RU2515326C1 - Способ конверсии дизельного топлива и конвертор для его осуществления - Google Patents

Способ конверсии дизельного топлива и конвертор для его осуществления Download PDF

Info

Publication number
RU2515326C1
RU2515326C1 RU2012142481/05A RU2012142481A RU2515326C1 RU 2515326 C1 RU2515326 C1 RU 2515326C1 RU 2012142481/05 A RU2012142481/05 A RU 2012142481/05A RU 2012142481 A RU2012142481 A RU 2012142481A RU 2515326 C1 RU2515326 C1 RU 2515326C1
Authority
RU
Russia
Prior art keywords
reactor
conversion
diesel fuel
steam
temperature
Prior art date
Application number
RU2012142481/05A
Other languages
English (en)
Other versions
RU2012142481A (ru
Inventor
Георгий Андреевич Трощиненко
Юрий Павлович Малков
Сергей Георгиевич Степанов
Игорь Владимирович Вильнит
Александр Сергеевич Арсентьев
Александр Иванович Янкевич
Original Assignee
Открытое акционерное общество "Центральное конструкторское бюро морской техники "Рубин"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Центральное конструкторское бюро морской техники "Рубин" filed Critical Открытое акционерное общество "Центральное конструкторское бюро морской техники "Рубин"
Priority to RU2012142481/05A priority Critical patent/RU2515326C1/ru
Publication of RU2012142481A publication Critical patent/RU2012142481A/ru
Application granted granted Critical
Publication of RU2515326C1 publication Critical patent/RU2515326C1/ru

Links

Images

Abstract

Изобретение относится к области химического машиностроения и может быть использовано в химической, нефтехимической и энергетической промышленностях. Конвертор включает реактор, форсуночную головку для ввода дизельного топлива и кислорода с системой поджига, установленные в верхней части корпуса реактора, систему водяного охлаждения. Причем реактор выполнен в виде камеры сгорания для проведения термоокислительной реакции, совмещенной с щелевым реактором с катализатором для высокотемпературной стадии паровой конверсии дизельного топлива через теплопередающую стенку корпуса камеры сгорания. А также соединены с камерой смешения компонентов синтез-газа термоокислительной и паровой конверсии, которая соединена с камерой подготовки синтез-газа для паровой конверсии оксида углерода, стенки которой выполнены в виде щелевого реактора с катализатором для низкотемпературной стадии паровой конверсии дизельного топлива. На выходе конвертора выполнен канал с рубашкой для смешения дизельного топлива с парами воды, система водяного охлаждения выполнена в виде системы охлаждения форсуночной головки и подачи паров воды в камеру подготовки синтез-газа для паровой конверсии оксида углерода. Изобретение позволяет получить концентрацию водорода в полученном синтез-газе более чем на 10% выше в сравнении с другими известными схемами конверторов.

Description

Изобретения относятся к области химического машиностроения, а именно к способам и установкам получения синтез-газа из углеродного сырья. Изобретения могут быть использованы в химической, нефтехимической, энергетической и других смежных отраслях промышленности для переработки углеводородного сырья с получением синтез-газа с высоким содержанием водорода, используемого для энергетических и технологических целей.
Известен «Способ переработки природного газа» (патент RU №2142325, МПК7 C01B 3/38, В01Д 53/00, опубл. 10.12.1999), включающий предварительную паровую каталитическую конверсию углеводородного сырья в адиабатическом конверторе, разложение полученной газовой смеси на стадии паровой конверсии в трубчатом конверторе и последующее доразложение на стадии кислородной конверсии в шахтном реакторе, причем газовую смесь, получаемую после кислородной конверсии, предварительно подают в межтрубное пространство трубчатого конвертора.
К недостаткам данного способа следует отнести наличие большого количества аппаратов и связующих их элементов, необходимость использования специальных передаточных коллекторов от аппарата первой ступени паровой конверсии к аппарату паровоздушной конверсии из-за высокой температуры сред, находящихся в этих аппаратах, обусловленной проведением данного способа.
Известен «Конвертор для двухступенчатой каталитической конверсии» (патент RU №2131765, МПК7 С01В 3/38, В01У 8/06, опубл. 20.06.1999), состоящий из двух ступеней, размещенных в одном футерованном корпусе с реакционными трубами в нижней части, заполненными катализатором для первой ступени конверсии, которые выполнены в виде модулей, а катализаторный слой второй ступени конверсии размещен в верхней части корпуса. Недостатками данного конвертора является низкая эксплуатационная пригодность в виду сложности компоновки конструкции, наличие сложного комплекса деталей потокопроводящих устройств, неэффективное использование внутреннего свободного пространства аппарата.
Известен «Способ и устройство, использующее пластинчатое оформление для нагрева реагента» (патент US №6180846, МПК7 С07С 1/02, В01У 8/02, опубл. 30.06.2001). Способ, включающий стадию первичной паровой конверсии углеводородов, стадию окисления горючих продуктов первичной паровой конверсии углеводородов, стадию вторичной паровой конверсии углеводородов в конверторе, нагрев пароуглеродной смеси и охлаждение продуктов вторичной паровой конверсии углеводородов в теплообменнике. Для осуществления данного способа конвертор включает корпус, устройства ввода обогащенного кислородом воздуха, подвода пароуглеродной смеси и отвода конвертированного газа, насадку, выполненную с помощью гофрированных пластин, образующих прямые каналы, частично заполненные катализатором для первичной и вторичной паровой конверсии углеводородов.
Недостатками данного способа и устройства являются: сложность исполнения, нерациональное проведение нагрева пароуглеродной смеси и охлаждения конвертирования газа в теплообменнике, а также и в конверторе, недостаточное использование тепла конвертированного газа, низкое использование тепла конвертированного газа, осуществление горения конвертированного газа непосредственно в катализаторе для вторичной паровой конверсии углеводородов, что повышает требования к термостойкости материала гофрированных пластин и самого катализатора, возможность образования свободного углерода в каналах, свободных от катализатора, до осуществления первичной паровой конверсии углеводородов, а также на самом катализаторе первичной паровой конверсии углеводородов.
Известен «Реактор для получения синтез-газа» (патент RU №2392227, МПК (2006.01) С10У 3/34, опубл. 20.06.2010), который содержит корпус, образованный двухслойными металлическими водоохлаждаемыми стенками, через внутреннюю полость которых прокачивается вода для охлаждения, горелку для ввода топлива и кислорода или парокислородной смеси, расположенную в верхней части корпуса, патрубок для отвода газа, расположенный в нижней части корпуса. В корпусе выполнены кольцевые коллекторы - один в верхней, другой в нижней части корпуса, причем верхний кольцевой коллектор присоединен к водяной магистрали, а нижний кольцевой коллектор соединен трубопроводом с горелкой. Топливо, кислород или парокислородная смесь и пар из трубопровода поступают в горелку, расположенную в верхней части корпуса. Воспламененная парогазовая смесь поступает в корпус, где происходит реакция образования синтез-газа. Температура внутри реактора в верхней зоне достигает до 3000 К. Полученный синтез-газ выходит через патрубок, расположенный в нижней части корпуса. После прохождения нижней части реактора температура синтез-газа составляет 1200-2400 К. Из водяной магистрали в кольцевой коллектор, расположенный в верхней части корпуса, поступает холодная вода для охлаждения двухслойных металлических стенок реактора, которая по мере продвижения по внутренней полости испаряется и в виде пара поступает в кольцевой коллектор, расположенный в нижней части корпуса, соединенный трубопроводом с горелкой. Конверсия углеводородов в данном реакторе проводится при температуре в реакторе до 3000 K и выше и давлениях до 30 МПа. Данный режим работы реактора предназначен для реализации автотермической конверсии, состоящей в комбинации термоокислительной кислородной конверсии углеводородного топлива и последующей паровой конверсии.
Недостаток такой схемы состоит в том, что для получения высокого содержания водорода в продуктах конверсии (синтез-газа) необходимо стремиться к минимально возможному значению стехиометрического коэффициента α. Однако для получения синтез-газа в данном реакторе в режимах при α<0,4 возможно интенсивное выделение углерода (сажи), особенно на водоохлаждаемой стенке камеры сгорания реактора и в ее пристеночной зоне. Кроме того, при низких значениях α очень трудно организовать устойчивое горение переобогащенной топливокислородной смеси. Увеличение же значений α способствует существенному снижению водорода в синтез-газе, что отражается на значительном уменьшении к.п.д. преобразования химической энергии топлива в полезную работу. Кроме того, при использовании водяного охлаждения стенок камеры сгорания существенно растут потери тепла в систему охлаждения.
Задачей предлагаемого изобретения является получение синтез-газа с высоким содержанием водорода и снижение сажеобразования в конверторе.
Поставленная задача достигается тем, что способ получения синтез-газа при конверсии дизельного топлива (ДТ) осуществляется в конверторе с раздельной подачей ДТ на термоокислительную и паровую конверсии. Часть смеси ДТ с кислородом подают в реактор для проведения термоокислительной конверсии, другую часть смеси ДТ с водяным паром сначала подают в низкотемпературный щелевой реактор для проведения низкотемпературной стадии паровой каталитической реакции конверсии ДТ при температуре 350-500°C и затем направляют в высокотемпературный щелевой реактор для проведения эндотермической стадии паровой каталитической конверсии при температуре 700-1100°С, синтез-газ, полученный в результате термоокислительной и паровой каталитической конверсии, подают в камеру смешения и образовавшуюся смесь направляют в камеру для охлаждения водяным паром до температуры 350-400°C.
Способ конверсии согласно изобретению осуществляется в конверторе для получения синтез-газа, включающем реактор, форсуночную головку для ввода ДТ и кислорода с системой поджига, установленные в верхней части корпуса реактора, систему водяного охлаждения, причем реактор выполнен в виде камеры сгорания для проведения термоокислительной реакции, совмещенной с щелевым реактором с катализатором для высокотемпературной стадии паровой конверсии ДТ через теплопередающую стенку корпуса камеры сгорания, и соединены с камерой смешения компонентов синтез-газа термоокислительной и паровой конверсии, которая соединена с камерой подготовки синтез-газа для паровой конверсии оксида углерода, стенки которой выполнены в виде щелевого реактора с катализатором для низкотемпературной стадии паровой конверсии ДТ, на выходе конвертора выполнен канал с рубашкой для смешения ДТ с парами воды, система водяного охлаждения выполнена в виде системы охлаждения форсуночной головки и подачи паров воды в камеру подготовки синтез-газа для паровой конверсии оксида углерода.
В предлагаемом конверторе процесс термоокислительной конверсии части ДТ, используемый для получения водородосодержащего синтез-газа, выполняет также роль источника тепла для реализации паровой конверсии другой части топлива.
Для исключения появления сажи в продуктах паровой конверсии ДТ этот процесс разделен на две стадии - низкотемпературную, предназначенную для превращения ДТ при взаимодействии с парами воды в метан и его гомологи, и высокотемпературную, сильно эндотермическую стадию, в результате которой из указанных продуктов образуется водородсодержащий синтез-газ. В связи с этим в конверторе предусматривается использование двух реакторов. Первый низкотемпературный реактор располагается в выходной части конвертора. Высокотемпературный реактор совмещен с теплопередающей стенкой камеры сгорания, через которую передается тепло на осуществление второй, эндотермической высокотемпературной стадии паровой конверсии. Стенка камеры сгорания работает при высокой температуре. От этой температуры и от количества тепла, которое утилизируется в щелевом реакторе, зависит расход смеси ДТ с водой, необходимой для реализации паровой конверсии. При этом осуществляется охлаждение теплопередающей стенки и образование дополнительного количества водородсодержащего синтез-газа. Кроме того, в конверторе контур паровой конверсии ДТ выполняет роль регенеративной системы охлаждения стенки камеры сгорания. В этом случае нет необходимости в использовании водяного охлаждения камеры сгорания. Высокая температура теплопередающей стенки в отличие от водоохлаждаемой стенки значительно снижает вероятность образования на ней частиц сажи. Такая схема конвертора позволяет реализацию термоокислительной конверсии при α>0,4, что также способствует снижению выделения сажи и более устойчивому процессу горения переобогащенной топливной смеси.
На рис.1 приведено схематическое изображение конвертора для получения синтез-газа. Конвертор содержит камеру сгорания 1 для реализации термоокислительной конверсии, совмещенную с высокотемпературным щелевым реактором 2, для проведения эндотермической стадии паровой каталитической конверсии, через теплопередающую стенку корпуса 3 камеры сгорания 1 и заключенные в общую наружную теплоизоляцию 4. Камера сгорания 1 и щелевой реактор 2 соединены с камерой смешения компонентов синтез-газа 5. Камера подготовки синтез-газа для паровой конверсии оксида углерода 6, стенки которой выполнены в виде щелевого реактора с катализатором 7 для низкотемпературной стадии паровой конверсии, расположена между камерой смешения компонентов синтез-газа 5 и выходным каналом 8 с рубашкой для смешения и испарения ДТ с водой 9. В верхней части корпуса камеры сгорания 1 расположены форсуночная головка 10 и система водяного охлаждения 11.
Конверсия ДТ для получения синтез-газа осуществляется в конверторе следующим образом.
Часть ДТ совместно с кислородом через форсуночную головку 10, имеющую систему поджига, поступает в камеру сгорания 1 для реализации термоокислительной кислородной конверсии при температуре более 2000°C и стехиометрическом соотношении компонентов не менее α=0,5, что способствует снижению выделения углерода в продуктах сгорания. Вторая часть ДТ для реализации паровой каталитической конверсии вместе с водой подается в рубашку охлаждения 9 выходного канала 8, где происходит испарение и смешение этих компонентов. Полученная смесь поступает в низкотемпературный щелевой реактор 7 для осуществления первой стадии паровой каталитической конверсии ДТ при температуре не выше 500°C. Из этого реактора продукты конверсии подаются на реализацию заключительной эндотермической стадии паровой каталитической конверсии при температурах от 700°C до 1100°C в высокотемпературном щелевом реакторе 2. Синтез-газ, полученный в результате термоокислительной конверсии в камере сгорания 1 и паровой каталитической конверсии после ее завершения в щелевом реакторе 2, поступает в камеру смешения 5. Из нее образовавшаяся смесь направляется в камеру подготовки синтез-газа для паровой конверсии оксида углерода 7, где охлаждается поступающим из системы водяного охлаждения 11 водяным паром до температуры, соответствующей тепловому режиму стенки щелевого реактора 7 в температурных пределах 350-400°C. Полученный таким образом синтез-газ выводится из конвертора через выходной канал 8, отдавая по пути тепло в рубашку 9, на подготовку к низкотемпературной стадии паровой каталитической конверсии ДТ, поступающего с водой в щелевой реактор 7.
При использовании конвертора с раздельной подачей топлива на термоокислительную и паровую конверсии концентрация водорода в полученном синтез-газе выше более чем на 10% в сравнении с другими известными схемами конверторов, где при реализации конверсии ДТ, в реактор поступает все топливо.
Процесс конверсии ДТ в данном конверторе осуществляется при значениях избытка окислителя α≥0,5. В данном случае повышается не только концентрация водорода, но и уменьшается вероятность выделения сажи в продуктах сгорания. Кроме того, при более высоких значениях α существенно улучшаются условия организации процесса горения ДТ.
Реакторы, в которых реализуется паровая конверсия ДТ, в конверторе выполняют роль системы регенеративного охлаждения его внутренних стенок и тем самым исключают необходимость в их охлаждении водой. При этом внутренняя стенка камеры сгорания имеет высокую температуру, которая препятствует выделению на ней сажи, в отличие от водоохлаждаемой стенки с низкой температурой, являющейся одним из источников появления сажи в синтез-газе.

Claims (2)

1. Конвертор, включающий реактор, форсуночную головку для ввода топлива и кислорода с системой поджига, установленные на входной части корпуса реактора, систему водяного охлаждения, отличающийся тем, что реактор выполнен в виде камеры сгорания, для проведения термоокислительной реакции, совмещенную с щелевым реактором с катализатором, для высокотемпературной стадии паровой конверсии дизельного топлива, через теплопередающую стенку корпуса камеры сгорания, и соединены с камерой смешения компонентов синтез-газа термоокислительной и паровой каталитической конверсии, которая соединена с камерой подготовки синтез-газа для паровой конверсии оксида углерода, стенки которой выполнены в виде щелевого реактора с катализатором для низкотемпературной паровой конверсии дизельного топлива, на выходе конвертора расположен канал с рубашкой для смешения дизельного топлива с парами воды, система водяного охлаждения выполнена в виде системы охлаждения форсуночной головки и подачи паров воды в камеру подготовки синтез-газа для паровой конверсии оксида углерода.
2. Способ конверсии дизельного топлива, отличающийся тем, что его осуществляют в конверторе по п.1, где часть смеси дизельного топлива с кислородом подают в реактор для проведения термоокислительной конверсии, а другую часть смеси дизельного топлива с водяным паром подают в низкотемпературный щелевой реактор для проведения низкотемпературной стадии паровой каталитической реакции конверсии дизельного топлива при температуре 350-500°C и затем направляют в высокотемпературный щелевой реактор для проведения эндотермической паровой каталитической конверсии при температуре 700-1100°C, синтез-газ, полученный в результате термоокислительной и паровой каталитической конверсии, подают в камеру смешения и образовавшуюся смесь направляют в камеру для охлаждения водяным паром до температуры 350-400°C.
RU2012142481/05A 2012-10-04 2012-10-04 Способ конверсии дизельного топлива и конвертор для его осуществления RU2515326C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012142481/05A RU2515326C1 (ru) 2012-10-04 2012-10-04 Способ конверсии дизельного топлива и конвертор для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012142481/05A RU2515326C1 (ru) 2012-10-04 2012-10-04 Способ конверсии дизельного топлива и конвертор для его осуществления

Publications (2)

Publication Number Publication Date
RU2012142481A RU2012142481A (ru) 2014-04-10
RU2515326C1 true RU2515326C1 (ru) 2014-05-10

Family

ID=50435977

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012142481/05A RU2515326C1 (ru) 2012-10-04 2012-10-04 Способ конверсии дизельного топлива и конвертор для его осуществления

Country Status (1)

Country Link
RU (1) RU2515326C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2580186C1 (ru) * 2014-10-16 2016-04-10 Акционерное общество "Центральное конструкторское бюро морской техники "Рубин" (АО "ЦКБ МТ "Рубин") Конвертор паровой конверсии со с охлаждением

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1075947A3 (ru) * 1976-12-22 1984-02-23 Юнайтед Текнолоджиз Корпорейшн (Фирма) Установка дл проведени эндотермических реакций
SU1634127A3 (ru) * 1986-12-18 1991-03-07 Энститю Франсэ Дю Петроль (Фирма) Реактор дл получени синтез-газа и способ его получени
RU2009712C1 (ru) * 1988-12-01 1994-03-30 Астановский Дмитрий Львович Аппарат для проведения паровой каталитической конверсии углеводородов
US20040123523A1 (en) * 2002-12-31 2004-07-01 Xiaoyang Rong Fuel conversion reactor
RU2235058C2 (ru) * 1999-02-10 2004-08-27 Касале Кемикалз С.А. Способ вторичного риформинга и горелка, предназначенная для его осуществления
WO2006071927A1 (en) * 2004-12-23 2006-07-06 Saudi Arabian Oil Company, Thermo-neutral reforming of petroleum-based liquid hydrocarbons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1075947A3 (ru) * 1976-12-22 1984-02-23 Юнайтед Текнолоджиз Корпорейшн (Фирма) Установка дл проведени эндотермических реакций
SU1634127A3 (ru) * 1986-12-18 1991-03-07 Энститю Франсэ Дю Петроль (Фирма) Реактор дл получени синтез-газа и способ его получени
RU2009712C1 (ru) * 1988-12-01 1994-03-30 Астановский Дмитрий Львович Аппарат для проведения паровой каталитической конверсии углеводородов
RU2235058C2 (ru) * 1999-02-10 2004-08-27 Касале Кемикалз С.А. Способ вторичного риформинга и горелка, предназначенная для его осуществления
US20040123523A1 (en) * 2002-12-31 2004-07-01 Xiaoyang Rong Fuel conversion reactor
WO2006071927A1 (en) * 2004-12-23 2006-07-06 Saudi Arabian Oil Company, Thermo-neutral reforming of petroleum-based liquid hydrocarbons

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2580186C1 (ru) * 2014-10-16 2016-04-10 Акционерное общество "Центральное конструкторское бюро морской техники "Рубин" (АО "ЦКБ МТ "Рубин") Конвертор паровой конверсии со с охлаждением

Also Published As

Publication number Publication date
RU2012142481A (ru) 2014-04-10

Similar Documents

Publication Publication Date Title
RU2415073C2 (ru) Компактный реактор реформинга
CN1133578C (zh) 将烃类燃料转化成氢气和二氧化碳的方法和装置
CN100457252C (zh) 紧凑型蒸汽重整器
KR101658512B1 (ko) 합성 가스를 발생시키기 위한 방법 및 시스템
CN101222975B (zh) 紧凑型重整反应器
US5229102A (en) Catalytic ceramic membrane steam-hydrocarbon reformer
CN103648972A (zh) 用于产生合成气的方法及设备
EP0814146B1 (en) Method for combined generation of synthesis gas and power
JP2003002609A (ja) コンパクト型水蒸気改質装置
JP2004224690A (ja) 新規な部分酸化反応器
RU2442819C1 (ru) Способ работы устройства для переработки попутных нефтяных газов
FI3878806T3 (fi) Menetelmä vedyn tai vetypitoisten polttoaineiden valmistamiseksi katalyyttisella ammoniakin hajotuksella
RU2008113706A (ru) Способ создания водородного энергохимического комплекса и устройство для его реализации
RU2374173C1 (ru) Способ получения синтез-газа
RU2515326C1 (ru) Способ конверсии дизельного топлива и конвертор для его осуществления
RU2361809C2 (ru) Способ получения синтез-газа и устройство для его осуществления
CN108557764B (zh) 一种无水制氢工艺
RU2372277C1 (ru) Способ получения водорода и устройство для его осуществления
CN111661819A (zh) 一种制氢机混合气转化燃烧系统
US3582296A (en) Gasifying process
CN1636861A (zh) 一种烃类转化生产合成气的装置和方法
WO2002075832A2 (en) Chambered reactor for fuel processing
KR0156088B1 (ko) 환형 단일 반응관을 채택한 저온 메탄올 수증기 개질장치
BRPI0618102A2 (pt) método e aparelho para geração de vapor
KR102586411B1 (ko) 열교환의 최적화를 통해 안정적인 수소생산 및 일산화탄소 제거가 가능하도록 한 내구성을 갖는 고효율 연료처리장치

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner