CN101066807B - Sewage treating micro algae apparatus and process - Google Patents

Sewage treating micro algae apparatus and process Download PDF

Info

Publication number
CN101066807B
CN101066807B CN2007100575070A CN200710057507A CN101066807B CN 101066807 B CN101066807 B CN 101066807B CN 2007100575070 A CN2007100575070 A CN 2007100575070A CN 200710057507 A CN200710057507 A CN 200710057507A CN 101066807 B CN101066807 B CN 101066807B
Authority
CN
China
Prior art keywords
little algae
sewage
salt
algae
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007100575070A
Other languages
Chinese (zh)
Other versions
CN101066807A (en
Inventor
陈幕钊
高清潭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANJIN LUSHENG MARINE ORGANISM SCI-TECH Co Ltd
Original Assignee
TIANJIN LUSHENG MARINE ORGANISM SCI-TECH Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN LUSHENG MARINE ORGANISM SCI-TECH Co Ltd filed Critical TIANJIN LUSHENG MARINE ORGANISM SCI-TECH Co Ltd
Priority to CN2007100575070A priority Critical patent/CN101066807B/en
Publication of CN101066807A publication Critical patent/CN101066807A/en
Application granted granted Critical
Publication of CN101066807B publication Critical patent/CN101066807B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention belongs to the field of environment protecting technology, and is especially sewage treating micro algae apparatus and process with high photosynthesis efficiency, high sewage treating efficiency and short sewage treating period. The sewage treating micro algae apparatus includes culture medium comprising carbon source of sodium carbonate, sodium bicarbonate, carbonic acid, CO2 or their mixture; nitrogen source of inorganic and/or organic nitrogen compound; phosphorus source of inorganic and/or organic iron compound; and inorganic salt selected from sodium salt, potassium salt, magnesium salt, etc. The present invention is used mainly for sewage treatment.

Description

Device and the treatment process thereof of utilizing little algae to dispose of sewage
Technical field
The invention belongs to environmental technology field, relate to sewage disposal technology, relate in particular to device and the treatment process thereof of utilizing little algae to dispose of sewage.
Background technology
Water is the most basic natural resources that the mankind depend on for existence, is that other any resource institute is irreplaceable.China is the country of a lack of water, and water resources ownership per capita approximately is 25% of a world average level, and along with expanding economy, water shortage status also will be more and more serious.Therefore,, effectively save existing water resources, keep sustainable economic development, must adhere to optimizing the cycling and reutilization road of water and water in order fundamentally to solve water shortage problem.And the water surrounding that worsens has day by day more aggravated to utilize the deficiency of water resources, more and more becomes the important restraining factors of economy and social development.Thereby treasure water resources, and set up the water prevention and cure of pollution system, containment water environment degradation trend seems very urgent.
Simultaneously, China is one of the most serious country of environmental pollution in the world, the annual sewage discharge in the whole nation reaches 36,000,000,000 tons, and wherein only 10% sanitary sewage and 70% trade effluent obtain handling, and have the water outlet of half industrial sewage treatment facility not reach discharging standards approximately.Other raw sewerage directly enters rivers,lakes and seas, causes the water surrounding of China to suffer severe contamination and destruction.Some geographic drinking water sources are subjected to severe contamination, and people ' s health is caused serious harm.
The river,lake and reservior water pollution of China mainly comprises nutrition and Organic pollutants two aspects such as nitrogen phosphorus.The pollution in water body of total nitrogen, total phosphorus can cause the eutrophication of water body, causes " wawter bloom " or " red tide ", also causes serious harm for waters ecology, life production and HUMAN HEALTH.For the control of eutrophication, developed country takes the technological line of " high strength pollution treatment-natural, ecological recovers " mostly based on control nutritive salt, promptly controls external source and pollutes input and cooperate the ecological recovery measure, has obtained big effect in this respect.Contaminated river,lake and reservior water body is repaired and reduced the discharging of pollution in environment has been pressing for of socio-economic development and improvement of the ecological environment.
Sewage mainly adopts anaerobism or aerobic microorganism degradation technique except that the organism in the decontaminated water at present, therefore still contain excessive nitric acid, salt ammonia and phosphoric acid salt in the sewage of handling, so the problem of the further denitrogenation of water and dephosphorization becomes the difficult point and the emphasis of domestic and international research after the waste water second-stage treatment.If adopt physics or chemical process to remove these ions, the one, cost very Senior Two is to cause the waste of secondary pollution and these nutritive substances easily.The denitrification dephosphorization technique that the sewage work of China design is at present adopted mainly by the removal of polyP bacteria at the circulation realization phosphorus of anaerobic and aerobic, is realized denitrogenation by nitrifier and denitrifying bacteria.Existing each technology all comprising space or time go up anaerobism, anoxic, aerobic three kinds of states alternately, because every kind of bacterium has different needs to nutritive substance and growth conditions, and different microorganisms all will participate in the high-efficient denitrification and dephosphorization flow process of system, therefore will guarantee that all microorganisms are impossible, this system that just makes is difficult to reach efficient operation.And exist complex process equally, need artificial inflation or add organic carbon source, and cause the waste of nitrogen phosphorus nutrition.In recent decades, the secondary that utilizes little algae to handle to contain nitrogen and phosphorus and three grades of sewage because have less investment, cost is low and characteristics such as easy operation, more and more caused people's attention and obtained extensive studies.Many studies show that, many little algaes can effectively absorb and assimilate nutritive ingredients such as nitrogen in the water and phosphorus in process of growth, therefore have and handle the possibility that contains compositions such as nitrogen, phosphorus, can remove the organism in the decontaminated water simultaneously, the mechanism of algae purification water quality is to oxygen supply of water body by photosynthesis, increase the dissolved oxygen of water body, make aerobic bacteria can constantly carry out degradation of organic matter, algae then utilizes the organic CO that produces of degradation by bacteria 2In addition, little Trentepohlia in a class species diversity complexity, also do not obtain the Biological resources developed far away, combination that therefore can be by screening different little algae strains, little algae and little algae and little algae combine with bacterium and handle specific sewage.Big quantity research shows that also little algae is handled the sewage that contains inorganic nutrients compositions such as nitrogen phosphorus except being used for, and little algae also might be used for handling the organic sewage of high density.Because algae can carry out photosynthesis, therefore, the construction costs that biology-ecological water body is repaired is relatively low, need not consume energy or low power consuming, and running cost is cheap.Have, required little algae kind has the advantages that the source is wide, breeding is fast again, for example can be under certain condition, to its screen, directed domestication, enrichment culture.In addition, this treatment technology can not form secondary pollution not to the water body delivering medicament.At last, as the autotrophy photosynthetic organism, can be used for producing biomass when disposing of sewage, the latter then can be applied to feed, the fodder additives of animal or be used for extracting fine chemical product and the new bio energy.The little algae that breeds after the sewage disposal can also be as rich biological food in the water, and the latter then can be directly as the fresh food of economic fishery products or through gathering processing.So, the sewage disposal work of the very suitable China of this cheap practical technique.
Though can use open cultivation pool, be that the so-called efficient oxidation pool (HROP) is cultivated little algae and handled agricultural, industry and municipal effluent, but because after sewage treatment process finishes, from the treated water body, reclaim little algae complexity very, therefore limited little algae in Application of Sewage.Three kinds of methods of main at present employing are removed the little algae in the water body: sand filtration method, centrifuging and chemical flocculation, these methods or efficient are low, cost is high, or generation contains the mud of little algae in a large number and produces secondary pollution.Therefore after utilizing little algae to dispose of sewage handling problem become and utilize dispose of sewage a big bottleneck of practical application of little algae, the researchist has proposed the notion that the employing immobilization technology is disposed of sewage for this reason.So-called little algae immobilization is cultivated, both utilizing before little algae disposes of sewage, be fixed on the little algae that is growing in certain matrix and then carry out sewage disposal and be considered to a kind of more feasible method, because after employing immobilization cultured microalgae is disposed of sewage and can be removed sewage disposal from, the separation problem of algae, water.All relevant little algae immobilizations are at present cultivated the processing aspect and all are in laboratory stage, and the kind of little algae of being studied is very limited, and not overripened.
Summary of the invention
For overcoming the deficiencies in the prior art, the objective of the invention is to: provide a kind of and can fully improve photosynthetic efficiency, significantly improve density and the output of little algae, near and first mate improve sewage processing efficiency, shorten the device and the treatment process thereof of utilizing little algae to dispose of sewage in treatment time, the technical solution used in the present invention is: the device that utilizes little algae to dispose of sewage, comprise substratum, substratum comprises carbon source, nitrogenous source, phosphorus source, source of iron, inorganic salt, wherein said carbon source is yellow soda ash, sodium bicarbonate, carbonic acid, carbonic acid gas or its mixture; Described nitrogenous source is selected from organic nitrogen compound, inorganic nitrogen compound or its mixture; Described source of iron is organoiron compound, inorganic iron compound or its mixture; Described inorganic salt are selected from following material for one or more: sodium salt, sylvite, magnesium salts, calcium salt, manganese salt, cobalt salt, molybdate, zinc salt, boride, molysite, mantoquita or its mixture.
Described inorganic nitrogen compound comprises nitrate, ammonium salt or its mixture, and organic nitrogen compound is a urea.
Described carbon source concentration is 0-50mM/L, and used nitrogen concentration is 0.01-50mM/L; Described phosphorus source concentration is 0.01-1.0mM; Described inorganic salt concentration is a standard with the sodium salt, is 0.01-100ppm.
The medium pH value is 5.0-11.0.
Comprise the pre-cultivation of little algae and utilize little algae step of disposing of sewage, the pre-cultivation of little algae comprises the steps:
The A algae is tamed, screens by algae;
Algae is cultivated in the culture systems step by step in advance in little algae in claim 1 substratum in B domestication back;
The outdoor open cultivation of C algae kind.
Utilize little algae to dispose of sewage, comprise the steps:
1 utilizes little algae to dispose of sewage;
2 adopt the little algae after zooplankton is considered the drinking water processing;
The collection of 3 zooplanktons;
The processing of 4 zooplanktons.
Described culture temperature is 5-45 ℃, is preferably 10-30 ℃, more preferably 15-25 ℃.
Described cultivation is carried out under ventilation or stuffiness and agitation condition, described cultivation is cultivated under source of artificial light or lamp, described cultivation is carried out under qi of chong channel ascending adversely or not qi of chong channel ascending adversely and agitation condition, and culture systems is enclosed or open cultivation facility.
The collection of described zooplankton is to adopt filtering method, and the filtration unit of employing is the 100-300 order, and promptly the aperture is 150-50uM.
The present invention can bring following effect:
The present invention only needs to add some inorganic salt in substratum, mustn't add organism as nutrition, as the energy, has advantages such as less investment, cost is low, cultivation is simple with luminous energy.
The present invention adopts the photo bio reflecting device, adopts automatization control, and control Wastewater Treatment Parameters that not only can be stable improves processing efficiency, can also reduce labour intensity.
The present invention adopts multistage training mode to cultivate little algae, can shorten the pre-incubation time of little algae.
Description of drawings
Embodiment
The invention provides the substratum that a kind of freshwater microalgae is used, comprise carbon source, nitrogenous source, phosphorus source, source of iron, inorganic salt, wherein said carbon source comprises yellow soda ash, sodium bicarbonate, carbonic acid, carbonic acid gas or its mixture; Described nitrogenous source is selected from organic nitrogen compound, inorganic nitrogen compound or its mixture; Mixture; Described inorganic nitrogen compound comprises nitrate, sulfuric acid by, ammonium chloride or its mixture, and organic nitrogen compound comprises urea, proline(Pro), smart atmosphere acid, the acid of asparagus fern atmosphere, the acid of junket atmosphere, peptone, L-glutamic acid or its mixture.Described source of iron is organoiron compound, inorganic iron compound or its mixture; This is selected from following material for one or more described inorganic salt: sodium salt, sylvite, magnesium salts, calcium salt, manganese salt, cobalt salt, molybdate, zinc salt, boride, mantoquita and composition thereof.
In substratum of the present invention, wherein said carbon source concentration is 0-50mM/L, and used nitrogen concentration is 0.01-50mM; Described phosphorus source concentration is 0.001-0.5mM; Described source of iron concentration is 0.01-20uM; Described inorganic salt concentration is a standard with the sodium salt, is 0.01-100ppm.Its pH value is 3.0-12.0; Temperature is 5-45 ℃, and illumination is natural lighting or artificial lighting.
The present invention also provides a kind of method of cultivating little algae in above-mentioned substratum.This method is to carry out in ventilation and mechanical stirring condition.Described little algae is a kind of in blue-green algae and the green alga, be rich in nutritive ingredient especially protein and unsaturated fatty acids (chlorella Chlorella, chlamydomonas Chlamydomonas, haematococcus pulvialis Haematococcus, by first grid algae Scenedesmus, synechococcus Synechococcus, Phormidium Phormidium, blue-green algae Anabaena, poly-ball cyanobacteria Synechococcus sp.strain PCC 7942) etc.The algae kind is kept in solid inclined-plane or the liquid nutrient medium.
The purpose of this invention is to provide a kind of method that little algae removes the total nitrogen total phosphorus in the decontaminated water simultaneously of cultivating, need not add organic carbon source in little algae culturing process, it is to adopt closed or open culture systems, cultivate little algae, this method adopts the photoautotrophy method to cultivate little algae, compares with other method, in substratum, only need to add some inorganic salt, need not add organism as nutrition, as the energy, have advantages such as less investment, cost is low, cultivation is simple with luminous energy.
The present invention adopts the multi-stage type microalgae culture system, adopts method that combines and the facility of the open and little algae of closed culture of big area, and closed cultivation is meant the transparent vessel in sealing.Open cultivation refer in the open or the cultivation pool in the greenhouse in cultivate, grow the pond in cultivation: the pond that the pond body has Steel Concrete or soil to build up, cover or the film of plastic covering or rubber mass not, there is the isolation strip centre, whipping appts is arranged in the pond, nutrient solution is circulated; Be provided with on the pond and make skeleton by steel or other material etc., glass reinforced plastic, glass, synthetic glass or plastics film are made the awning on wall, top, around the canopy by the ventilation window.This breed pond need not be keeped in repair all the year round, can reduce nutrient solution and pollute, and prolongs the breeding production phase.The inventive method can be under the lower situation of temperature, utilizing thin waterway formula optical-biological reaction reactor to begin expanding species in advance cultures, shortened the expanding species cycle effectively, just provide highdensity, fine provenance, thereby saved the treatment time for outdoor large-area breed and production.
The present invention adopts multistage training mode to cultivate little algae, can shorten the pre-incubation time of little algae.Comprise the following steps:
The screening of algae kind;
Little algae carries out closed cultivation in bioreactor;
Little algae is cultivated in greenhouse or the outdoor open cultivation pool again;
Adopt spissated method, perhaps directly little algae is transferred in the sewage;
The present invention has prolonged the culture cycle of little algae, has improved the growth and breeding speed of little algae.
The present invention utilizes little algae rapidly except that total nitrogen, total phosphorus in the decontaminated water.
The invention solves the problem of little algae and water sepn after the sewage disposal, adopt animals filter foods such as zooplankton such as wheel animalcule, water flea to fall little algae in the water, the water after the processing can be used as aquaculture, improves the physics-chem characteristic of water.Comprise the following steps:
Planktonic screening, domestication;
The pre-cultivation of zooplankton;
The cultivation of zooplankton in passing through the sewage that contains little algae after little algae is handled;
Collection utilization of zooplankton and separating of water.
The invention solves the handling problem of handling zooplankton in the water of back, can be processed as aquaculture by the collection of zooplankton bait is provided, also can provide fresh food for aquaculture, the processing of gathering, handle the back as fish meal substitute, feed, freezing bait obtains cheap animal proteinum.
Further specify the present invention below in conjunction with drawings and Examples.
Embodiment one: chlorella is cultivated in the substratum shown in the table one, inoculum density is 5,000,000 cells/ml, cultivates after 5-10 days, and it is mg/ml that chlorella liquid is transferred to nitrogen concentration, phosphorus concentration is in the sewage of mg/ml, sewage is the screen filtration of 160 orders~200 mesh sieve thin,tough silk (aperture is 120um), passes through 5-10 days again, inserts wheel animalcule, density is 0.2-2 wheel animalcule/ml, after 7-10 days, water body filters with the 200-300 eye mesh screen, and water can be used as aquaculture or discharging.
Table one: mother liquor ultimate density
SODIUMNITRATE NaNO 31.5g 1.5g/L
U-Ramin MC CaCl 218g/500ml 1ml/L 36mg/L
Yellow soda ash Na 2CO 310/500ml 1ml/L 20mg/L
7 water magnesium sulfate MgSO 4.7H 2O 37.5g/500ml 1ml/L 75mg/L
Dipotassium hydrogen phosphate K 2HPO 415.25g/500ml 1ml/L 30.5mg/L
Perhaps:
Hydrogen phosphate dihydrate dipotassium K 2HPO 43H 2O 20g/500ml 1ml/L 40mg/L
Chelated iron mixture Fe-EDTA mix 1ml/L
A5 solution adds cobalt A5+Co 1ml/L
Chelated iron Fe-EDTA
Disodium EDTA Na 2EDTA 0.1g/100ml 1ppm
The amino iron Fe.NH of peaceful lemon acid 3Citrate 0.1g/100ml 1ppm
Citric acid Citric Acid 0.6g/100ml 6ppm
A5 is a kitasamycin, and A5+Co is that A5 solution adds cobalt.
Trace element
g/L Final?Concentration
Boric acid H 3BO 32.86 2.86ppm
2 water manganous chloride MnCl 2.2H 2O 1.81 1.81ppm
7 water zinc sulphate ZnSO 4.7H 2O 0.22 0.22ppm
2 water Sodium orthomolybdate Na 2MoO 4.2H 2O 0.39 0.39ppm
5 brochantite CuSO 4.5H 2O 0.079 0.079ppm
Cobalt(II) nitrate hexahydrate Co (NO 3) 2.6H 2O 0.494 0.494ppm
Embodiment 2
Chlorella is cultivated in the substratum shown in the table two, inoculum density is 5,000,000 cells/ml, respectively at 5 ℃, 45 ℃, be preferably 10 ℃, 30 ℃, more preferably 15 ℃, 25 ℃, cultivate after 5-10 days, it is mg/ml that chlorella liquid is transferred to nitrogen concentration, phosphorus concentration is in the sewage of mg/ml, and sewage is the screen filtration of 120 orders (aperture is 120um), and temperature is respectively at 5 ℃, 45 ℃, be preferably 10 ℃, 30 ℃, more preferably 15 ℃, 25 ℃, passed through again 5-10 days, insert wheel animalcule, density is 0.2-2 wheel animalcule/ml, after 7-10 days, water body filters with the 200-300 eye mesh screen, and water can be used as aquaculture or discharging.
Table two mother liquor Stock solutions Per 400ml ultimate density Final Conc (mg/L)
1 SODIUMNITRATE NaNO 310.0g 250
27 water magnesium sulfate MgSO 4.7H 2O MgSO 4.7H 2O 3.0g 25
3 sodium chloride nacl 1.0g 75
4 dipotassium hydrogen phosphate K 2HPO 43.0g 75
5 potassium primary phosphate KH 2PO 47.0g 175
62 water U-Ramin MC CaCl 2.2H 2O 1.0g 25
per?L
Trace element Trace element solution
7 water zinc sulphate ZnSO 4.7H 2O 8.82g 8.82
4 water manganous chloride MnCl 2.4H 2O 1.44g 1.44
Molybdic oxide MoO 30.72g 0.72
5 brochantite CuSO 4.5H 2O 1.57g 1.57
Cobalt(II) nitrate hexahydrate Co (NO 3) 2.6H 2O 0.49g 0.49
Dissolved under pressure Autoclave to dissolve
8 boric acid H 3BO 311.42g 11.42
9 complexing potassium hydroxide solution EDTA-KOH solution
Disodium EDTA Na 2EDTA 50.0g 50
Potassium hydroxide KOH 31.0g 31
10 7 water ferric sulfate FeSO 4.7H 2O 4.98g 4.98
Vitriol oil H 2SO 4(concentrated) 1.0ml 1.0
Ultimate density Final Solution
Per?L
Mother liquor Stock solution 1-6 10.0ml each
Mother liquor Stock solution 7-10 1.0ml each
Embodiment 3
Chlorella is cultivated in the substratum shown in the table one, and inoculum density is 5,000,000 cells/ml, cultivates after 5-10 days, it is mg/ml that chlorella liquid is transferred to nitrogen concentration, phosphorus concentration is in the sewage of mg/ml, and sewage is the screen filtration of 120 orders (aperture is 120um), passes through 5-10 days again, insert wheel animalcule, density is 0.2-2 wheel animalcule/ml, and after 7-10 days, water body filters with the 100-300 eye mesh screen, the 200-300 eye mesh screen is good especially, and water can be used as aquaculture or discharging.
The mL mother liquor stock solution final Final of g/400mL H2O (mg/L)
10 SODIUMNITRATE NaNO 310.0 250
10 2 water U-Ramin MC CaCl 2.2H 2O 1.0 25
10 7 water magnesium sulfate MgSO 4.7H 2O 3.0 75
10 dipotassium hydrogen phosphate K 2HPO 43.0 72
10 potassium primary phosphate KH 2PO 47.0 175
10 sodium chloride nacls 1.0 25
2?mL?of?PIV?trace?element?solution
PIV?metal?solution.
To?1000mL?of?glass-distilled?water,add?0.750g?of?Na 2EDTA,and?dissolve?fully.
Add?the?following?salts?in?the?amounts?indicated
Add 0.75 gram Na in 1000 ml distilled waters 2EDTA also makes abundant dissolving, adds the salt of following quality again:
Disodium EDTA Na 2EDTA 1.5
7 aqueous ferric chloride FeCl 3.6H 2O 97mg 0.194
4 water manganous chloride MnCl 2.4H 2O 41mg 0.082
Zinc dichloride ZnCl 25mg 0.01
6 water cobalt dichloride CoCl 2.6H 2O 2mg 0.004
2 water Sodium orthomolybdate Na 2MoO 4.2H 2O 4mg 0.008
Embodiment 4
Nannochloropsis oceanica is cultivated in the substratum shown in the table one, inoculum density is 5,000,000 cells/ml, cultivates after 5-10 days, and it is mg/ml that Nannochloropsis oceanica liquid is transferred to nitrogen concentration, phosphorus concentration is in the sewage of mg/ml, sewage is the screen filtration of 120 orders (aperture is 120um), passes through 5-10 days again, inserts copepods, after 7-10 days, be that the 1000-6000 individuality/water body filters with the 50-120 eye mesh screen when rising when density reaches density, water can directly be used as aquaculture or discharging.
In addition, be yellow soda ash, sodium bicarbonate in carbon source, under carbonic acid, carbonic acid gas or its mixture situation; Be selected from nitrogenous source under the situation of organic nitrogen compound, inorganic nitrogen compound or its mixture; In source of iron is under the situation of organoiron compound, inorganic iron compound or its mixture; Be selected from following material for one or more at inorganic salt: test respectively under the situation of sodium salt, sylvite, magnesium salts, calcium salt, manganese salt, cobalt salt, molybdate, zinc salt, boride, molysite, mantoquita and composition thereof, can produce culture effect, but 1,2,3,4 embodiment effective as described above not.
Comprise under nitrate or ammonium salt or its mixture situation at inorganic nitrogen compound, be also to test respectively under the situation of urea, proline(Pro), smart atmosphere acid, the acid of asparagus fern atmosphere, the acid of junket atmosphere, peptone, L-glutamic acid or its mixture at organic nitrogen compound, be 0 at carbon source concentration, 50mM/L, nitrogen concentration is 0.01,50mM/L; Phosphorus source concentration is 0.01,1.0mM; Inorganic salt concentration is a standard with the sodium salt, is 0.01,100Ppm tests respectively, not 1,2,3,4 embodiment effective as described above.

Claims (1)

1. the treatment process of utilizing little algae to dispose of sewage, it is characterized in that, comprise the pre-cultivation of little algae and utilize little algae step of disposing of sewage, the pre-cultivation of little algae comprises the steps, and realize by means of substratum, substratum comprises carbon source, nitrogenous source, phosphorus source, source of iron, inorganic salt, and wherein said carbon source is yellow soda ash, sodium bicarbonate, carbonic acid, carbonic acid gas or its mixture; Described nitrogenous source is selected from organic nitrogen compound, inorganic nitrogen compound or its mixture; Described source of iron is organoiron compound, inorganic iron compound or its mixture; Described inorganic salt are selected from following material for one or more: sodium salt, sylvite, magnesium salts, calcium salt, manganese salt, cobalt salt, molybdate, zinc salt, boride, molysite, mantoquita or its mixture:
A tames, screens algae;
Algae is cultivated in the culture systems step by step in advance in little algae in described substratum in B domestication back;
The outdoor open cultivation of C algae kind;
Utilize little algae to dispose of sewage, comprise the steps:
1 utilizes little algae to dispose of sewage;
2 adopt the little algae after zooplankton filter drinking water is handled
The collection of 3 zooplanktons;
The processing of 4 zooplanktons.
CN2007100575070A 2007-05-31 2007-05-31 Sewage treating micro algae apparatus and process Expired - Fee Related CN101066807B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100575070A CN101066807B (en) 2007-05-31 2007-05-31 Sewage treating micro algae apparatus and process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100575070A CN101066807B (en) 2007-05-31 2007-05-31 Sewage treating micro algae apparatus and process

Publications (2)

Publication Number Publication Date
CN101066807A CN101066807A (en) 2007-11-07
CN101066807B true CN101066807B (en) 2010-12-01

Family

ID=38879530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100575070A Expired - Fee Related CN101066807B (en) 2007-05-31 2007-05-31 Sewage treating micro algae apparatus and process

Country Status (1)

Country Link
CN (1) CN101066807B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304032A (en) * 2012-03-09 2013-09-18 中国海洋石油总公司 System for treating coal gasification wastewater by using microalgae and treating method
CN103304031A (en) * 2012-03-09 2013-09-18 中国海洋石油总公司 System and method for treating coal gasification wastewater by using microalgae

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993175B (en) * 2009-08-27 2013-02-13 中国石油化工股份有限公司 Nitrosification treatment method of ammonia nitrogen in high-concentration ammonia nitrogen wastewater
CN102492624B (en) * 2011-11-30 2014-01-15 天津工业生物技术研究所 Method for using ammonia flocculation microalgae
CN104126550B (en) * 2014-06-11 2016-06-29 广东汇美环保工程有限公司 Tame large-scale method and method for repairing water ecology
CN105152466B (en) * 2015-08-07 2018-03-30 仲恺农业工程学院 A kind of method that aquatic bird breeding wastewater is handled using microalgae
CN105349414A (en) * 2015-10-30 2016-02-24 福清市新大泽螺旋藻有限公司 System and method thereof for supplementing carbon source in spirulina big pool culture
CN107667934B (en) * 2017-08-31 2018-08-31 海南良之缘生物科技有限公司 The cultural method of South America prawn
CN107667929B (en) * 2017-09-29 2021-07-20 四川中科水务科技有限公司 Cultivation method of deinsectization
CN107686815B (en) * 2017-10-17 2020-05-22 中国水产科学研究院渔业机械仪器研究所 Method for cultivating chlorella by using food waste
CN109721163A (en) * 2017-10-31 2019-05-07 中国石油化工股份有限公司 The method for handling the waste water containing nitrate ion
CN108298696A (en) * 2018-01-22 2018-07-20 佛山市南海通威水产科技有限公司 A kind of nutrient solution and preparation method thereof for juvenile tilapia cultivation
CN108609800B (en) * 2018-04-28 2024-03-05 江西金达莱环保股份有限公司 Treatment device and process for low COD wastewater
CN110330104B (en) * 2019-06-21 2022-04-29 临沂大学 Method for removing p-aminobenzoic acid in water body by using microorganisms
CN110272123A (en) * 2019-07-03 2019-09-24 湘潭大学 A method of immobilized algal-bacteria syntaxial system denitrogenation dephosphorizing efficiency is improved with inorganic carbon source
CN110777091A (en) * 2019-10-31 2020-02-11 天津大学 Method for developing efficient BECCS system with bicarbonate radical as ligament
CN112919641B (en) * 2021-03-23 2024-01-16 南京科盛环保技术有限公司 Method and treatment device for denitrification and dephosphorization by utilizing microalgae

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
蒋培森等.啤酒厂污泥替代营养盐培养钝顶螺旋藻的研究.杭州师范学院学报 6.1999,(6),第69-72页.
蒋培森等.啤酒厂污泥替代营养盐培养钝顶螺旋藻的研究.杭州师范学院学报 6.1999,(6),第69-72页. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304032A (en) * 2012-03-09 2013-09-18 中国海洋石油总公司 System for treating coal gasification wastewater by using microalgae and treating method
CN103304031A (en) * 2012-03-09 2013-09-18 中国海洋石油总公司 System and method for treating coal gasification wastewater by using microalgae
CN103304032B (en) * 2012-03-09 2014-08-06 中国海洋石油总公司 System for treating coal gasification wastewater by using microalgae and treating method
CN103304031B (en) * 2012-03-09 2015-09-23 中国海洋石油总公司 A kind of system and method utilizing micro-algae gas treatment waste water

Also Published As

Publication number Publication date
CN101066807A (en) 2007-11-07

Similar Documents

Publication Publication Date Title
CN101066807B (en) Sewage treating micro algae apparatus and process
Li et al. Microalgae-based wastewater treatment for nutrients recovery: A review
Chuka-ogwude et al. A review on microalgal culture to treat anaerobic digestate food waste effluent
Lu et al. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO2 from livestock farms: A review
CN103396950B (en) A kind of natural pond liquid ecological purification method based on both culturing microalgae
CN102161550B (en) Method for producing feed additive from livestock and poultry breeding wastewater and purifying breeding wastewater to reclaimed water
CN102336498B (en) Nitrogen-phosphorus wastewater treating method by sequencing batch reactor coupled photobioreactor
Cao et al. Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater
CN106219871B (en) Livestock and poultry breeding wastewater treatment method
CN105754860A (en) Method for efficiently purifying biogas slurry in pig farm through composite microalgae
CN102140001B (en) Method for increasing methane production efficiency in organic waste anaerobic process
CN105541057B (en) A kind of method of pig farm biogas slurry recycling
CN101767893A (en) Device and method for coupling producing biological oil by utilizing microalgae to deeply treating wastewater
CN105060463A (en) Wastewater treatment method adopting O2 produced by photosynthetic organisms to replace traditional aeration as well as application
CN108178341B (en) Solid microbial purification particle and preparation method thereof
CN106277582A (en) A kind of utilize microalgae method of denitrogenation dephosphorizing in aquaculture wastewater
CN106396112A (en) Composite system used for purifying high ammonia nitrogen pig breeding biogas slurry via algae-bacterium symbiosis/ecological floating bed combined technology
CN105585223B (en) A kind of freshwater aquiculture waste water advanced treatment recovery system and method
CN105152466A (en) Method for treating waste water of aquatic bird cultivation through utilizing microalgae
Zhang et al. Ammonia-nitrogen and orthophosphate removal by immobilized Chlorella sp. isolated from municipal wastewater for potential use in tertiary treatment
CN105130013A (en) Method of treating piggery methane fluid by utilizing composite photosynthetic bacteria
CN107723242A (en) A kind of method for comprehensively utilizing rubbish from cooking zymotic fluid culture microalgae
CN109052834A (en) A kind of administering method of eutrophication water
Liu et al. Integration of algae cultivation to anaerobic digestion for biofuel and bioenergy production
CN1718550A (en) Biochemical treatment method of high concentration organic waste water

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101201

Termination date: 20120531