CN101102964A - 用于从水中同时分离氢和氧的反应器 - Google Patents

用于从水中同时分离氢和氧的反应器 Download PDF

Info

Publication number
CN101102964A
CN101102964A CNA2004800446303A CN200480044630A CN101102964A CN 101102964 A CN101102964 A CN 101102964A CN A2004800446303 A CNA2004800446303 A CN A2004800446303A CN 200480044630 A CN200480044630 A CN 200480044630A CN 101102964 A CN101102964 A CN 101102964A
Authority
CN
China
Prior art keywords
hydrogen
oxygen
water
film
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800446303A
Other languages
English (en)
Other versions
CN101102964B (zh
Inventor
尼尔斯·孔马克
克劳斯·勒里希
哈拉尔德·维尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H2 Energy System Co., Ltd.
Original Assignee
IPC INTERNAT POWER CONSULTING
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IPC INTERNAT POWER CONSULTING filed Critical IPC INTERNAT POWER CONSULTING
Publication of CN101102964A publication Critical patent/CN101102964A/zh
Application granted granted Critical
Publication of CN101102964B publication Critical patent/CN101102964B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/36Energy sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/36Energy sources
    • B01D2313/367Renewable energy sources, e.g. wind or solar sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/06Use of membranes of different materials or properties within one module
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00092Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0053Hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Structure Of Belt Conveyors (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本发明公开了一种使用加热从水中生产氢的装置。该装置利用热水分解,并基本上不需要电工作。它基于以下观点:具有两种膜的膜反应器允许从反应器体积中以化学计量的量同时分离氢和氧。该装置具有特定的几何形状,导致在反应室内形成温度分布,使适应于使用氢选择性膜。该装置将有利于减少氢运输和储存的需要,因为对于在家庭、小工厂或加油站中现场使用它是相当紧凑的。可以想象该装置在移动领域中的应用。所述装置的热源是使用多孔燃烧器技术的烃燃烧;但是该装置可以改装成使用任何其它的热源,特别是太阳辐射。

Description

用于从水中同时分离氢和氧的反应器
氢是未来的燃料。尽管在燃料电池、氢内燃机以及相关技术的领域中继续进行大量的技术开发,但是仍不能经济地利用氢消耗设备。氢的运输和储存是由矿物燃料驱动经济向氢燃料驱动经济快速转变的另一障碍。
该公开的装置是基于优化传热和传质、用于同时分离化量计量的氧和氢的膜反应器中的热水分解。由于它是独立且小的或中等规模的氢生产设备,该装置将有利于减少氢的运输和储存的需要。因此,它有利于促进引入氢作为能量媒介(energy vector),因此它被认为具有真正的经济重要性。
由该装置生产的氢是清洁的,仅有的污染物是水。它可以立即供给燃料电池,因此可以与燃料电池组结合,为家庭或者小型工厂同时生产热和电。可以想象在移动应用领域中使用该装置,非常紧凑型的该装置可以用于燃料电池汽车。
材料部分的最新进展以及特别是新型膜的开发,已经使生产经济上可行的、长寿命的装置如所公开的装置成为可能。
该装置可以如所公开的那样利用燃烧作为热源来实现。使用由水分解工艺通过该装置所分离的热的氧,燃烧中所产生的可利用的热量增加。虽然乙炔与由该装置所产生的氧的燃烧是热量上最有利的,但是其它气体如丁烷、天然气或者甲醇也具有足够高的火焰温度(参见表2)来热解制氢。
由于通过最优化热流和质流,所以由燃烧所产生的废气将包含最低量的碳氧化物。其它的排出产物仅仅是水和可能由于燃烧不充分的一些烃。
该装置可以改装为使用太阳辐射作为热源,以从水中生产氢而不排放任何碳的氧化物。
图1是该装置的可能实施方式。该装置是绝热的、圆柱形的反应室(1)。穿过该反应室并与其轴平行的是三种类型的一个或多个具有特定功能的管:
1.一个或多个基本上不透气的实心管,所述实心管作为选择性通过氢的膜(2)。
2.一个或多个基本上不透气的实心管,所述实心管作为选择性通过氧的膜(3),以及
3.一个或多个基本上不透气的实心管,所述实心管包含热源(4)。
几个加热管或者仅有一个加热管的布置如图2a和图2b所示。重要的是氧选择性膜配置在热源周围,以遮挡剩余的反应器体积,防止直接辐射传热。然而,类似于图2所示的其它几何设计是可能的。
该反应室含有一些水,它有几个水入口(5)。
气体在加热管(6)内燃烧。热源可以是管状的、多孔的燃烧器,所述燃烧器使在小体积内的燃烧最优化。选择乙炔作为例子,如图所示,但是也可以使用达到足够高火焰温度的任何其它气体。热量通过加热管的管壁、通过传导、对流和辐射传给反应器内的水,也传给该装置的其它部件。
反应器内的水最后将汽化,最终分解为其各组分:原子和分子的氢、氧和氢氧根OH-。忽略氢和氧的其它可能组合,对于最高达和超过2500K的实际温度,该温度依赖于反应器内部的热力学条件,它们的量在ppm水平以下。
氧选择性的膜管布置于最靠近热源,即在温度和水分解的程度最高的、且具有相当大氧分压的区域。由于在反应器内与在膜管内之间的浓度差,氧通过所述膜。所分离的氧被直接导入气体燃烧器,以获得最高的可能燃烧温度和因此获得最高的可能水分解程度。
另外,氧选择性膜管用作热源和氢膜管和反应器壁之间的热屏障。
该管布置在更靠近于反应器壁。冷却反应器壁与可能的氢膜管。在氢膜管区域中的温度因此比在水分解区域中的温度更低。为了确保氢选择性膜的最优功能,该温度典型地为大约或者低于1000℃;在更高的温度下将开始传递氧,其选择性更差;而在降低的温度下,氢传递速率将减小。
氧被提取之后在分解区域中的剩余氢将扩散通过该反应器。提取氢以抵消所分离的氧的减少量,因此保持在反应室内的绝对氢与氧的比例平衡,即为2∶1的分子比。
在气体选择性膜管的内部,各气体的分压必须低于其外部的分压,以使该膜发挥作用。这可以例如通过将气体选择性膜管与泵连接来确保。通过泵抽吸,产生通过所述膜壁的气体浓度梯度。氢和氧将通过各自的膜,并且该气体可以直接导入储存设备或消耗设备。废气流中的小涡轮机可以提供氧和氢泵所必须的电流。
注入水以补偿所提取的氧和氢。所述水入口布置成这样,使得水滴或者冷蒸汽冷却在功能管和反应室之间的所有接合处。注入水还可以通过水蒸汽渗透穿过反应器壁来实现。用来自于燃烧器的废气的热量,可以预加热被注入的水或蒸汽,作为热绝缘体的一部分。
提取的氢和氧的量控制为其在水中的计量比2∶1。因此,用完全相应量的水补充所述反应器。
用具有足够高的火焰温度的各种气体,可以获得水分解所需要的温度。足够高由所想要的水分解程度来定义。表1所示的是,在不同的蒸汽温度下及1巴的压力下,水分解的程度(质量百分比)和氢分压。使用STANJAN软件计算出这些值[1]。
表1:在不同温度下的水分解重量百分比和相应的氢分压。
1500K    2000K   2200K   2273K   2500K   3000K    3500K
0.02%   0.70%  1.37%  2.49%  5.89%  24.64%  62.36%
0.2毫巴  6毫巴   14毫巴  22毫巴  50毫巴  200毫巴  454毫巴
所公开的装置从水中分离氧。该氧被引入燃烧器,从如下方面改善燃烧:(a)更清洁的废气和(b)更高的火焰温度。
(a)“更清洁”被认为是减少废气中的NOx和烃。该废气主要包含CO2和水,可以与来自于该装置的氢一起供给例如Fisher-Tropsch工艺。二氧化碳可以例如通过使废气鼓泡经过石灰水浴来被捕获。
表2:对于选择的气体在空气中和在氧气中的近似火焰温度。
       近似的火焰温度
  在空气中[℃]   与O2[℃]
    无铅汽油氢甲醇乙醇甲烷乙烷丁烷丙烷乙炔     203021001870192019601960197019802400     226028002200238028002810283028203100
(b)提高燃烧温度是重要的。大部分气体在空气中的火焰仅达到大约2000℃的温度(参见表2),而当该气体与氧气燃烧时,火焰温度可以升高至3000℃以上。依赖于所使用的气体,在该装置开始期间将需要补充储存的氧。
没有惰性质气体(ballast gases),供应的能量仅仅是需要加热和分解新鲜水、以及需要维持工作点热平衡条件的能量。
如果从氢消耗设备(燃料电池、氢燃烧发动机)排出的热蒸汽用于补充所述装置,则可以改进该装置的热效率。
通过将催化剂加入反应器,可以增加氢和氧的生产量。例子是具有两种或者两种以上氧化态的催化剂,如Zn-ZnO或者FeO-Fe2O3体系,其中Zn或者FeO还原水分子,而ZnO或者Fe2O3在高温下释放出氧。
通过使用催化剂膜,当水分子与膜表面发生接触时,该催化剂膜分解水分子,也可以增加氢和氧的生产量。当钛和铈的氧化物结合到高温陶瓷膜中时,钛和铈的氧化物已显示出催化效果[2]。
没有催化剂或者催化剂膜,工作点温度恰好在2000℃以上。例如在2227℃(2500K)以及在所述反应器内6.75巴的压力下,氢分压大约为169毫巴。
能够经受起这些条件的材料是稀少的。然而,如今可以获得用于加热管和燃烧器以及用于气体分离膜的材料:
对于加热管,具有由某些高熔点氧化物制成的充分保护性涂层的石墨或者氧化锆是第一选择。
在开始于大约1200℃的高温下,在高产量下进行氧分离是可能的。对于许多耐火材料,随着温度的增加,由于离子传导而导致的氧分离会增加。
使用现有的膜材料,氢选择性膜管必须布置在温度为1000℃数量级或者1000℃以下的区域,该区域在反应器壁附近或者甚至一体结合到反应器壁中。基于混合传导的金属陶瓷膜的结果,以10cm3/cm2/min数量级的速率进行氢分离是可能的[2]。
在反应器壁附近和反应器壁的低温允许使用便宜和丰富的材料如氧化铝来制造反应器部件。
参考
[1]STANJAN是由Wm.C.Reynolds教授开发的化学平衡软件。在互联网上可以获得免费版本。
[2]参见实例:U.Balachandran、T.H.Lee、S.Wang和S.E.Borris,“用混合型传导膜通过水分解来生产氢(Use of mixed Conducting Membrane toproduce Hydrogen by water Dissociation)”,Int.J.Hydrogen Energy 29(2004年):291-296。

Claims (8)

1.用于将水分离成氢和氧的装置,其包括反应室、以及位于所述反应室内的
-由一个或者多个部件构成的加热系统;
-一个或者多个基本上不透气的、用于选择性通过氢的膜;
-一个或者多个第二种基本上不透气的、用于选择性通过氧的膜,以及
-用于将水或蒸汽传送入所述反应室的机械装置;
其特征在于,
-在所述反应室内部设计成非均匀的温度分布,有利于在加热系统部件附近的水分解;
-在水分解区域内设置所述氧选择性膜;
-几何布置氧选择性膜,以遮挡热源,控制和提高温度梯度;
-在更低温度的区域内设置氢选择性膜,以确保和最优化它们合适的功能;
-几何布置所述部件,特别是水入口系统,以遮挡热源,控制和提高温度梯度;
-以化学计量的量衡地提取氢和氧,以避免不得不从反应室的体积中提取过剩的气体,从而避免系统的能量损失,以及
-通过调节输入的质量流量,保持在反应室内的气体量不变。
2.根据权利要求1所述的装置,其中,所述加热系统由一个或者多个多孔的燃烧器构成。
3.根据权利要求1所述的装置,其中,太阳能集中器用作加热系统。
4.根据权利要求1所述的装置,其中,在反应室内的压力被保持在0.1MPa或者更高。
5.根据权利要求1所述的装置,其中,所述反应室或者基本上不透气的、用于选择性通过氧的膜,或者基本上不透气的、用于选择性通过氢的膜,或者两种所述膜都可以包含反应物或者催化剂,以有利于在较低温度下尽快将水蒸汽分解成氢和氧。
6.根据权利要求1所述的装置,其中,所述基本上不透气的、用于选择性通过氧的膜被保持在1000℃以上的温度。
7.根据权利要求1所述的装置,其中,基本上不能透气的、用于选择性通过氢的膜被保持在1200℃以下。
8.根据权利要求1所述的装置,该装置与氢消耗设备相连接,其中,由该消耗设备所产生的蒸汽被循环到所述装置中,由此有利于能量最优化。
CN2004800446303A 2004-12-16 2004-12-16 用于从水中同时分离氢和氧的反应器 Expired - Fee Related CN101102964B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2004/052827 WO2006064311A1 (en) 2004-12-16 2004-12-16 Reactor for simultaneous separation of hydrogen and oxygen from water

Publications (2)

Publication Number Publication Date
CN101102964A true CN101102964A (zh) 2008-01-09
CN101102964B CN101102964B (zh) 2010-12-08

Family

ID=34959953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800446303A Expired - Fee Related CN101102964B (zh) 2004-12-16 2004-12-16 用于从水中同时分离氢和氧的反应器

Country Status (19)

Country Link
US (1) US7935254B2 (zh)
EP (1) EP1828050B1 (zh)
JP (1) JP4977620B2 (zh)
KR (1) KR101116049B1 (zh)
CN (1) CN101102964B (zh)
AU (1) AU2004325672B2 (zh)
BR (1) BRPI0419146A (zh)
CA (1) CA2591407C (zh)
CY (1) CY1113860T1 (zh)
DK (1) DK1828050T3 (zh)
EA (1) EA011995B1 (zh)
ES (1) ES2394966T3 (zh)
HK (1) HK1111401A1 (zh)
IL (1) IL183883A (zh)
MX (1) MX2007007164A (zh)
PL (1) PL1828050T3 (zh)
PT (1) PT1828050E (zh)
SI (1) SI1828050T1 (zh)
WO (1) WO2006064311A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748034A (zh) * 2011-08-11 2014-04-23 丰田自动车株式会社 氢精制装置及其使用方法
CN104163399A (zh) * 2014-09-01 2014-11-26 中国科学院工程热物理研究所 透氧膜、透氢膜交替分解水制取氢气的装置
CN105692549A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 制备高纯度氢气的系统及方法
CN110127606A (zh) * 2019-06-26 2019-08-16 张朝林 一种水高温分解为氢气和氧气的方法及分离器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902416B1 (fr) * 2006-06-15 2008-09-26 Creative Services Sarl Un reacteur avec gradient thermique controle pour la production d'hydrogene pur
KR100891925B1 (ko) 2007-06-22 2009-04-08 한국에너지기술연구원 분할반응형식의 태양열 집광을 통한 물분해 수소제조장치
US8657920B2 (en) 2010-04-08 2014-02-25 Toyota Jidosha Kabushiki Kaisha Apparatus for purifying hydrogen and method for using the same
US10072224B2 (en) 2013-06-11 2018-09-11 University Of Florida Research Foundation, Inc. Solar thermochemical reactor and methods of manufacture and use thereof
US10906017B2 (en) 2013-06-11 2021-02-02 University Of Florida Research Foundation, Inc. Solar thermochemical reactor and methods of manufacture and use thereof
US9321644B2 (en) 2014-03-07 2016-04-26 Stellar Generation, Inc. Separating hydrogen from disassociated water
RU2728270C1 (ru) * 2019-07-10 2020-07-28 Николай Иванович Кузин Устройство для сжигания воды в топке котла
IT202000023470A1 (it) 2020-10-06 2022-04-06 Agenzia Naz Per Le Nuove Tecnologie Lenergia E Lo Sviluppo Economico Sostenibile Enea Processo a membrana per la produzione di idrogeno ed ossigeno mediante idrolisi dell’acqua e relativo apparato
EP4039637A1 (en) 2021-02-04 2022-08-10 Ultra High Temperature Processes Ltd Device and process for splitting water into hydrogen and oxygen by thermolysis
WO2022167591A1 (en) 2021-02-05 2022-08-11 Ultra High Temperature Processes Ltd Heating unit, in particular for a device for water thermolysis
WO2022171875A1 (en) 2021-02-15 2022-08-18 Ultra High Temperature Processes Ltd Method and device for making a tubular composite body
EP4047698A1 (en) * 2021-02-23 2022-08-24 Ultra High Temperature Processes Ltd Process for producing electrical energy with a fuel cell
EP4064791A1 (en) 2021-03-22 2022-09-28 Ultra High Temperature Processes Ltd Device and process for transforming a material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2366216A2 (fr) * 1976-10-04 1978-04-28 Comp Generale Electricite Dispositif generateur d'hydrogene
US4233127A (en) * 1978-10-02 1980-11-11 Monahan Daniel E Process and apparatus for generating hydrogen and oxygen using solar energy
US4254086A (en) * 1978-12-27 1981-03-03 Sanders Alfred P Endothermal water decomposition unit for producing hydrogen and oxygen
US4332775A (en) * 1980-07-03 1982-06-01 Battelle Memorial Institute Hydrogen generator utilizing solar energy to dissociate water
FR2572379B1 (fr) * 1984-10-29 1986-12-26 Centre Nat Rech Scient Procede et installation de dissociation d'eau par thermolyse
IL102064A (en) * 1992-06-01 1995-03-30 Yeda Res & Dev Method and apparatus for the separate recovery of a high molecular weight gas and a low molecular weight gas from a gaseous starting mixture
JP3939389B2 (ja) * 1997-01-28 2007-07-04 株式会社イオン中央研究所 水素と酸素製造用触媒及び水の熱分解による水素と酸素製造方法
US5954859A (en) * 1997-11-18 1999-09-21 Praxair Technology, Inc. Solid electrolyte ionic conductor oxygen production with power generation
CA2240214A1 (en) * 1998-05-05 1999-11-05 James Thomas Beck Process for the production of hydrogen by solar decomposition of water
US6153163A (en) * 1998-06-03 2000-11-28 Praxair Technology, Inc. Ceramic membrane reformer
JP2003063807A (ja) * 2001-08-28 2003-03-05 Nkk Corp 酸素製造方法およびガス改質方法
FR2839713B1 (fr) * 2002-05-17 2005-03-11 Creative Services Dispositif pour la production des gaz purs, en particulier d'hydrogene et d'oxygene, a partir des melanges de gaz ou des liquides, pour l'approvisionnement mobile et stationnaire d'energie
US6726893B2 (en) * 2002-09-17 2004-04-27 The University Of Chicago Hydrogen production by high-temperature water splitting using electron-conducting membranes
US20060048808A1 (en) * 2004-09-09 2006-03-09 Ruckman Jack H Solar, catalytic, hydrogen generation apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748034A (zh) * 2011-08-11 2014-04-23 丰田自动车株式会社 氢精制装置及其使用方法
CN103748034B (zh) * 2011-08-11 2015-10-21 丰田自动车株式会社 氢精制装置及其使用方法
CN104163399A (zh) * 2014-09-01 2014-11-26 中国科学院工程热物理研究所 透氧膜、透氢膜交替分解水制取氢气的装置
CN104163399B (zh) * 2014-09-01 2016-06-08 中国科学院工程热物理研究所 透氧膜、透氢膜交替分解水制取氢气的装置
CN105692549A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 制备高纯度氢气的系统及方法
CN110127606A (zh) * 2019-06-26 2019-08-16 张朝林 一种水高温分解为氢气和氧气的方法及分离器

Also Published As

Publication number Publication date
EP1828050B1 (en) 2012-09-12
IL183883A (en) 2011-10-31
US7935254B2 (en) 2011-05-03
AU2004325672A1 (en) 2006-06-22
AU2004325672A2 (en) 2006-06-22
CN101102964B (zh) 2010-12-08
BRPI0419146A (pt) 2008-03-11
MX2007007164A (es) 2007-10-23
PL1828050T3 (pl) 2013-02-28
IL183883A0 (en) 2007-10-31
EP1828050A1 (en) 2007-09-05
SI1828050T1 (sl) 2013-04-30
JP2008524101A (ja) 2008-07-10
EA200701124A1 (ru) 2007-12-28
DK1828050T3 (da) 2012-12-10
HK1111401A1 (en) 2008-08-08
ES2394966T3 (es) 2013-02-07
US20070269687A1 (en) 2007-11-22
CA2591407C (en) 2012-06-05
WO2006064311A1 (en) 2006-06-22
JP4977620B2 (ja) 2012-07-18
AU2004325672B2 (en) 2010-11-18
KR20070089695A (ko) 2007-08-31
PT1828050E (pt) 2012-11-20
CA2591407A1 (en) 2006-06-22
KR101116049B1 (ko) 2012-02-22
EA011995B1 (ru) 2009-06-30
CY1113860T1 (el) 2016-07-27

Similar Documents

Publication Publication Date Title
CN101102964B (zh) 用于从水中同时分离氢和氧的反应器
CN101222975B (zh) 紧凑型重整反应器
US4552741A (en) Method and apparatus for manufacturing synthesis gas
CN100500550C (zh) 一种甲醇水蒸气重整制备氢气的方法
CN105329853A (zh) 基于甲醇水制氢的便携式移动制氢机
RU2442819C1 (ru) Способ работы устройства для переработки попутных нефтяных газов
CN101208264A (zh) 紧凑型重整反应器
CN101540410B (zh) 天然气制氢与质子交换膜燃料电池集成发电的方法及装置
CN109911849A (zh) 适用于制氢机的自供热式重整反应装置及制氢机
CN102287917B (zh) 甲醇制氢氧化供热系统
CN104773708A (zh) 一种用于合成氨的氢原料生产设备及工艺
Arutyunov et al. A generator of synthesis gas and hydrogen based on a radiation burner
Belyaev et al. Membrane air separation for intensification of coal gasification process
CN103738919B (zh) 富氢机及其制备富氢的方法
CN204643835U (zh) 一种用于合成氨的氢原料生产设备
CN209383388U (zh) 一种自热式制氢装置
EP1506131A1 (fr) Methode pour la production des gazs purs, en particulier d'hydrogene et d'oxygene
RU2515326C1 (ru) Способ конверсии дизельного топлива и конвертор для его осуществления
CN218841707U (zh) 一种自供热自增压的高效氨分解制氢系统
CN117945626A (zh) 一种用醇氢燃料加热玻璃窑炉制取玻璃液的系统
Liu et al. PERFORMANCE ANALYSIS OF CHEMICAL LOOPING HYDROGEN PRODUCTION SYSTEM DRIVEN BY SOLAR ENERGY
CN108975271A (zh) 一种带预转化并利用高温一段气预热混合气的烃类蒸汽转化装置及转化工艺
CN117960048A (zh) 甲醇制氢装置、甲醇制氢方法及制氢加氢系统
WO2023139472A1 (en) Catalytic burner and hydrogen boiler for water heating
RU125190U1 (ru) Устройство подготовки попутных нефтяных газов для использования в энергоустановках

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: H2 ENERGY SYSTEM CO., LTD.

Free format text: FORMER OWNER: IPC INTERNATIONAL ENERGY ADVISORY CO., LTD.

Effective date: 20090417

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20090417

Address after: The British Isle of Douglas

Applicant after: H2 Energy System Co., Ltd.

Address before: Dublin, Ireland

Applicant before: IPC Internat Power Consulting

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: BRITISH ISLE OF MAN DOUGLAS TO: DUBLIN, IRELAND

TA01 Transfer of patent application right

Effective date of registration: 20100420

Address after: Dublin, Ireland

Applicant after: H2 Energy System Co., Ltd.

Address before: British Isle of Man Douglas

Applicant before: H2 Energy System Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101208

Termination date: 20151216

EXPY Termination of patent right or utility model