CN101019026A - 应用免疫磁性分离法分离生物粒子的微观流体系统 - Google Patents

应用免疫磁性分离法分离生物粒子的微观流体系统 Download PDF

Info

Publication number
CN101019026A
CN101019026A CNA2005800280872A CN200580028087A CN101019026A CN 101019026 A CN101019026 A CN 101019026A CN A2005800280872 A CNA2005800280872 A CN A2005800280872A CN 200580028087 A CN200580028087 A CN 200580028087A CN 101019026 A CN101019026 A CN 101019026A
Authority
CN
China
Prior art keywords
flow
flow channel
aforementioned
liquid
tripping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800280872A
Other languages
English (en)
Inventor
金正泰
乌特·施泰因费尔德
乔格·舒马赫尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Holzer GmbH
Original Assignee
F Holzer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Holzer GmbH filed Critical F Holzer GmbH
Publication of CN101019026A publication Critical patent/CN101019026A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明涉及分离生物粒子的装置和方法。所述装置包括直通通道(5)、第一和第二磁场、两个进口通道(1、2)和两个出口通道(3、4)。第一磁场被设置在进口通道入口区的下游并位于直通通道(5)的一侧,第二磁场(7)在第一磁场(6)的下游并位于直通通道(5)的相对侧。这两个磁场均可以依靠合适的布置通过单一磁体来产生。

Description

应用免疫磁性分离法分离生物粒子 的微观流体系统
本发明涉及分离生物粒子的装置和方法。应该在粒子或分子的基础上理解生物粒子(随后也被变通性的称为生物物质)、粒子或物质的意思。在此其包括细胞,比如例如病毒或细菌,可是也尤其包括分离的人和动物细胞,比如白细胞或肿瘤细胞,还包括低分子和高分子化合物,比如蛋白质和分子,尤其是免疫活性化合物,比如抗原、抗体和核酸,或同样包括抗原特异性四聚物,比如例如MHC四聚物或同样包括streptamers。本发明尤其涉及用于人或动物细胞的免疫磁性分离技术(IMS)、自动样品制备技术以及(电)磁或磁性分离技术(EMS)和微观流体技术。使用免疫磁性粒子来实施免疫磁性分离技术。它们被理解为免疫磁性粒子、能磁化的或有磁性的(例如铁磁性或超顺磁性的)粒子或也可以是软磁性物质,比如例如铁素体(ferrites),其特征是(例如通过与抗体或抗原特异性四聚物偶联)能特异性结合特异性生物物质或特异性生物粒子。能够结合的免疫磁性粒子优选基本上是球形(并且因此以后可以替换的被称为免疫磁性球或抗体偶联的磁性球),优选其粒度小于100μm。
因为生物粒子不同的免疫特性,特异性粒子(例如抗原或抗原特异性四聚物或streptamers)可以用特异性抗体鉴定或结合特异性抗体(免疫反应或抗原-抗体反应)。
包含4个MHC分子和抗原的结构物在免疫学中被称为四聚物。T细胞与这些结构物的结合超过其与单个复合物结合的1000倍。由此所述四聚物结合相应的T细胞受体。这相当于以肽的形式通过对经MHC复合物结合到抗原呈递细胞的细胞结合抗原的识别所进行的T细胞介导的二次免疫应答。
同时,可以产生重组的、可溶性MHC分子,其可以被结合到已知的抗原上,并且可以通过链霉亲和素使其四聚化。由此产生的肽特异性四聚物MHC分子可以用荧光着色剂标记并且在流式细胞器中用于测量。依靠四聚物技术,可以确定抗原特异性T细胞的频率,从而能够获得有关疾病症状种涉及的抗原的证据。依靠MHC分子,有可能分拣并分析例如识别肿瘤抗原的T细胞。因此肽-MHC四聚物在追踪人自身免疫性疾病例如关节炎中的抗原特异性T细胞方面具有极大的治疗潜力。
四聚物与粒子的结合将确保抗原特异性T细胞更好的结合粒子,其继而可以由于粒子而与剩余的未结合细胞分开。
可逆的MHC-肽多聚物,即所谓的streptamers,是一种制备和分离细胞毒性T淋巴细胞的新技术。与迄今为止所应用的四聚物相比,它们能够再次与T细胞分离开,因此不影响细胞的功能。
如果这些粒子与磁性球结合,那么由于免疫特异性反应,偶联到这些粒子上的生物粒子作为结合的生物粒子将具有同样的磁性、优选超顺磁性或铁磁性特性。因此,通过应用磁体,例如电磁体或永久磁体,可以分开并分离结合到与磁性粒子偶联的抗体上的生物粒子。
本发明的目的是提供一种以通流方法操作的分离装置或相应的分离方法,借助所述装置或方法,有可能以简单的方式实现自动的和持续的生物粒子分离。
为了实现这个目标,根据本发明的装置使用简单的微观流体通道,其具有两个进口或进口通道和两个出口或两个出口通道,并且也具有一个或多个磁体,例如电磁体或永久磁体。在下文中,应该理解通道(这适用于通流通道,以及向所述通流通道开口进入的进口通道和导出所述通流通道的流出通道)是指进行流体流动的容积,其包括围绕这个容积的壁。
包含不同的生物物质和/或也包含非生物物质(包括待经特异性免疫反应确定的生物粒子)的液体经第一进口通道被引入微观流体通流通道。包含被设计成与待确定的生物物质特异性结合的免疫磁性粒子的液体经另一进口通道被引入。由于待依靠免疫反应分离的生物物质是抗原,并且由于免疫磁性粒子是与相应抗体或抗原特异性四聚物或streptamers结合(抗原-抗体/四聚物/streptamer反应)的铁磁性或超顺磁性球,所以能够实现所述的特异性结合。
两种液体的流变学特性和几何比率(尤其是两个进口通道的横截面积和通流通道的横截面积)现在被配置成经两个进口通道供给的液体流在通流通道中不发生混合(扩散过程除外)。这也可以通过在通流通道的进口通道区和出口通道区之间提供分隔壁、使得各自供给或排出的液体流仅在进口通道区中和出口通道区中相接触而实现。因此,在各流之间不期望的扩散影响被最小化,使待分开的生物粒子以甚至更纯的方式被分开变成可能。
在第一磁体(或磁场或其场梯度)的帮助下,由于它们的铁磁性或超顺磁性特征,此时免疫磁性粒子在进口通道区中获得一个垂直于流方向的速度分量。因此免疫磁性粒子能够克服两个层流的束缚或从一种液体流被吸引到另一种液体流中。在后者中,存在待被分离的特异性生物粒子,其与免疫磁性粒子结合。依靠合适布置的第一磁体或布置于下游的第二磁体,在出口通道区中,至少部分与待分离的生物粒子结合的免疫磁性粒子随后通过施加相反方向的磁场或场梯度被再次吸引回原始液体流中。包含与待分离的生物物质结合的免疫磁性粒子的液体流随后经一个出口通道被排放出,而另一液体流(其包含剩下的生物和/或非生物物质和未结合的待分离生物物质粒子)在另一出口通道的帮助下被排放出。
至关重要的是,由于其中占优势的条件(液体的流变学特性,并且尤其是通道的横截面积)的结果,在微观流体通流通道中存在层流条件。出于此原因,两个液体流不混合或仅是非实质性混合。因此,基本上只有免疫磁性粒子在第一磁场的帮助下克服两个液体流之间的界限,并且结合的和剩余未结合的免疫磁性粒子在相反方向上在第二电磁体磁场的帮助下再次克服两个液体流的界限。因此免疫磁性粒子被分开引入到包含待分离的生物粒子的液体中,接着在特定的时间期间从它们的生物物质液体流改变到邻接的液体流中,在那与待分离的生物粒子结合,随后在第二磁场的帮助下,与生物粒子结合的磁性粒子被再次吸引回它们的原始流中。包含未结合生物粒子以及其它生物物质的液体随后经一个出口或排放通道被排放出,同时,结合的、由此分离的生物粒子能够从另一个出口被排放出。
在一个优选的变通实施方案中,根据本发明的装置可提供有反应室(reaction chamber)。其被安置于通流通道上包含生物物质的液体流或第一磁体的一侧上,用来延长这个液体流流经整个通流通道所需要的时间。该反应室被置于流方向上两个磁体之间,从而使被引入流中的免疫磁性粒子获得增加的驻留长度、并且由此使免疫磁性粒子有更大概率结合特异生物物质。
上述免疫磁性分离装置具有一系列的优点:
该装置能够以简单方式进行分离,而没有需要手动实施、因此耗时并且还需要额外液体的额外混合、孵育和清洗的步骤。利用该装置,有可能进行自动和持续粒子的分离或分开,其中只需要少量或根本不需要缓冲剂、转移和/或稀释液体。因此样品稀释溶液和额外的缓冲溶液在本装置中并不是必需的。
结合的生物粒子因此能够不用额外的洗出步骤即可从包含各种生物物质的起始混合液体中分离和分开。经分开的排放通道获得被分离的生物粒子。
抗体偶联磁性粒子或免疫磁性粒子能够直接向它们的相关进口通道供给,而不需要另外的预混合步骤或孵育步骤。
该装置可以配备有用于控制磁场强度或磁场梯度的自动控制装置。此外,该装置也可以装备有调节通流通道中对通流速率或每单位时间流经的液体量进行控制的调节装置。也可以通过位于进口通道和/或出口通道部位的合适的调节装置来实现对通流速率或每单位时间流经的液体量的控制。因此有可能以简单并受控的方式实现对生物粒子的标记或结合以及它们的分离。
根据本发明的装置可被用作人和动物体内或体外医疗诊断系统。以同样简单的方式,根据本发明的装置也可用于治疗目的,例如用来从患者等的血或组织分离特定类型的细胞。因此,尤其该装置可以是可植入的,并且能够确保进行持续分离或测量过程。特别对于可植入装置,后者和它的电控制单元可以以集成的方式来制造,因此具有适合植入和以经济的方式制造的尺度。如果根据本发明的装置被用在人或动物体外,那么它就可以被配置成为一种实验室用具。然后该实验室用具可用于细胞分离,例如对血液样品、混合的细胞群(例如来自患者组织)或具有特定特性的细胞(例如特定的表面标记物或生理状态)进行分离。
可以按照以下两个实施例之一中所述建造或使用根据本发明的装置。
图1显示根据本发明的第一免疫磁性分离装置;
图2显示根据本发明的具有反应室的第二免疫磁性分离装置;
图3显示根据本发明的第三免疫反应磁性分离装置;
图4显示根据本发明的另外的第四免疫磁性分离装置。
在随后所述的对应于实施例的附图中,对于装置中的相似或相同的组件使用相同的标号。
图1显示免疫磁性分离装置。图1显示通过本发明的免疫磁性分离装置在贯穿装置重心的中心平面的截面。该装置有微观流体通流通道5,其有流入区E和置于其下游的排放区A。在流入区E中,第一进口通道1和第二进口通道2向通流通道5开口。由此第二进口通道沿流经通流通道5的流方向开口。第一进口通道1以相对于经过通流通道5的通流方向呈α=30°的角度开口。在流出区A中,两个排放通道3和4引流出通流通道5。由此排放通道3沿流经通流通道5的流向导离开,排放通道4相对于这个方向以α=30°的角度导离。垂直于各自通流方向的进口通道1、2和排放通道3、4的直径约为垂直于其通流方向的通流通道5的直径的一半。
在流入区E的下游,第一电磁体6被置于通流通道5的外侧并紧临通流通道5的旁侧。在这个第一电磁体6的下游和排放区A紧邻的上游,第二电磁体7同样地被置于通流通道5的外侧并紧临通流通道5的旁侧。两个电磁体6和7被置于不同的侧面上,在本情况中是在通流通道5的相对侧。
然而,在此也可以变通地将两个电磁体6和7至少部分的整合于通流通道5的壁5a中。在此情况中,两个电磁体6和7随后被整合在通流通道5的壁5a中位置基本相对的侧面上。然而,也可以将两个电磁体6和7完全置于通流通道5内或在由壁5a围起的通流通道5的容积中通流通道5的壁5a内。这两个电磁体6和7同样地被置于通流通道5内该通流通道中位置基本相对的侧面上(这优选发生在该通流通道的壁区域或甚至使电磁体6和7置于通道的内壁上或被嵌入在那里)。然而也可能的是使用与针对电磁体6和电磁体7所述的不同的变体:这样电磁体6可以完全被置于通道的壁5a的外侧,而电磁体7被整合在通流通道5的壁中的位置相对侧或被置于通道内壁5a的内表面上位置相对侧上。
进口通道1、2、排放通道3、4、通流通道5和两个电磁体6和7(或相应的中央轴或重心)在本情况中被置于一个平面中。
至关重要的是,因为进口通道、出口通道和通流通道足够小的直径以及因为足够低的流速,故所形成的流通道中的条件可以形成这样的两种液体流或液体层,其中一种在另一种上面分开滑动而没有湍流(层流)。如果因此包含各种生物粒子11、12的混合液体9经由第一进口通道1被导入,包含免疫磁性粒子8的液体10经由第二进口通道被导入,那么这两种被导入的液体流不发生混合(除了扩散过程),而是在排放区域A的方向上作为互相平行的分开的液体层滑动。随后混合液体9的第一液体流以不与免疫磁性粒子8的第二液体流10发生混合的方式经第一排放通道3被排放出,第二液体流10相应的经第二排放通道4被排放出。
所以至关重要的是,在微观流体通流通道5中,通流液体具有如此小的雷诺数(Reynold’s number)以致于在通流通道5中的流情况可被看作层性的。因此,引起湍流和二次流或涡流的惯性的影响是可以忽略的,并且混合可能只是由于扩散过程的结果。为了确保这样,在所例举的情况中,微通流通道5具有0.1-0.3mm的宽度和0.1-0.2mm的高度(矩形通流通道,宽度和高度垂直于纵向或垂直于通流方向)。对于微通流通道5,总的通流速率(由调节装置调节,没有显示)是1-200μl/分钟。这些微观流体流的特性满足在微通流通道5中层流情况的必要先决条件。为此原因,经第一进口通道1引入的混合液体9和经第二进口通道2引入的并包含免疫磁性粒子8的液体10在通流通道5中不发生混合,而是形成两个分开的流层。因此,当电磁体6、7被关闭时,每个液体流中的不同粒子(生物粒子11、12和免疫磁性粒子8)不发生混合,而是在它们各自的液体流中持续的流动直至它们各自的排放通道3或4。
除了待分离的生物粒子11,在本情况中混合的液体9还含有生物(或甚至不同的)粒子12,欲从中分离待分开的粒子11。然而并不需要存在有这种另外的粒子12,从而也可以应用本发明来改变液体流9中待分离粒子11的浓度。如果现激活第一电磁体,那么免疫磁性粒子8被置于电磁场或场梯度中,所述的场施加垂直于流经通流通道5的通流方向并朝向第一电磁体6方向的力。结果免疫磁性粒子8被吸引出它们的第二液体流10并越过液体流边界进入混合液体的第一液体流9。因此免疫磁性粒子8与位于混合液体流9中的粒子11、12混合并且因此能够通过特异性抗原-抗体反应而与待分离的粒子11结合(由此产生组合或结合的粒子13,其分别具有至少一个免疫磁性粒子8和一个生物粒子11)。能够控制或调整电磁体6的场强度或梯度强度,从而所产生的力恰好足够从第二液体流10吸引免疫磁性粒子8进入第一液体流9。由此能够以脉冲或正弦波的形式调节电磁体6的磁场(这同样适用于电磁体7)。随后免疫磁性粒子以通流方向的流速和由与其垂直的磁场所引发的速度之间的平衡状态自由流动。
如已经所描述的,在免疫磁性粒子8已经由于免疫特异性反应而被引入混合液体9的第一液体流之后,,它们与待分开的生物粒子11结合从而形成结合粒子13。微通流通道5的狭小或小的横截面积(足够小的直径)和流经通流通道5的足够低的通流量增加了个体的免疫磁性粒子8与相关生物粒子11结合的概率(可供免疫反应的时间增加)。
在相对于第一电磁体6的下游侧上,第二电磁体7被直接置于排放区A之前通流通道5的与该磁体相对的一侧。在这个第二电磁体7的帮助下,结合粒子13以及在流路径上在电磁体6和电磁体7之间没有与生物粒子11结合的免疫磁性粒子8被再次向回吸引越过液体流边界进入第二液体流10。这是经由电磁体7的电磁场或场梯度发生的,其指向与第一磁体6的磁场或梯度相对。免疫磁性结合的或特性化的生物粒子13以及未结合的免疫磁性粒子8或第二液体流10随后经第二排放通道4被排放出。第一液体流9或余下的未结合生物粒子11以及其它生物物质12经第一排放通道3被排放出。由此将(结合的)生物粒子11或13与其它的生物物质12分开。
图2显示一种免疫磁性分离装置,其基本的构造相当于显示在图1中的分离装置。在流方向上在第一电磁体6之后和第二电磁体7之前,通流通道5却具有一个突出部(反应室)14,其被置于第一电磁体6侧。在本情况中,通流通道5与反应室14被构造成一个部件。然而,也能够将反应室14作为在通流通道5中相应开口位置的单独组件形式生产。在所例举部分的截面中(进口通道1、2的、出口通道3、4的、和两个电磁体6、7的排列平面),反应室14具有Ω形的横截面。在反应室14的顶部,T形的流断路器15被置于通流通道5中举例说明的截面内。流断路器15被置于流方向上室14的顶部,使得它仅参与在混合液体9的第一液体流中,并且使这个液体流转向反应室14。借助包含流断路器15和反应室14的反应装置,第一液体流9流经流通道15的路径被延长。由于这个反应装置,使第一液体流9在通流通道5中的驻留长度与反应室14的容积成比例的增加。因此,提供了增加的接触效率或免疫磁性粒子8与特定生物粒子11结合可供利用时间的延长。发生免疫反应或免疫磁性粒子8相结合的概率由此提高。因此,通过提高装置的免疫反应效率,提高了分离效率。所提供的反应室14引起高流速梯度和第一液体流9良好的微观混合。因此免疫磁性粒子8的结合概率也有增加。在此至关重要的是在流方向上在两个电磁体6和7之间配置可用的反应装置14、15,从而在已经具有引入的免疫磁性粒子8的情况下,第一液体流被导入这个延长结合时间周期的反应室14。
图3显示根据本发明的另外的分离装置,其配置主要如图1所示。然而与图1相反,现在在流入区E和置于其下游的排放区A之间的位置设置有分隔壁17,其使由进口通道1或进口通道2向分离装置供应的两个液体流彼此分开。因此,只有在两个进口1和2的区E中由可能在磁体6所施加的磁力作用下,磁性粒子从一个液体流转换到另一个液体流中,并且在区A中以相反方向发生同样的交换。在这两个区E和A之间,液体流不能发生进一步的混合,从而在这个区域中仅仅实现免疫磁性粒子和抗原附着粒子之间的聚集。
图4显示根据本发明的另一个分离装置。在此经进口通道2实现免疫磁性粒子11的供给,经进口通道1实施样品的供给,所述粒子在标为E的区域内彼此联系,从而免疫磁性粒子11能够由于所施加的磁场Fmag而进入样品中。所产生的磁场Fmag由箭头表示。具有免疫磁性粒子11的样品随后被导入具有长路径的螺旋18,从而免疫磁性粒子11在那里可以与抗原8偶联。螺旋18随后被导回,并且在区A中遇到同时已经转向并原始包含免疫磁性粒子的液体。在这个区A中,负载有免疫粒子8的粒子11通过磁场Fmag继而被再次引回到原始液体流中,并且随后经出口4被排放出。因此被再次充分地不含免疫磁性粒子11的样品被导入螺旋18周围的大弧19并最终经出口3被排放出。这种安排的益处是在磁性粒子11和抗体8之间的混合区具有很长的路径。它另外的好处是,仅需要一个磁体来产生区E中的磁场和区A中的磁场,由此实现所有混合和分离过程。

Claims (31)

1.一种分离装置,其包含具有壁(5a)的通流通道(5)、流入区(E)和置于其下游的排放区(A)和
至少一个磁体(7),其用于产生穿过通流通道(5)的至少一部分横截面的第一磁场,
两个进口通道(1、2),其用于供给流体,开口进入流入区(E)中通流通道(5),和两个排放通道(3、4),其用于转运走流体,导出排放区(A),
磁体(6、7)之一,其在流入区(E)的下游产生第一磁场,
磁体(6、7)之一,其在第一磁场的下游和排放区(A)的上游产生第二磁场,该第一和第二磁场在其方向或极性上基本相对放置。
2.根据前述权利要求的分离装置,其特征在于
第一磁体(6)和第二磁体(7)用于产生跨通流通道(5)的至少一部分横截面的磁场,
两个进口通道(1、2)用于在流入区(E)供给通向通流通道(5)的流体,两个排放通道(3、4)用于转运出通向排放区(A)的流体,
第一磁体(6)被置于通流通道(5)外侧流入区(E)的下游或至少部分的整合于通流通道(5)的壁(5a)中或通流通道的壁(5a)内,
第二磁体(7)被置于第一磁体(6)的下游和通流通道(5)外侧排放区(A)的上游或至少部分的整合于通流通道(5)的壁(5a)中或通流通道的壁(5a)内,和
第一和第二磁体被置于通流通道(5)外或内基本位于通流通道相对侧的位置或被整合于其壁(5a)中。
3.根据前述权利要求之一的分离装置,其特征在于
两个进口通道(1、2)和两个排放通道(3、4)以及优选地第一和第二磁体被置于通流通道(5)的流向上基本一个平面中。
4.根据前述权利要求之一的分离装置,其特征在于
进口通道(1、2)中至少其一和/或出口通道(3、4)中至少其一基本上通向或导离通流通道(5)的流向或与其有倾斜角度α,其中0<α<180°,尤其是0<α<90°,特别是0<α<45°。
5.根据前述权利要求之一的分离装置,其特征在于
当垂直于通流通道的流向进行观察时,进口通道之一和出口通道之一各自被置于通流通道的相同侧上。
6.根据前述权利要求之一的分离装置,其特征在于
第一和/或第二磁体(6、7)是永久磁体或电磁体。
7.根据前述权利要求的分离装置,其特征在于
电磁体的场强度和/或场梯度可以随时间和/或局部变化或能够维持恒定。
8.根据前述权利要求之一的分离装置,其特征在于
通流通道和/或进口通道和/或出口通道如此设置和/或以空间构造,尤其是针对它们的垂直于通流方向的横截面而言,从而使得在通流通道中在可用于免疫磁性分离的流体通流期间,能够产生层流或具有小于临界雷诺数Rcrit的雷诺数R的流。
9.根据前述权利要求的分离装置,其特征在于
设置和/或配置通流通道和/或进口通道和/或出口通道,使得能够在通流通道中在第一磁体(6)侧形成第一液体流,并且能够在通流通道中在第二磁体(7)侧形成除扩散过程外与第一液体流分开的第二液体流。
10.根据前述权利要求之一的分离装置,其特征在于
通流通道是微观流体通道,尤其是所具有的垂直于通流方向的横截面积为0.002mm2以上和/或1mm2以下,优选0.01mm2以上和/或0.06mm2以下。
11.根据前述权利要求之一的分离装置,其特征在于
通流通道是管,其横截面基本上是圆的、椭圆的、矩形的或正方形的。
12.根据前述权利要求之一的分离装置,其特征在于
反应装置(14、15),其被置于流方向上第一磁体之后和第二磁体之前并延长了流的路径。
13.根据前述权利要求的分离装置,其特征在于
延长流路径的反应装置具有反应室(14),其优选基本上被设置于第一磁体(6)的一侧,以及被置于通流通道(5)的内部的流断路器(15)。
14.根据前述权利要求和根据权利要求8的分离装置,其特征在于
用流断路器(15)可以将第一液体流导向反应室(14)。
15.根据前述权利要求的免疫磁性分离装置,其特征在于
在位于平行于通流通道流向的平面中的反应室(14)具有基本上Ω形、半圆形或梯形的横截面和/或在这个平面中的流断路器(15)具有基本上三角形或T形的横截面。
16.根据前述三个权利要求之一的分离装置,其特征在于
将反应室(14)配置为通流通道(5)的壁(5a)中的凸出部或与后者作为一部分或者反应室(14)被配置为分开的组件,其被置于通流通道(5)的壁(5a)的开口处。
17.根据前述权利要求之一的分离装置,其特征在于
控制装置,尤其是用于控制第一和/或第二磁体(6、7)的电子控制单元,和/或用于调节通流通道(5)中和/或进口通道(1、2)和/或排放通道(3、4)中通流量的调节装置。
18.根据前述权利要求之一的分离装置,其特征在于
该分离装置可植入人或动物体中,或该分离装置可以在人或动物体外应用,尤其是作为实验室设备。
19.根据前述权利要求之一的分开装置,其特征在于
在通流通道(5)中,在流体的流方向上,分隔壁至少被设置在进口通道(1、2)区和排放通道(3、4)区之间的区域内,所述分隔壁防止分别引入的邻接流体流相互之间的混合。
20.一种分离装置,其具有
免疫磁性分离装置和
流体,尤其是液体,其具有大量的免疫磁性、尤其是抗体偶联的粒子或与抗原特异性四聚物偶联的粒子,
其特征在于
所述免疫磁性分离装置按照前述权利要求之一所构造。
21.根据前述权利要求的分离装置,其特征在于
粒子(8)具有铁磁性和/或超顺磁性性质和/或基本上球形的形状。
22.根据前述两个权利要求之一的分离装置,其特征在于
所述分离装置的通流通道(5)和/或进口通道(1、2)和/或出口通道(3、4)被配置成使得,和/或所述流体或液体在通流通道(5)中的粘性、密度、温度和平均流量使得,在通流通道中存在层流或或具有小于临界雷诺数Rcrit的雷诺数R的流。
23.根据前述三个权利要求之一的分离装置,其特征在于
具有粒子(8)的流体或具有流经通流通道的粒子的液体的通流量是在0.1μl/分钟以上和/或2000μl/分钟以下,尤其是在1μl/分钟以上和/或200μl/分钟以下。
24.根据前述四个权利要求之一的分开装置,其特征在于
含有粒子(8)的流体或含有通流通道中粒子的液体的平均通流流速是在0.03mm/秒以上和/或3000mm/秒以下,尤其是在0.3mm/秒以上和/或300mm/秒以下。
25.从除了含有特定生物物质(11)外可能还含有进一步的生物和/或其它物质(12)的第一流体(9)、特别是液体中,在含有大量特别是与对所述这种抗原具有特异性的抗体、四聚物和/或streptamers偶联的免疫磁性粒子(8)的第二流体(10)、尤其是液体的帮助下,分离特定生物物质(11)、尤其是抗原的分离方法,
如此将第一流体(9)和第二流体(10)同时引入通流通道(5)中,使得在通流通道(5)中,在所述两个被引入的流体流之间形成层流条件,并且第一流体(9)在第一液体流中流过通流通道,第二流体(10)在邻近的第二液体流中流过通流通道,
在第一磁场的帮助下免疫磁性粒子(8)至少部分的从第二液体流被吸引到第一液体流中,随后被留在那里,使得在有可能已经至少部分的与该特定生物物质结合的免疫磁性粒子(8、13)在第二磁场的帮助下至少被部分的从第一液体流吸引到第二液体流中之前,免疫磁性粒子(8)在一个结合时间期间与所述特定的生物物质(11)结合,该结合期间相当于通流通道通流所需时间期间的一部分,
和该两个液体流各自分开从通流通道(5)中被排放出。
26.根据前述权利要求的分离方法,其特征在于
使用根据权利要求1-22之一的免疫磁性分离装置或免疫磁性分离设备。
27.根据前述两个权利要求之一的分离方法,其特征在于
选择第一和/或第二磁场的场强度和/或梯度强度,使得它恰好足够用于将免疫磁性粒子(8)从第二液体流中转移到第一液体流中,或用于将至少部分与所述特定生物物质结合的免疫磁性粒子(13)从第一液体流中转移到第二液体流中。
28.根据前述三个权利要求之一的分离方法,其特征在于
以脉冲的方式产生第一和第二磁场或其以正弦波的形式调节该第一和第二磁场。
29.根据前述四个权利要求之一的免疫磁性分离方法,其特征在于
由于延长了第一液体流经过通流通道的流路径,从而增加了结合时间期间。
30.根据前述五个权利要求之一的分离方法,其特征在于
在人或动物体外或体内实施该分离方法。
31.根据前述权利要求之一的免疫磁性分离装置和/或免疫磁性分离设备和/或免疫磁性分离方法用于人或动物体外或体内医学诊断或治疗中的用途。
CNA2005800280872A 2004-08-23 2005-08-22 应用免疫磁性分离法分离生物粒子的微观流体系统 Pending CN101019026A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004040785A DE102004040785B4 (de) 2004-08-23 2004-08-23 Mikrofluidisches System zur Isolierung biologischer Partikel unter Verwendung der immunomagnetischen Separation
DE102004040785.1 2004-08-23

Publications (1)

Publication Number Publication Date
CN101019026A true CN101019026A (zh) 2007-08-15

Family

ID=35695787

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800280872A Pending CN101019026A (zh) 2004-08-23 2005-08-22 应用免疫磁性分离法分离生物粒子的微观流体系统

Country Status (9)

Country Link
US (1) US20090047297A1 (zh)
EP (1) EP1784644B1 (zh)
JP (1) JP4842947B2 (zh)
KR (1) KR101099290B1 (zh)
CN (1) CN101019026A (zh)
AT (1) ATE412178T1 (zh)
DE (2) DE102004040785B4 (zh)
ES (1) ES2317289T3 (zh)
WO (1) WO2006021410A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101377456B (zh) * 2007-08-27 2010-12-08 财团法人工业技术研究院 磁性转换分离装置
CN103492081A (zh) * 2011-04-29 2014-01-01 贝克顿·迪金森公司 流体管线式粒子固定和收集系统以及其使用方法
CN103608117A (zh) * 2011-06-21 2014-02-26 西门子公司 从可流动的初级物质流中分离第一物质的方法和装置以及控制和/或调节设备
CN104540594A (zh) * 2012-06-25 2015-04-22 通用医疗公司 使用高梯度磁场对粒子进行分类
CN104703699A (zh) * 2012-07-06 2015-06-10 Aviva生物科技公司 分离或富集细胞的方法和成分
WO2015109644A1 (zh) * 2014-01-23 2015-07-30 张利峰 细胞磁分选系统、分选装置和处理设备
CN105190312A (zh) * 2013-03-01 2015-12-23 斯彼诺米克斯公司 基于磁性粒子的分离和测定方法
CN106190832A (zh) * 2016-08-19 2016-12-07 上海交通大学 具有高纯度细胞回收的多重磁激活分选结构微流控芯片
WO2017035875A1 (zh) * 2015-08-31 2017-03-09 深圳市赛特罗生物医疗技术有限公司 一种细胞磁分选芯片及细胞磁分选装置
CN107847944A (zh) * 2015-06-05 2018-03-27 诺华股份有限公司 基于流通顺磁性颗粒的细胞分离和顺磁性颗粒移除
CN109550531A (zh) * 2019-01-28 2019-04-02 武汉纺织大学 一种磁性尺寸依赖的微流控芯片
CN111148572A (zh) * 2017-06-06 2020-05-12 西北大学 跨界面磁性分离
CN111139182A (zh) * 2018-11-02 2020-05-12 青岛华大智造普惠科技有限公司 磁筛选装置、微液滴筛选系统及微液滴的磁筛选方法
CN111757928A (zh) * 2017-12-01 2020-10-09 环球生命科技咨询美国有限责任公司 用于细胞富集和分离的方法
CN116764805A (zh) * 2023-08-25 2023-09-19 南通三优佳磁业有限公司 一种湿式磁选机

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050097064A1 (en) * 2003-11-04 2005-05-05 Werden Todd C. Method and apparatus to determine product weight and calculate price using a camera
US9220831B2 (en) * 2005-10-06 2015-12-29 Children's Medical Center Corporation Device and method for combined microfluidic-micromagnetic separation of material in continuous flow
US20080241909A1 (en) * 2007-03-27 2008-10-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Microfluidic chips for pathogen detection
US20080178692A1 (en) * 2007-01-29 2008-07-31 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Fluidic methods
US20080241000A1 (en) * 2007-03-27 2008-10-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems for pathogen detection
US20080179255A1 (en) * 2007-01-29 2008-07-31 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Fluidic devices
US20080193919A1 (en) * 2005-11-30 2008-08-14 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems and methods for receiving pathogen related information and responding
US8068991B2 (en) 2005-11-30 2011-11-29 The Invention Science Fund I, Llc Systems and methods for transmitting pathogen related information and responding
US20080241935A1 (en) * 2007-03-27 2008-10-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods for pathogen detection
WO2007083295A2 (en) * 2006-01-19 2007-07-26 Yeda Research And Development Co. Ltd. Device and method for particle manipulation in fluid
KR100846491B1 (ko) 2006-07-25 2008-07-17 삼성전자주식회사 미세유동 장치 내에서 표적 생체분자의 분리 및 정제를 위한 자성 비드 추출 장치
DE102006038206A1 (de) * 2006-08-16 2008-02-21 Siemens Ag Verfahren zur Entfernung von in gelöster Form vorliegenden Fremdstoffen aus Abwasser
KR100757348B1 (ko) 2006-09-25 2007-09-10 이화여자대학교 산학협력단 극다공성 한천면역입자를 포함하는 미세유체소자 및 이를이용한 면역측정방법
US20120122731A1 (en) * 2006-10-18 2012-05-17 Hyongsok Soh Screening molecular libraries using microfluidic devices
US7807454B2 (en) 2006-10-18 2010-10-05 The Regents Of The University Of California Microfluidic magnetophoretic device and methods for using the same
US20100093052A1 (en) * 2006-11-14 2010-04-15 The Cleveland Clinic Foundation Magnetic cell separation
US20090050569A1 (en) * 2007-01-29 2009-02-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Fluidic methods
US20080181821A1 (en) * 2007-01-29 2008-07-31 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Microfluidic chips for allergen detection
US20080180259A1 (en) * 2007-01-29 2008-07-31 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Devices for allergen detection
US20080181816A1 (en) * 2007-01-29 2008-07-31 Searete Llc, A Limited Liability Corporation Systems for allergen detection
US8617903B2 (en) 2007-01-29 2013-12-31 The Invention Science Fund I, Llc Methods for allergen detection
US20080245740A1 (en) * 2007-01-29 2008-10-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Fluidic methods
US10001496B2 (en) 2007-01-29 2018-06-19 Gearbox, Llc Systems for allergen detection
WO2008096302A1 (en) 2007-02-07 2008-08-14 Koninklijke Philips Electronics N. V. Means for the separation of magnetic particles
US20090215157A1 (en) * 2007-03-27 2009-08-27 Searete Llc Methods for pathogen detection
US8273302B2 (en) 2007-05-15 2012-09-25 Panasonic Corporation Component separation device
ATE554859T1 (de) * 2007-05-24 2012-05-15 Univ California Integrierte fluidische vorrichtungen mit magnetischer sortierung
NL2001322C2 (nl) * 2008-02-27 2009-08-31 Univ Delft Tech Werkwijze en inrichting voor het scheiden van vaste deeltjes met een onderling dichtheidsverschil.
KR100988945B1 (ko) * 2008-04-17 2010-10-20 재단법인서울대학교산학협력재단 마이크로 채널을 이용한 혈관 내 특정부위에 세포를유도·고정하기 위한 시뮬레이션 장치 및 이를 이용하는시뮬레이션 방법
WO2009132151A2 (en) * 2008-04-23 2009-10-29 The Regents Of The University Of California Microfluidic devices and methods of using same
US8323568B2 (en) * 2008-06-13 2012-12-04 Honeywell International Inc. Magnetic bead assisted sample conditioning system
US20100018584A1 (en) * 2008-07-28 2010-01-28 Technion Research & Development Foundation Ltd. Microfluidic system and method for manufacturing the same
DE102008035770A1 (de) 2008-07-31 2010-02-18 Eads Deutschland Gmbh Optischer Partikeldetektor sowie Detektionsverfahren
US20110263044A1 (en) 2008-07-31 2011-10-27 Eads Deutschland Gmbh Device and method for the automatic detection of biological particles
DE102008057082A1 (de) 2008-11-13 2010-05-27 Siemens Aktiengesellschaft Vorrichtung zum Abscheiden ferromagnetischer Partikel aus einer Suspension
WO2010123594A2 (en) 2009-01-15 2010-10-28 Children's Medical Center Corporation Device for filtration of fluids there through and accompanying method
DE102009005925B4 (de) * 2009-01-23 2013-04-04 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Vorrichtung und Verfahren zur Handhabung von Biomolekülen
NL2002736C2 (en) 2009-04-09 2010-10-12 Univ Delft Tech Method for separating magnetic pieces of material.
US9090663B2 (en) * 2009-04-21 2015-07-28 The Trustees Of Columbia University In The City Of New York Systems and methods for the capture and separation of microparticles
CN102713640B (zh) 2009-06-10 2015-09-16 辛温尼奥生物系统公司 鞘流装置和方法
US8083069B2 (en) * 2009-07-31 2011-12-27 General Electric Company High throughput magnetic isolation technique and device for biological materials
DE102009043426B4 (de) * 2009-09-29 2012-05-24 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Gewinnung, zum Nachweis und zur Analyse von Zellen in einem mikrofluidischen System
JP5418145B2 (ja) * 2009-10-23 2014-02-19 株式会社Ihi 竪型ミル
DE102009055800B4 (de) * 2009-11-18 2013-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System und ein Verfahren zur Detektion von in flüssigen Proben enthaltenen Analytmolekülen
US20130315796A1 (en) 2010-02-17 2013-11-28 The Ohio State University Biological cell separator and disposable kit
ITTO20100068U1 (it) * 2010-04-20 2011-10-21 Eltek Spa Dispositivi microfluidici e/o attrezzature per dispositivi microfluidici
GB2482658A (en) * 2010-07-08 2012-02-15 Univ Dublin Non-linear magnetophoresis system
JP5812469B2 (ja) * 2011-05-18 2015-11-11 国立大学法人広島大学 細胞分離チップ
DE102011077905A1 (de) * 2011-06-21 2012-12-27 Siemens Aktiengesellschaft Hintergrundfreie magnetische Durchflusszytometrie
WO2013019714A1 (en) 2011-07-29 2013-02-07 The Trustees Of Columbia University In The City Of New York Mems affinity sensor for continuous monitoring of analytes
US10202577B2 (en) * 2013-10-18 2019-02-12 The General Hospital Corporation Microfluidic sorting using high gradient magnetic fields
WO2016022696A1 (en) 2014-08-05 2016-02-11 The Trustees Of Columbia University In The City Of New York Method of isolating aptamers for minimal residual disease detection
EP3106229B1 (en) * 2015-06-17 2020-07-29 IMEC vzw Dynamic magnetic cell sorting
WO2017117138A1 (en) * 2015-12-28 2017-07-06 Cognost Therapeutics Inc. An apparatus and method for cerebral microdialysis to treat neurological disease, including alzheimer's, parkinson's or multiple sclerosis
JP2019528810A (ja) * 2016-07-07 2019-10-17 ヴァンダービルト ユニヴァーシティ 疾患材料の検出、捕捉、または除去のための流体デバイス
KR102213080B1 (ko) * 2017-05-17 2021-02-08 울산과학기술원 자성 입자를 이용한 면역세포의 평가방법
WO2018212612A1 (ko) * 2017-05-17 2018-11-22 울산과학기술원 자성 입자를 이용한 면역세포의 평가 방법 및 장치
WO2019031815A1 (ko) * 2017-08-07 2019-02-14 울산과학기술원 자성 입자를 이용한 유체 분리 시스템 및 방법
KR102073300B1 (ko) * 2017-12-11 2020-02-04 충남대학교산학협력단 자성나노입자를 이용한 생체분자 추출을 위한 연속 순환형 미세유체소자
JP2021519113A (ja) * 2018-03-26 2021-08-10 レビタス, インコーポレイテッド 磁気粒子単離デバイスおよび使用方法
WO2019194417A1 (ko) * 2018-04-04 2019-10-10 광주과학기술원 미생물 농축 소자
US11548011B2 (en) * 2018-07-23 2023-01-10 The Brigham And Women's Hospital, Inc. Magnetic levitation techniques to separate and analyze molecular entities
JP2022509369A (ja) * 2018-10-25 2022-01-20 サブラン・テクノロジーズ・インコーポレイテッド 粒子捕捉システムおよび方法
EP3978119A1 (en) * 2020-09-30 2022-04-06 Levitas, Inc. Particle separator system, materials, and methods of use
KR102437359B1 (ko) * 2021-01-21 2022-08-29 포항공과대학교 산학협력단 유체 채널에서 자성입자의 내부 환류를 이용한 분리 장치 및 이를 이용하는 분리 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972721A (en) * 1996-03-14 1999-10-26 The United States Of America As Represented By The Secretary Of The Air Force Immunomagnetic assay system for clinical diagnosis and other purposes
AU4113297A (en) * 1996-09-04 1998-03-26 Technical University Of Denmark A micro flow system for particle separation and analysis
US6616623B1 (en) * 1997-07-02 2003-09-09 Idializa Ltd. System for correction of a biological fluid
US5980479A (en) * 1997-07-02 1999-11-09 Idializa Ltd. Method and system for correcting a biological fluid
JP2001518624A (ja) * 1997-09-26 2001-10-16 ユニバーシティ・オブ・ワシントン 同時の粒子分離および化学反応
DE19815882A1 (de) * 1998-04-08 1999-10-14 Fuhr Guenther Verfahren und Vorrichtung zur Manipulierung von Mikropartikeln in Fluidströmungen
AU2002220577A1 (en) * 2000-09-28 2002-04-08 Affina Immuntechnik Gmbh Circulatory device for separating substances in bodily fluids, especially blood,and the use of said device
US6630029B2 (en) * 2000-12-04 2003-10-07 General Electric Company Fiber coating method and reactor
US7984684B2 (en) * 2006-10-06 2011-07-26 Mitja Victor Hinderks Marine hulls and drives

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101377456B (zh) * 2007-08-27 2010-12-08 财团法人工业技术研究院 磁性转换分离装置
CN103492081A (zh) * 2011-04-29 2014-01-01 贝克顿·迪金森公司 流体管线式粒子固定和收集系统以及其使用方法
CN103608117A (zh) * 2011-06-21 2014-02-26 西门子公司 从可流动的初级物质流中分离第一物质的方法和装置以及控制和/或调节设备
US9878327B2 (en) 2012-06-25 2018-01-30 The General Hospital Corporation Sorting particles using high gradient magnetic fields
CN104540594A (zh) * 2012-06-25 2015-04-22 通用医疗公司 使用高梯度磁场对粒子进行分类
US10668470B2 (en) 2012-06-25 2020-06-02 The General Hospital Corporation Sorting particles using high gradient magnetic fields
CN104540594B (zh) * 2012-06-25 2019-07-02 通用医疗公司 使用高梯度磁场对粒子进行分类
CN104703699A (zh) * 2012-07-06 2015-06-10 Aviva生物科技公司 分离或富集细胞的方法和成分
CN105190312A (zh) * 2013-03-01 2015-12-23 斯彼诺米克斯公司 基于磁性粒子的分离和测定方法
CN105190312B (zh) * 2013-03-01 2017-12-12 斯彼诺米克斯公司 基于磁性粒子的分离和测定方法
US10053665B2 (en) 2014-01-23 2018-08-21 Shenzhen Cytorola Biomedical Tech Co., Ltd. Cell magnetic sorting system, sorting apparatus, and treatment device
WO2015109644A1 (zh) * 2014-01-23 2015-07-30 张利峰 细胞磁分选系统、分选装置和处理设备
US11912978B2 (en) 2015-06-05 2024-02-27 Novartis Ag Flow-through paramagnetic particle-based cell separation and paramagnetic particle removal
CN107847944A (zh) * 2015-06-05 2018-03-27 诺华股份有限公司 基于流通顺磁性颗粒的细胞分离和顺磁性颗粒移除
US11162065B2 (en) 2015-06-05 2021-11-02 Novartis Ag Flow-through paramagnetic particle-based cell separation and paramagnetic particle removal
WO2017035875A1 (zh) * 2015-08-31 2017-03-09 深圳市赛特罗生物医疗技术有限公司 一种细胞磁分选芯片及细胞磁分选装置
CN106190832A (zh) * 2016-08-19 2016-12-07 上海交通大学 具有高纯度细胞回收的多重磁激活分选结构微流控芯片
CN106190832B (zh) * 2016-08-19 2021-04-02 上海交通大学 具有高纯度细胞回收的多重磁激活分选结构微流控芯片
CN111148572A (zh) * 2017-06-06 2020-05-12 西北大学 跨界面磁性分离
CN111757928A (zh) * 2017-12-01 2020-10-09 环球生命科技咨询美国有限责任公司 用于细胞富集和分离的方法
CN111139182A (zh) * 2018-11-02 2020-05-12 青岛华大智造普惠科技有限公司 磁筛选装置、微液滴筛选系统及微液滴的磁筛选方法
CN111139182B (zh) * 2018-11-02 2023-11-14 青岛华大智造科技有限责任公司 磁筛选装置、微液滴筛选系统及微液滴的磁筛选方法
CN109550531B (zh) * 2019-01-28 2021-09-07 武汉纺织大学 一种磁性尺寸依赖的微流控芯片
CN109550531A (zh) * 2019-01-28 2019-04-02 武汉纺织大学 一种磁性尺寸依赖的微流控芯片
CN116764805A (zh) * 2023-08-25 2023-09-19 南通三优佳磁业有限公司 一种湿式磁选机
CN116764805B (zh) * 2023-08-25 2023-11-10 南通三优佳磁业有限公司 一种湿式磁选机

Also Published As

Publication number Publication date
ATE412178T1 (de) 2008-11-15
EP1784644B1 (de) 2008-10-22
JP2008510974A (ja) 2008-04-10
EP1784644A1 (de) 2007-05-16
DE102004040785A1 (de) 2006-03-02
DE502005005762D1 (de) 2008-12-04
US20090047297A1 (en) 2009-02-19
KR101099290B1 (ko) 2011-12-26
ES2317289T3 (es) 2009-04-16
JP4842947B2 (ja) 2011-12-21
DE102004040785B4 (de) 2006-09-21
KR20070050483A (ko) 2007-05-15
WO2006021410A1 (de) 2006-03-02

Similar Documents

Publication Publication Date Title
CN101019026A (zh) 应用免疫磁性分离法分离生物粒子的微观流体系统
US8790916B2 (en) Microfluidic method and system for isolating particles from biological fluid
Xia et al. Combined microfluidic-micromagnetic separation of living cells in continuous flow
US9220831B2 (en) Device and method for combined microfluidic-micromagnetic separation of material in continuous flow
US11173488B2 (en) High-throughput particle capture and analysis
US9090663B2 (en) Systems and methods for the capture and separation of microparticles
CN107012067B (zh) 一种高通量配对捕获单细胞/单颗粒的微流控芯片及其应用
CN103865752B (zh) 循环肿瘤细胞捕获和分类磁性微流控芯片及其制造和使用
JP5031800B2 (ja) 混合物からの成分の連続的な磁気的分離方法
CN101522294B (zh) 一种用于处理和混合液体介质中的磁性颗粒的设备和方法
CN205556699U (zh) 一种高通量、全自动微流控芯片细胞分选装置
RU2732235C2 (ru) Микрофлюидные способы и картриджи для разделения клеток
Hejazian et al. Negative magnetophoresis in diluted ferrofluid flow
US20170136462A1 (en) Micro-Fluidic System Using Micro-Apertures for High Throughput Detection of Cells
EP0975744A1 (en) Fractional cell sorter
AU2010239154A1 (en) Method and apparatus for isolating a target bioentity from a biological sample
US11525826B2 (en) Method for detecting and/or characterising tumour cells and associated apparatus
CN107530486A (zh) 免疫磁性细胞分离的装置和方法
Huang et al. Advances of particles/cells magnetic manipulation in microfluidic chips
CN107209180A (zh) 检测稀释样品中生物体的方法
CN110218648A (zh) 分离流体样品中生物实体的方法和设备
US20180348213A1 (en) Centrifuge-free isolation and detection of rare cells
JP2022509369A (ja) 粒子捕捉システムおよび方法
Wang et al. Advances in precise single-cell capture for analysis and biological applications
CN115786076B (zh) 一种磁分离微流控芯片装置及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20070815