CN101080872B - 利用向量行分组的结构化ldpc设计操作发送器的方法及装置 - Google Patents

利用向量行分组的结构化ldpc设计操作发送器的方法及装置 Download PDF

Info

Publication number
CN101080872B
CN101080872B CN200580042887XA CN200580042887A CN101080872B CN 101080872 B CN101080872 B CN 101080872B CN 200580042887X A CN200580042887X A CN 200580042887XA CN 200580042887 A CN200580042887 A CN 200580042887A CN 101080872 B CN101080872 B CN 101080872B
Authority
CN
China
Prior art keywords
row
matrix
parity check
group
intersect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200580042887XA
Other languages
English (en)
Other versions
CN101080872A (zh
Inventor
宇菲·W·布兰肯希普
T·基思·布兰肯希普
布赖恩·K·克拉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Mobility LLC
Google Technology Holdings LLC
Original Assignee
Motorola Mobility LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Mobility LLC filed Critical Motorola Mobility LLC
Priority to CN201210075946.5A priority Critical patent/CN102638274B/zh
Publication of CN101080872A publication Critical patent/CN101080872A/zh
Application granted granted Critical
Publication of CN101080872B publication Critical patent/CN101080872B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1131Scheduling of bit node or check node processing
    • H03M13/1137Partly parallel processing, i.e. sub-blocks or sub-groups of nodes being processed in parallel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/118Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
    • H03M13/1185Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/118Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
    • H03M13/1185Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal
    • H03M13/1188Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal wherein in the part with the double-diagonal at least one column has an odd column weight equal or greater than three
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/118Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

建议了一种结构化的奇偶校验矩阵H,其中H是基础矩阵Hb的扩展。基础矩阵Hb包括区段Hb1和区段Hb2。区段Hb2包含具有权重wh>=3的列hb和具有双对角结构的H′b2,对于H′b2中在行i、列j的矩阵元素,当i=j时,该矩阵元素等于1,当i=j+1时,该矩阵元素等于1,在其他情况下,该矩阵元素等于0。布置hb和Hb1中的1,使得可形成mb/q个组,在每个组中的Hb的q个行不交叉。进一步,可以对基础矩阵Hb的行做置换,使得每两个相继的行不交叉。

Description

利用向量行分组的结构化LDPC设计操作发送器的方法及装置
技术领域
本发明总的涉及编码和解码数据,具体说,涉及一种利用低密度奇偶校验(LDPC)码来编码和解码数据的方法和设备。
背景技术
正如美国专利申请序列号10/839995(该申请结合于此供参考)所公开的,低密度奇偶校验(LDPC)码是通过奇偶校验矩阵H规定的线性区块码(linear block code)。一般而言,LDPC码是在伽罗华域GF(q)上定义的,q≥2。如果q=2,该码就是二进制码。所有的线性区块码可以被描述成k位信息向量s1×k与编码生成矩阵Gk×n的乘积,用以产生n-位码字x1×n,其中编码率为r=k/n。该码字x通过噪声信道来传输,并且所接收的信号向量y传递给解码器以估算该信息向量s1×k
给定一个n维空间,G的各行扩张成k维码字子空间C,并且奇偶校验矩阵Hm×n的各行扩张成m维对偶空间C,其中m=n-k。由于x=sG并且GHT=0,因此对于子空间C中的所有码字,可得到xHT=0,其中“T”(或“T”)表示矩阵的转置。在LDPC码的讨论中,这通常写成
HxT=0T,(1)
其中0是全零行向量,并且码字x=[sp]=[s0,s1,...,sk-1,p0,p1,...,pm-1],其中p0,...,pm-1是奇偶校验位;而s0,...,sk-1是系统位(systematicbit),等于该信息向量中的信息位。
对于LDPC码,H中的非零项的密度很低,即H中的1所占的百分比很小,与使用高密度H相比,具有较好的纠错性能和较简单的解码。奇偶校验矩阵也可以用二分图(bipartite graph)来描述。二分图不仅是编码的图解描述,而且也是解码器的模型。在这种二分图中,码字位(H的每列)用左侧的变量结点表示,而每个奇偶校验方程(H的每行)用右侧的校验结点表示。每个变量结点对应于H的列,而每个校验结点对应于H的行,因此“变量结点”和H的“列”是可互指的,“校验结点”和H的“行”也是可互指的。变量结点只与校验结点连接,并且校验结点只与变量结点连接。对于具有n个码字位和m个奇偶位的编码,如果码字位i参与了校验方程j,变量结点vi通过图中某个边连接至校验结点cj,i=0,1,...,n-1,j=0,1,...,m-1。也就是说,如果该奇偶校验矩阵H中的项hji是1,则变量结点i连接于校验结点j。镜像方程(1),如果所有的校验结点具有偶的奇偶性,该变量结点表示有效的码字。
下面示出一个例子,来说明奇偶校验矩阵、奇偶校验方程和二分图之间的关系。令n=12,1/2码率的代码由下面矩阵定义
Figure GSB00000080190100021
其中矩阵的左面部分对应于k(=6)个信息位s,矩阵右面部分对应于m(=6)个奇偶位p。通过应用(1)、(2)中的H定义如下的6个校验方程:
x 0 + x 2 + x 6 + x 7 = 0 x 1 + x 4 + x 7 + x 8 = 0 x 2 + x 5 + x 6 + x 8 + x 9 = 0 x 0 + x 3 + x 9 + x 10 = 0 x 1 + x 4 + x 10 + x 11 = 0 x 3 + x 5 + x 6 + x 11 = 0 . - - - ( 3 )
H也具有对应的如附图1所示的二分图。
上述一般的LDPC码在实践中不易实现。常常在奇偶校验矩阵中引入某些结构,以使得可快速编码和解码而不会牺牲纠错性能。结构化LDPC码设计从小的mb×nb基础矩阵Hb开始,制作Hb的z个副本,并且互连接该z个副本以形成大的m×n阶H矩阵,其中m=mb×z,n=nb×z。利用这种矩阵表示,根据Hb建立H,其中Hb中的每个1用z×z置换子矩阵来替换,而Hb中的每个0用z×z全零子矩阵来替换。Hb扩展的表示被称作模型矩阵并记为Hbm。因此,Hbm就是当已知z时的用于H的简化记号。这一过程实际上把Hb的每个边映射到H中长度为z的向量边,把Hb的每个结点映射到H中长度为z的向量变量结点,并且把Hb的每个校验结点映射到H中长度为z的向量校验结点。对于结构化的LDPC,z×z子矩阵可以是置换矩阵、置换矩阵的和,或任何类型的二进制矩阵。由于置换矩阵P在每行有单个的1并且在每列有单个的1,如果使用置换矩阵,则扩展的矩阵H的权重分布与基础矩阵Hb相同。因此,选择Hb的权重分布尽可能接近所希望的最终权重分布。构成H的置换子矩阵可以非常简单而不影响性能,例如简单的循环位移和/或位反转(bit-reversal)。在循环位移的情况下,可通过用表示位移大小的非负整数来替换Hb中的1、用1来替换Hb中的0来重写Hbm。在发送器端,根据H(或等价的Hbm)来编码k消息位的向量u,以产生n编码位的向量x,其中k=n-m=z×kb,kb=(nb-mb)。通过噪声信道发送向量x,并接收n污染信号的向量y。在接收器端,LDPC解码器试图根据所接收的向量y和奇偶检验矩阵H来估计x。接收器获得所传送码字x的受污染版本y。为了解码y并估计原消息序列s,通常根据二分图来应用迭代解码算法,如置信传播(belief propagation)。按码字位的似然比对数值(log-likelihood ratios,LLR)格式的软消息在变量结点集和校验结点集之间传递。当满足所有校验方程或达到最大允许的迭代界限时,该迭代结束。
结构化LDPC编码可利用分层的解码器来解码。分层的解码器通常具有硬件来一次处理整个的行。分层的解码器能够降低为达到指定级别的性能所需要的迭代次数,并当如果没有足够的硬件来一次处理所有的块行,可潜在提高吞吐量。当基础矩阵Hb受约束时也可以按层来分组,使得各基行组不交叉,这意味着在一个组中的各基行在一个基列中至多有一个1(或等价地,Hbm的每组行在一个列中至多只有一个非负项)。按层分组可进一步用于提高LDPC解码器速度,因需要较少的迭代就可得到特定的纠错性能。
另外,可设计用于给定目标奇偶校验矩阵H的基础矩阵和置换矩阵的分配,以提供具有良好纠错性能并可有效编码和解码的LDPC码。在美国专利申请号10/839,995中,描述了一种结构化奇偶校验矩阵H,其中H是基础矩阵Hb的扩展,其中Hb包含区段Hb1和区段Hb2,并且其中Hb2包括第一部分和第二部分,该第一部分含有具有大于2的奇权重的列hb,并且第二部分含有行i、列j的矩阵元素,所述元素的值当i=j为1,当i=j+1为1,其他情况下为0。基础矩阵Hb的扩展对第二部分H′b2的每个列中的1使用相同的子矩阵,并且该扩展对hb中偶数的1的使用成对的子矩阵。
尽管可使用利用按层分组的分层解码来潜在降低处理量并潜在提高吞吐量,但还没有一种技术,能对给定的目标H大小来设计基础矩阵和分配置换矩阵,使得可有效编码和利用按层分组来分层解码。因此,需要在结构化LDPC编码中建立特征,使得可有效编码和高速分层解码。
发明内容
本发明提供一种操作发送器的方法,该发送器根据当前符号集s=(s0,...,sk-1)生成奇偶校验位p=(p0,...,pm-1),该方法包括如下步骤:接收所述当前符号集s=(s0,...,sk-1);利用矩阵H确定所述奇偶校验位;以及连同该当前符号集一起发送该奇偶校验位;其中,H是具有mb个行的基础矩阵Hb的扩展,Hb包括区段Hb1和区段Hb2,并且Hb2包含具有权重wh>=3的列hb和具有双对角结构的H′b2,对于H′b2中在行i、列j的矩阵元素,当i=j时,该矩阵元素等于1,当i=j+1时,该矩阵元素等于1,在其他情况下,该矩阵元素等于0;其中,布置hb和Hb1中的1,使得可形成Hb中行的一个或多个组,在每个组中的Hb的行不交叉。
本发明还提供一种与上述方法相对应的用于操作发送器的设备。
附图说明
图1是奇偶校验处理流。
图2至图4示出了对码率1/2,2/3和3/4的FER性能。
具体实施方式
为了得到结构化LDPC设计的有效编码和良好纠错性能,奇偶校验部分Hb2包含Hb2中的大小为q的组,并且Hb2中这种同样的组划分被扩展到信息部分Hb1。特别奇偶校验矩阵如下述构造。
(1).奇偶校验部分Hb2具有格式
Figure GSB00000080190100051
Figure GSB00000080190100052
列hb具有权重wh>=3,并且排列hb中的1使得形成mb/q个组,其中每组中的Hb2的q个行不交叉。(Hb或Hb2的)两个或多个基行被称作不交叉,是指该组行在每个基列中至多有一个1。换言之,如果两个行的点积(dot product)是零,则这两个行不交叉。
在一个例子中,组j包含的行具有标引g(j)={j,j+mb/q,j+2×mb/q,...,j+(q-1)×mb/q},j=0,1,...,(mb/q-1),mb/q>1。在这种情况下,如果wh=3,列hb的一个例子包含三个非零项hb(0)=1,hb(mb-1)=1,和hb(a)=1,其中
Figure GSB00000080190100061
例如,当q=2并且mb=24,对于j=0至11,一对基行j和j+12至多有一个非零项。对mb=12和q=2,则hb列优选具有权重3,且hb(0)=1和hb(mb-1)=1和hb(a)=1.
在另一个例子中,各组不是均匀的,其中至少一个组较之另外的组具有不同的行数。注意,根据定义,第一基行和第二基行不能在相同的组中,因这两个行是交叉的。这两个相邻的行交叉是因为Hb2的第二部分在行i、列j包含这样的矩阵元素,当i=j该元素为1,当i=j+1该元素为1,并且其他情况下该元素是0。但是,在解码器中,处理行的次序可改变,而不影响性能。因此,可执行Hb的基行或基列置换和重排,而依然维持期望的解码特性。这表明,可重新排列行和列,使得一个组中的行是相邻的,而依然维持上述构造的非交叉性。
(2)构造信息部分Hb1使得组g(j)中所有q个行在<=I个位置交叉,其中I等于Hb中具有大于mb/q的列权重的列数。如果列权重小于或等于mb/q。通过说明组中Hb的各行不交叉,情况(2)可由情况(1)覆盖。
在不同的系统中,可能需要不同的基础矩阵。例如,对给定的编码率,可能使用多个基础矩阵,或一个基础矩阵可用于每种编码率。所述的非交叉构造可用作所有基础矩阵的子集。例如,如果对R=1/2、2/3和3/4需要具有相同列数的三个基础矩阵,则非交叉构造可用于R=1/2和2/3,但不用于R=3/4,以维持良好的性能。作为替换,非交叉构造可用于R=1/2而不用于R=2/3和R=3/4。
作为性能考虑的例子,考虑用于编码率1/2、2/3和3/4的具有24列和分别具有12、8和6行的基础矩阵。当基础矩阵的规模相对小的时候(如R=2/3和3/4,24列),所产生编码的性能受影响。这是因为好的性能要求好的列权重分布(特别对于有关信息位置的列)。例如,在R=3/4编码中,好的性能要求权重4的列,但6×24的基础矩阵H,在基础矩阵行的各对(pair)没有重叠项的限制下最多只有权重3。
实现结构
进一步仔细考察结构化编码中位(bit)组的处理。对于具有扩展系数z的结构化LDPC码,向量校验结点(对应于基础矩阵的行)中的z个奇偶校验可并行计算。这时由于这种编码结构(包含置换)保证了来自向量变量结点(对应于基础矩阵的列)中的任何给定变量结点的消息至多只被向量校验结点中的z个奇偶校验结点中的一个需要。在图1示出了奇偶校验处理流的示例性方框图。对应于基础矩阵第i行的dr(i)个非零项的、从向量变量结点至向量校验结点i的经分组的消息μj,1≤j≤dr(i),根据置换矩阵Pij,1≤j≤dr(i)循环置换,并提供给向量校验结点i中的z个并行奇偶校验电路C1,1≤1≤z。奇偶校验电路产生反向置换的消息,以获得更新的消息μj(新),这可以用在后续的解码步骤。注意在图中dr(i)记为k。
图1中的各处理块的数字逻辑可完全流水线化,也就是说,不需要任何寄存器存储的中间结果来产生用于该电路中任何前面的寄存器的结果。如图中所描述的,一旦消息传递到电路中,更新的消息就在D周期之后被产生。
给定这种模型,考虑一种基础矩阵,其中任意两行r和s,具有非平凡(零)项的列集不交叉。因此,对应于这两行的向量校验结点使用(并更新)完全不同的消息集,它们分别与向量变量结点的两个不同集相关。在这种情况下,由于图1中的电路是流水线的,对行r和行s的向量奇偶校验可在D+1个周期计算。这通过把用于行s的消息较之用于行r的消息晚一个周期馈送至图1所示的处理单元来实现。如果用于r的消息在时刻t馈送,它们将在时刻t+D被更新,然后在时刻t+D+1更新用于行s的消息。这可以通过图1的第一个副本和在该第一副本之下的图1的另一个副本位移一个周期来表示。
按完全流水线方法,设计基础矩阵,使得Hb的行可划分成mb/2组,其中对组中的两行,具有非平凡项的列集不交叉。注意,经分组的行不必是连续的,因解码器可以不按次序来控制处理奇偶校验矩阵的行。作为替换,可以置换奇偶校验矩阵H的向量行,使得两个连续的向量行不交叉,因行的置换不影响解码性能。在这种完全流水线方法中,相对于没有成对行的情形(需要2D个块周期来处理2个行),吞吐量可接近两倍。这是由于任何后续行的处理必须延迟,直到正在处理的有关当前行的所有消息被更新。因此,完全流水线解码显著增加了吞吐量,而没有额外的硬件开销。还可以这样来看,使用两倍的硬件,组中的两个向量行在两个处理单元中同时解码,与此相比,完全流水线设计获得几乎同样的吞吐量。处理非交叉的两个行,可以看作是图1与位于右边的具有总体2D个延迟的另一个图1。
另一方面,如果Hb的某些行中没有非交叉的行,混合方法也是可以的。例如,某些基础矩阵行可与非交叉的行配对,而同时某些行还未配对。在这种情况下,可以提高吞吐量,可能没有全流水线方法的性能降低,因当执行全流水线解码时,最大列权重被限制在mb/2。
另外的方法涉及解码范型(paradigm)的修改。在这种情况下,后续行的处理不被延迟,直到有关当前行的所有消息被更新,即使该当前行和该后续行是交叉的。替代这种情况,在把用于第一行的消息馈送至奇偶校验电路之后,按一个周期的延迟引入用于第二行的消息。这种方案的性能会受影响,因第二行不能获得第一行中更新消息的任何益处。可通过减少行对(pair)之间的交叉(不是降低至绝对没有交叉)来削弱这些性能影响,而同时得到期望的纠错性能。这样可以在纠错性能和可达到的解码速度之间做出权衡。
又另外一种方法涉及在早期迭代中遵循标准的解码范型(在开始后续行之前完全处理所有的行),然后在后边的迭代中切换到上述的修改范型。
在上述讨论中,假定组的大小是2。一般来说,可以设计基础矩阵,使得Hb的mb个行可划分成mb/q组,其中每组中的q个向量行不交叉(在下文中称“q-组(q-grouping)”)。当完全流水线化,q个向量行可按流水线相继被开始处理,相继的向量行之间间隔一个周期。因此,q个行可在D+q-1个周期完成。因此q-组设计的吞吐量是不进行分组的设计的吞吐量的q倍,因q个向量行需要D×q个周期来计算。组大小为q的奇偶校验矩阵具有最大允许的列权重mb/q。因此应该适当选择q,使得利用该最大允许的列权重来得到良好的纠错性能。
尽管在优选的实施例中,所有的组均匀地具有q个向量行,并且电路是完全利用的,也可以这样设计Hb,其中各个组具有不一致的大小。在一个例子中,floor(mb/q)个组每组包含q个向量行,而有一个组包含rem(mb,q)个向量行。
尽管在考虑分层解码的情况下讨论了这种设计,具有大小q的q-组设计的奇偶校验矩阵可使用任何其他的解码结构。例如,依然可使用具有浮动调度的置信传播解码,其中所有校验结点同时处理,并且所有变量结点同时处理。
编码描述
每个LDPC码是系统化线性区块码。在LDPC码集中的每个LDPC码由大小m×n的矩阵H来定义,其中n是码的长度而m是码中奇偶校验位数。系统位数是k=n-m。
矩阵H是基础矩阵的扩展,可表示如下:
H = P 0,0 P 0,1 P 0,2 . . . P 0 , n b - 2 P 0 , n b - 1 P 1,0 P 1,1 P 1,2 . . . P 1 , n b - 2 P 1 , n b - 1 P 2,0 P 2,1 P 2,2 . . . P 2 , n b - 2 P 2 , n b - 1 . . . . . . . . . . . . . . . . . . P m b - 1,0 P m b - 1,1 P m b - 1,2 . . . P m b - 1 , n b - 2 P m b - 1 , n b - 1 = P H b
其中Pi,j是z×z右移位单位矩阵或z×z零矩阵。矩阵H是由大小mb×nb的二进制基础矩阵Hb扩展而来,其中n=z·nb并且m=z·mb,并且z是正整数。通过利用z×z右移单位矩阵来替换基础矩阵中的每个1,用z×z零矩阵替换每个0来扩展基础矩阵。因此通过改变子矩阵大小z可设计适合各种分组(packet)大小。
由于每个置换矩阵通过单个循环右移来规定,二进制基础矩阵信息和置换替换信息可结合成单个的紧凑模型矩阵Hbm。模型矩阵Hbm与二进制基础矩阵Hb的大小相同,基础矩阵Hb在(i,j)的每个二进制项被替换,以建立模型矩阵Hbm。Hb中的每个0由负值(如由-1)替换,以表示z×z全零矩阵,Hb中的每个1用循环移位大小p(i,j)≥0来替换。然后模型矩阵Hbm可直接扩展成H。
把基础矩阵Hb划分成两个区段,其中Hb1对应于系统位并且Hb2对应于奇偶校验位,使得
Figure GSB00000080190100102
区段Hb2又被进一步划分成两个部分,其中向量hb具有奇权重,并且H′b2具有双对角结构,在行i、列j的矩阵元素,对i=j,等于1,对i=j+1等于1,并且对其他等于0:
Figure GSB00000080190100103
Figure GSB00000080190100104
基础矩阵具有hb(0)=1,hb(mb-1)=1,以及第三种值hb(j),0<j<(mb-1)等于1。这种基础矩阵结构避免在扩展的矩阵中具有多个权重1的列。
特别,非零子矩阵是具有特定循环移位大小的循环右移的单位矩阵。H′b2中的每个1被赋予0移位大小,并且在扩展成H时,由z×z单位矩阵来替换。位于hb顶部和底部的两个1被赋予相等的移位大小,并且在hb中部的第三个1被赋予不配对的移位大小。该不配对的移位大小等于0。
例子
作为一个例子,下面将说明576至2304范围内的对19个编码规模nf的编码构造。对于移位大小z0=96构造每个基础模型矩阵。对基础模型矩阵定义移位大小集合{p(i,j)},并用于同样编码率的其他编码长度。对于其他的编码长度,根据该基础模型矩阵按如下来推导移位大小:
对于对应于扩展系数zf的编码长度,其移位大小{p(f,i,j)}根据{p(i,j)}通过按比例换算p(i,j)来推导出,
Figure GSB00000080190100111
注意αf=z0/zf并且
Figure GSB00000080190100112
表示给出朝向-∞的最接近整数的下取整函数。
对于编码率为1/2、2/3和3/4,在下面列出模型矩阵。对码率1/2的设计具有6个组,组大小q=2。对码率3/4的设计没有使用非交叉的限制以得到好的性能。
编码率1/2:
基本模型矩阵具有规模nb=24,mb=12以及扩展系数z0=96(即,n0=24*96=2304)。为了获得其他编码规模n,该扩展系数zf等于n/24。
-1  -1  34  -1  -1  59  -1  -1  68  -1  25  -1  7  0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
-1  89  -1  -1  -1  -1  -1  62  -1  -1  49  82  -1 0  0   -1  -1  -1  -1  -1  -1  -1  -1  -1
58  -1  -1  20  -1  -1  -1  11  -1  81  -1  16  -1 -1 0   0   -1  -1  -1  -1  -1  -1  -1  -1
-1  -1  86  -1  -1  -1  53  -1  -1  69  49  -1  -1  -1  -1  0  0  -1  -1  -1  -1  -1  -1  -1
-1  -1  -1  -1  -1  -1  -1  16  10  -1  -1  6   0   -1  -1  -1 0  0   -1  -1  -1  -1  -1  -1
-1  -1  -1  -1  49  66  -1  92  -1  -1  61  47  -1  -1  -1  -1  -1  0  0  -1  -1  -1  -1  -1
-1  13  -1  -1  -1  -1  15  33  -1  71  -1  65  -1  -1  -1  -1  -1  -1  0  0  -1  -1  -1  -1
34  -1  -1  -1  -1  48  -1  -1  19  28  -1  -1  -1  -1  -1  -1  -1  -1  -1  0  0  -1  -1  -1
-1  -1  58  -1  75  -1  -1  -1  64  -1  68  -1  -1  -1  -1  -1  -1  -1  -1  -1  0  0  -1  -1
-1  -1  -1  16  -1  -1  -1  92  47  -1  -1  64  -1  -1  -1  -1  -1  -1  -1  -1  -1 0  0   -1
-1  29  -1  -1  9   -1  -1  -1  -1  28  59  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1 -1 0   0
-1  -1  -1  38  -1  -1  83  -1  50  86  -1  -1  7   -1  -1  -1  -1  -1  -1  -1  -1 -1 -1  0
编码率2/3:
基本模型矩阵具有规模nb=24,mb=8并且扩展系数z0=96(即,n0=24*96=2304)。为了获得其他的编码规模n,该扩展系数zf等于n/24。
56  -1  -1  54  -1  75  -1  82  93  -1  -1  49  -1  3  83  -1  7  0  -1  -1  -1  -1  -1  -1
-1  47  36  -1  -1  4   62  -1  14  -1  -1  37  63  -1 -1  11  -1 0  0   -1  -1  -1  -1  -1
-1  61  -1  37  -1  -1  84  -1  54  -1  2   93  -1  23 -1  79  0  -1 0   0   -1  -1  -1  -1
84  -1  -1  77  -1  80  -1  31  78  -1  9   -1  65  -1 -1  58  -1 -1 -1  0   0   -1  -1  -1
-1  55  40  -1  8   -1  13  -1  -1  79  60  -1  95  -1 -1  30  -1 -1 -1  -1  0   0   -1  -1
11  -1  -1  45  0   -1  -1  10  -1  13  21  -1  -1  70 86  -1  -1 -1 -1  -1  -1  0   0   -1
35  -1  6   -1  16  40  -1  30  -1  57  -1  -1  89  -1 74  -1  -1 -1 -1  -1  -1  -1  0   0
-1  89  95  -1  77  -1  56  -1  -1  74  -1  14  -1  78 14  -1  7  -1 -1  -1  -1  -1  -1  0
编码率3/4:
基本矩阵规模为nb=24,mb=6并且扩展系数z0=96(即,n0=24*96=2304)。为了获得其他编码规模n,该扩展系数等于n/24。
43  90  41  40  19  -1  -1  -1  -1  86  -1  83  26  74  50  -1  -1  62  7  0  -1  -1  -1  -1
-1  -1  95  61  84  2   16  -1  -1  0   -1  -1  -1  20  30  91  18  95  -1 0  0   -1  -1  -1
-1  -1  -1  87  0   -1  58  16  -1  87  16  -1  -1  93  -1  54  24  33  0  -1 0   0   -1  -1
-1  12  -1  -1  65  48  -1  10  10  95  -1  49  -1  52  6   -1  36  57  -1 -1 -1  0   0   -1
65  -1  31  -1  15  -1  12  -1  6   57  0   89  9   29  -1  -1  -1  75  -1 -1 -1  -1  0   0
-1  65  -1  -1  48  40  -1  83  18  45  29  -1  73  84  -1  77  -1  95  7  -1 -1  -1  -1  0
性能
在图2、3和4中示出了对码率{1/2,2/3,3/4}的AWGN信道中802.16e的更新摩托罗拉设计。使用QPSK调制。对所有三种码率,块规模N在576至2304的范围。扩展系数z在24至96的范围,如图中所示。块大小与扩展系数具有关系n=24*z。
尽管参照特定实施例按特别的形式说明了本发明,但本领域的技术人员能够理解,在不脱离本发明精神和范围的前提下,本发明可以有形式和细节上的各种变化。这些变化也落在权利要求的范围之内。

Claims (9)

1.一种操作发送器的方法,该发送器根据当前符号集s=(s0,...,sk-1)生成奇偶校验位p=(p0,...,pm-1),该方法包括如下步骤:
接收所述当前符号集s=(s0,...,sk-1);
利用矩阵H确定所述奇偶校验位;以及
连同该当前符号集一起发送该奇偶校验位;
其中,H是具有mb个行的基础矩阵Hb的扩展,Hb包括区段Hb1和区段Hb2,并且Hb2包含具有权重wh>=3的列hb和具有双对角结构的H′b2,对于H′b2中在行i、列j的矩阵元素,当i=j时,该矩阵元素等于1,当i=j+1时,该矩阵元素等于1,在其他情况下,该矩阵元素等于0;其中,布置hb和Hb1中的1,使得可形成Hb中行的一个或多个组,在每个组中的Hb的行不交叉。
2.根据权利要求1的方法,其中所述一个或多个组中的行实际上是所述mb个行。
3.根据权利要求1的方法,其中,存在Hb中行的mb/q个组,每组具有q个行。
4.根据权利要求1的方法,其中,可以对基础矩阵Hb的各行做置换,使得每两个相继的行不交叉。
5.根据权利要求1的方法,其中,所述多个组不具有相同的大小。
6.根据权利要求1的方法,其中,当把基础矩阵Hb扩展成奇偶校验矩阵H的时候,对H′b2的每个列中的每个1使用相同的子矩阵,并且该扩展对hb中的偶数个1使用成对的子矩阵。
7.根据权利要求6的方法,其中所述子矩阵是z×z移位的单位矩阵。
8.一种用于操作发送器的设备,该发送器根据当前符号集s=(s0,...,sk-1)生成奇偶校验位p=(p0,...,pm-1),该设备包括:
用于接收所述当前符号集s=(s0,...,sk-1)的装置;
用于利用矩阵H确定所述奇偶校验位的装置;以及
用于连同该当前符号集一起发送该奇偶校验位的装置,
其中,H是具有mb个行的基础矩阵Hb的扩展,Hb包括区段Hb1和区段Hb2,并且Hb2包含具有权重wh>=3的列hb和具有双对角结构的H′b2,对于H′b2中在行i、列j的矩阵元素,当i=j时,该矩阵元素等于1,当i=j+1时,该矩阵元素等于1,在其他情况下,该矩阵元素等于0;其中,布置hb和Hb1中的1,使得可形成Hb中行的一个或多个组,在每个组中的Hb的行不交叉。
9.根据权利要求8的设备,其中,可以对基础矩阵Hb的各行做置换,使得每两个相继的行不交叉。
CN200580042887XA 2004-12-15 2005-07-18 利用向量行分组的结构化ldpc设计操作发送器的方法及装置 Active CN101080872B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210075946.5A CN102638274B (zh) 2004-12-15 2005-07-18 利用向量行分组的结构化ldpc设计操作发送器的设备及方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US63670004P 2004-12-15 2004-12-15
US60/636,700 2004-12-15
US11/108,949 2005-04-19
US11/108,949 US7343548B2 (en) 2004-12-15 2005-04-19 Method and apparatus for encoding and decoding data
PCT/US2005/025277 WO2006065286A1 (en) 2004-12-15 2005-07-18 Structured ldpc design with vector row grouping

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN2012100753596A Division CN102629876A (zh) 2004-12-15 2005-07-18 利用向量行分组的结构化ldpc设计
CN201210075946.5A Division CN102638274B (zh) 2004-12-15 2005-07-18 利用向量行分组的结构化ldpc设计操作发送器的设备及方法

Publications (2)

Publication Number Publication Date
CN101080872A CN101080872A (zh) 2007-11-28
CN101080872B true CN101080872B (zh) 2012-05-02

Family

ID=36585487

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201210075946.5A Active CN102638274B (zh) 2004-12-15 2005-07-18 利用向量行分组的结构化ldpc设计操作发送器的设备及方法
CN2012100753596A Pending CN102629876A (zh) 2004-12-15 2005-07-18 利用向量行分组的结构化ldpc设计
CN200580042887XA Active CN101080872B (zh) 2004-12-15 2005-07-18 利用向量行分组的结构化ldpc设计操作发送器的方法及装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201210075946.5A Active CN102638274B (zh) 2004-12-15 2005-07-18 利用向量行分组的结构化ldpc设计操作发送器的设备及方法
CN2012100753596A Pending CN102629876A (zh) 2004-12-15 2005-07-18 利用向量行分组的结构化ldpc设计

Country Status (6)

Country Link
US (1) US7343548B2 (zh)
EP (4) EP2365636A1 (zh)
KR (1) KR100901216B1 (zh)
CN (3) CN102638274B (zh)
ES (1) ES2529182T3 (zh)
WO (1) WO2006065286A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7581157B2 (en) * 2004-06-24 2009-08-25 Lg Electronics Inc. Method and apparatus of encoding and decoding data using low density parity check code in a wireless communication system
EP1829223B1 (en) * 2004-12-22 2013-02-13 LG Electronics Inc. Parallel, layered decoding for Low-Density Parity-Check (LDPC) codes
US7707479B2 (en) 2005-12-13 2010-04-27 Samsung Electronics Co., Ltd. Method of generating structured irregular low density parity checkcodes for wireless systems
US20070180344A1 (en) * 2006-01-31 2007-08-02 Jacobsen Eric A Techniques for low density parity check for forward error correction in high-data rate transmission
US7913149B2 (en) * 2006-12-20 2011-03-22 Lsi Corporation Low complexity LDPC encoding algorithm
KR101265800B1 (ko) * 2007-01-10 2013-05-20 엘지전자 주식회사 다중 반송파 시스템의 제어신호 전송 방법
KR100975695B1 (ko) * 2007-02-02 2010-08-12 삼성전자주식회사 통신 시스템에서 신호 수신 장치 및 방법
KR101455978B1 (ko) * 2007-03-27 2014-11-04 엘지전자 주식회사 Ldpc 부호를 이용한 부호화 방법
CN101911503A (zh) * 2007-12-29 2010-12-08 上海贝尔股份有限公司 Ldpc码的编码方法和编码设备
KR101405962B1 (ko) * 2008-02-28 2014-06-12 엘지전자 주식회사 Ldpc 코드를 이용한 복호화 방법
WO2009156935A1 (en) * 2008-06-23 2009-12-30 Ramot At Tel Aviv University Ltd. Using damping factors to overcome ldpc trapping sets
TWI372523B (en) * 2008-11-14 2012-09-11 Realtek Semiconductor Corp Recording controller and decoder for parity-check code
KR20100058260A (ko) 2008-11-24 2010-06-03 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 채널부호/복호 장치 및 방법
US8286048B1 (en) 2008-12-30 2012-10-09 Qualcomm Atheros, Inc. Dynamically scaled LLR for an LDPC decoder
US8190962B1 (en) * 2008-12-30 2012-05-29 Qualcomm Atheros, Inc. System and method for dynamic maximal iteration
US8201068B2 (en) * 2009-01-06 2012-06-12 Mediatek Inc. Method for generating parity-check matrix
WO2010089444A1 (es) 2009-02-06 2010-08-12 Diseño De Sistemas En Silicio, S.A. Codificar y decodificar usando códigos cuasi-cíclicos ldpc
EP2226945A1 (en) * 2009-03-03 2010-09-08 Nokia Siemens Networks Oy Generation of optimized exponent matrices for multi-rate LDPC codes
CN101599302B (zh) * 2009-07-23 2012-05-09 西安空间无线电技术研究所 一种基于fpga的ldpc译码器的译码码字的高效存储方法
CN102790622B (zh) * 2011-05-19 2017-03-15 中兴通讯股份有限公司 低密度奇偶校验码校验矩阵的构造方法及装置
KR102068030B1 (ko) * 2012-12-11 2020-01-20 삼성전자 주식회사 메모리 컨트롤러 및 그 동작방법
CN104143991B (zh) * 2013-05-06 2018-02-06 华为技术有限公司 极性Polar码的译码方法和装置
TWI566532B (zh) * 2015-09-30 2017-01-11 衡宇科技股份有限公司 用於低密度同位檢查碼之使用增強型同位檢查矩陣與再編碼方案的解碼演算法
WO2017111559A1 (en) * 2015-12-23 2017-06-29 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding channel in communication or broadcasting system
CN107370490B (zh) * 2016-05-13 2023-07-14 中兴通讯股份有限公司 结构化ldpc的编码、译码方法及装置
RU2667772C1 (ru) * 2017-05-05 2018-09-24 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство обработки информации и устройство связи
WO2018201554A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 信息处理的方法、通信装置
CN108809328B (zh) 2017-05-05 2024-05-17 华为技术有限公司 信息处理的方法、通信装置
KR102378706B1 (ko) * 2017-06-23 2022-03-28 삼성전자 주식회사 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치
WO2018236173A1 (en) * 2017-06-23 2018-12-27 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CHANNEL ENCODING AND DECODING IN A COMMUNICATION OR BROADCASTING SYSTEM
CA3067701C (en) * 2017-06-27 2022-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Design of shift values for quasi-cyclic ldpc codes
CN111492586B (zh) 2017-12-15 2022-09-09 华为技术有限公司 具有正交行的ldpc码的基矩阵设计方法及装置
CN108494411B (zh) * 2018-03-30 2021-09-17 山东大学 一种多进制ldpc码校验矩阵的构造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020042899A1 (en) * 2000-06-16 2002-04-11 Tzannes Marcos C. Systems and methods for LDPC coded modulation
US20040098659A1 (en) * 2002-11-18 2004-05-20 Bjerke Bjorn A. Rate-compatible LDPC codes
CN1499731A (zh) * 2002-10-26 2004-05-26 三星电子株式会社 低密度奇偶校验码解码装置和方法
WO2004102810A1 (ja) * 2003-05-13 2004-11-25 Sony Corporation 復号方法および復号装置、並びにプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718508B2 (en) 2000-05-26 2004-04-06 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Through The Communication Research Centre High-performance error-correcting codes with skew mapping
US7260763B2 (en) * 2004-03-11 2007-08-21 Nortel Networks Limited Algebraic low-density parity check code design for variable block sizes and code rates
US7188297B2 (en) * 2004-08-12 2007-03-06 Motorola, Inc. Method and apparatus for encoding and decoding data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020042899A1 (en) * 2000-06-16 2002-04-11 Tzannes Marcos C. Systems and methods for LDPC coded modulation
CN1499731A (zh) * 2002-10-26 2004-05-26 三星电子株式会社 低密度奇偶校验码解码装置和方法
US20040098659A1 (en) * 2002-11-18 2004-05-20 Bjerke Bjorn A. Rate-compatible LDPC codes
WO2004102810A1 (ja) * 2003-05-13 2004-11-25 Sony Corporation 復号方法および復号装置、並びにプログラム

Also Published As

Publication number Publication date
CN101080872A (zh) 2007-11-28
CN102638274B (zh) 2017-03-01
US20060129904A1 (en) 2006-06-15
CN102638274A (zh) 2012-08-15
CN102629876A (zh) 2012-08-08
EP1829222B1 (en) 2014-12-24
WO2006065286A1 (en) 2006-06-22
EP2365636A1 (en) 2011-09-14
KR100901216B1 (ko) 2009-06-05
EP2365637A1 (en) 2011-09-14
KR20070086301A (ko) 2007-08-27
EP1829222A4 (en) 2009-02-25
EP1829222A1 (en) 2007-09-05
EP2365638A1 (en) 2011-09-14
US7343548B2 (en) 2008-03-11
ES2529182T3 (es) 2015-02-17

Similar Documents

Publication Publication Date Title
CN101080872B (zh) 利用向量行分组的结构化ldpc设计操作发送器的方法及装置
US8438459B2 (en) Apparatus and method for decoding using channel code
CN102647193B (zh) 具有良好性能的不规则缩短的ldpc码的码构造
CN100472971C (zh) 解码方法与解码装置
CN101785188B (zh) 解码方法、解码装置、交织方法以及发送装置
CN102177659B (zh) 编码器、发送装置以及编码方法
CN101080874B (zh) 纠错编码装置以及在其中使用的纠错编码方法
US8713397B2 (en) Apparatus and method for layered decoding in a communication system using low-density parity-check codes
WO2007088870A1 (ja) 検査行列生成方法、符号化方法、復号方法、通信装置、符号化器および復号器
WO2006115166A1 (ja) 符号装置および符号化方法
US8996965B2 (en) Error correcting decoding device and error correcting decoding method
EP1597828B1 (en) Method and apparatus for performing low-density parity-check (ldpc) code operations using a multi-level permutation
CN102394660A (zh) 分组交织的准循环扩展并行编码ldpc码的编码方法和编码器
WO2006020484A1 (en) Method and apparatus for encoding and decoding data
CN101595644B (zh) 使用信道码解码的设备和方法
KR101216075B1 (ko) 채널 코드를 이용한 복호화 및 복호화 장치
KR100918741B1 (ko) 이동 통신 시스템에서 채널 부호화 장치 및 방법
US8429486B2 (en) Decoding device, data storage device, data communication system, and decoding method
US20080243974A1 (en) Electronic data shift device, in particular for coding/decoding with an ldpc code
EP2951926B1 (en) Ldpc code design and encoding apparatus for their application
CN110324048A (zh) 一种通信调制系统中ra-ldpc-cc的编码方法及编码器
CN102970045B (zh) Omp的ldpc解码装置及转换奇偶校验矩阵生成装置
KR100800775B1 (ko) 이동 통신 시스템에서 채널 부호화 장치 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: MOTOROLA MOBILE CO., LTD

Free format text: FORMER OWNER: MOTOROLA INC.

Effective date: 20110117

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20110117

Address after: Illinois State

Applicant after: MOTOROLA MOBILITY, Inc.

Address before: Illinois State

Applicant before: Motorola, Inc.

C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Illinois State

Patentee after: MOTOROLA MOBILITY LLC

Address before: Illinois State

Patentee before: MOTOROLA MOBILITY, Inc.

TR01 Transfer of patent right

Effective date of registration: 20160510

Address after: California, USA

Patentee after: Google Technology Holdings LLC

Address before: Illinois State

Patentee before: MOTOROLA MOBILITY LLC