 (en) Manufacturing method of semiconductor device
US7087495B2 (en) Method for manufacturing semiconductor device
US20080242059A1 (en) Methods of forming nickel silicide layers with low carbon content
JP4059183B2 (ja) 絶縁体薄膜の製造方法
WO2004066376A1 (ja) 誘電体膜の形成方法
US7939396B2 (en) Base oxide engineering for high-K gate stacks
CN103295891A (zh) 栅介质层的制作方法、晶体管的制作方法
US20080135984A1 (en) Semiconductor device
JPWO2005038929A1 (ja) 半導体装置の製造方法
Chen et al. High-performance polycrystalline silicon thin-film transistors based on metal-induced crystallization in an oxidizing atmosphere
CN101364540A (zh) 半导体装置的制造方法
JP4461441B2 (ja) 半導体装置の製造方法
WO2006009025A1 (ja) 半導体装置及び半導体装置の製造方法
CN102903625B (zh) 锗基衬底表面钝化方法
US20080233690A1 (en) Method of Selectively Forming a Silicon Nitride Layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090909

Termination date: 20160208

CF01 Termination of patent right due to non-payment of annual fee